Journal of Siberian Federal University. Mathematics & Physics 2014, 7(3), 331-338

VK 515.17 + 517.545
Univalent Differentials of Integer Order on Variable Torus

Tatyana S. Krepizina*
Kemerovo State University,
Red st., 6, Kemerovo, 650043,

Russia

Received 06.05.2013, received in revised form 06.01.2014, accepted 20.06.2014

In this paper we give a full description for divisors of elementary differentials of all kinds. An analog
of Appell’s expansion formula for univalent functions on a wvariable torus is obtained. All basic type
of vector bundles of meromorphic differentials of integer order over a Teichmiiller space for torus are
studied.
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Introduction

Univalent differentials (of order ¢ = 1 and ¢ = 2 in particular) even on a fixed surface have
found a lot of applications in mathematical physics (algebraic-geometric integration of nonlinear
equations in the works of S.P. Novikov, I.M. Krichever), in theoretical physics (R. Dick), and also
in analytic number theory in the works by H.M. Farkas and 1. Kra [1].

The main difference of the results of this paper from the classical ones found in the books by
J. Springer [2], H.M. Farkas and I. Kra [1] and in other books on the geometric function theory
on a compact Riemann surface is that we consider all objects on a variable compact Riemann
surface F), of genus g = 1 (torus) [3,4]. For the general theory of univalent differentials a big role
is played by so called elementary differentials of integer order ¢ that have the minimal number
of poles: either one pole of order > 2, or two simple poles, and depend holomorphically on the
modules of the torus F),. For the first time we give a full description for divisors of elementary
abelian g-differentials of all kinds. An analog of Appel’s expansion formula for univalent functions
on a variable torus is obtained. We study also all basic types of vector bundles of meromorphic
differentials of integer order ¢ # 1 over a Teichmiiller space for torus.

Preliminaries

Let Fy be a fixed compact Riemann surface of genus g = 1, Fy = C/T', where T" is a group

with two generators A;(z) = z +w, Bi(z) = z + w, Im™- > 0. Let Ho = £ The fundamental
w w

group of the surface Fj has an algebraic representation
I'z 7T1(F0) =< a1,b1 ta1by = brag > .
The class [Fo, {a1, b1 }] of conformally equivalent marked compact Riemann surfaces of genus one

is uniquely defined by a complex parameter (module) pg = w—, which lies in the upper half plane
w

H ={z€C:Imz > 0}. Here Fy = C/T'yg where Iy is the group generated by two generators
AOl(Z) =2z + 1, BOl(Z) =z + Ho-
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Every other class [Fﬂ, {af, b }] of conformally equivalent marked compact Riemann surfaces
of genus one is uniquely defined by a complex parameter (module) u € H and F,, = C/T', where
I'), is generated by A,1(z) = z+1, Bui(2) = z+ p. Moreover, there is a quasiconformal mapping
ﬁ : Iy — F),, and its lifting f,, : C — C on the universal covering surface gives an isomorphism
between the marked group T'g and the marked group T'y, = f.Tof, ! with af = fular), by =
f, Iz (b1)~

The Teichmiiller space Ty = Ty (Fp), of the classes [F),, {a¥,b}'}] of conformally equivalent
marked compact Riemann surfaces of genus one can be parametrized by points from H, and it
is a 1-dimensional complex analytic manifold. This space with the Teichmiiller metric is biholo-

d
morphically isometric to the space (H , 22|> , 2 = x + iy, with constant negative curvature [3].
Next, for every natural number n > 1 there is a fiber bundle over T; such that its fibre over
i € Ty as the space of all integer divisors of degree n on F),. Locally holomorphic sections of this
bundle define on every F), an integer divisor D* of degree n that holomorphically depends on p
[5, p.261,268].

Definition. A g¢-differential ¢ with respect to the group T on C is a differential ¢(z)dz?
such that
&(T2)(T'2)?=¢(2), 2€C, TEeT.

In particular, for ¢ = 0, this is a meromorphic function with respect to I'.

Let D be a divisor on F. Introduce following the spaces: L(D; F') of meromorphic functions f
on F' such that (f) > D, and Q9(D; F') of meromorphic ¢-differentials w on F such that (w) > D.
Denote by r(D) = dim¢ L(D; F) and i,(D) = dim¢ Q%4(D; F) the dimensions of these complex
vector spaces.

Theorem (Riemann-Roch) [1, p.73]. Let F' be a compact Riemann surface of genus g = 1.
Then for every divisor D on F
r(D™') =deg D +i(D).

Theorem (Riemann-Roch for ¢-differentials) [4, p.43|. For every q € Z on a compact Rie-
mann surface F' of genus one
iy(D) = — deg D+ r(1/D).

Theorem (Abel) [1, p.93; 4, p.67]. Let [F;{a1,b1}] be a marked compact Riemann surface
of genus one and

_ P..Pam
Qr...Q

be a divisor of degree zero on F. Then there exists a function f on F with

(f)=D & ¢(D) = Zajgo(Pj) — Zﬁk@(@k) =0
j=1 k=1

in J(F) = o(F), where ¢ is the Jacobi mapping from F to J(F).

1. Univalent elementary g-differentials on a variable torus

In this section we establish the general form of elementary univalent g-differentials on the
torus F,.
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Let us find first the general form of g-differentials T(;:Z; with the only pole Q@ = Q(u) exactly

of order m > 2 on F),, q € Z.
By the Riemann-Roch theorem for g-differentials on F), [4, p.43] we find the dimension

iq (le> = dim¢ Q4 (le?Fu> = —degD +r(Q™),

1 1
where D = —. Hence i, ( =m > 2. Here 7(Q™) = 0, so deg(Q™) = m > 0 under our

Q™ Q™
conditions. This can also be proved by contradiction: if there existed a function g on F), such
that (g) > @™, then 0 = deg(g) > deg(Q™) > 2.

Since degQ™ ' =m—-1>1>0,

(1 1 m_
’Lq <C?WL—1> :—deg (W) +T(Q 1):m—1
Therefore, iy | — ) = iy = H h i ifferential 7. with the pol
erefore, 1, Q—m = 14 W + 1. Hence there exists a g¢-differential 7,5 with the pole
. . . (m)yy _ Ri---Rp
exactly of order m at the point ¢ on F),, i. e. the divisor (Tq;Q )_ o
Q,j7=1..m.

Construct now such a differential explicitly: 7-(;7"

on F,, R; #

p Q) = fdz4, q € Z, where dz is a holomorphic
differential on F}, that depends holomorphically on p. The univalent function f has the divisor
Ry R, . )
(f)= W, since (dz) = 1. By the Abel theorem [4] we get the equation
Pp (1) (R1 -+ Rip) — @R, (1)(Q™) =0

in the Jacobi manifold J(F),), where Py is an initial point different from Q. We understand this
equation as an equality in the variable Jacobian J(F},), i. e. in the fibre of the universal Jacobi
bundle that lies over the marked surface F),. Therefore

o(R1) = 0(Q™) —p(Ra - Rn). (1)

Thus, for zeros of the function f we have m — 1 > 1 free parameters that can be arbitrarily
chosen on F), locally holomorphically depending on p. By the theorem of C.Earle [5, p. 268|
we can choose the divisor Ry --- R, in such a way that it does not contain the point ¢ on F),
and is a locally holomorphic section of the bundle of integer divisors of degree m — 1 over the
Teichmiiller space Tj.

Solving the Jacobi problem in the universal bundle over T;, we find the divisor R; on F},,
which is a unique solution to the equation (1) [1, p. 95, 97]. Here the point Ry # @ and
R; depends holomorphically on our parameter, since the right hand side in (1) was chosen as
holomorphically depending on pu. Indeed, if Ry = @ then consider the divisor D = Rs...R,, with
m — 1 free points. By the theorem on free points [1, p. 125] we have the inequality

1
m—14+1< (D) =m—1+i(D),
and hence 1 < (D). Therefore we see that there exists a differential w # 0, (w) > D. Conse-
quently, we have an impossible inequality
0=deg(w)>degD=m—12>1.

Thus, the divisor (Té;g)) = %MR’” is the most general for g-differentials T;:g) with the

only pole exactly of order m > 2 on F), with the point @ € F},. Therefore, we have proved the
following theorem.
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Theorem 1.1. On a variable torus F,, for every natural number m > 1, q € Z there exists an

elementary q-differential T;%) with the pole at the point Q = Q(p) € F,, exactly of order m locally
holomorphically depending on p, whose divisor is of the form

(rsi)= g™

p(R1) =0(Q™) —p(R2 - Rpy).

Here the divisors Ry...R,, and Q = Q(u) are chosen as locally holomorphic sections of the bundle
of integer divisors over Ty of degrees m — 1 and 1 respectively for u from a sufficiently small
neighborhood U (p9) C Tj.

Corollary 1.1. Under the assumptions of theorem 1.1 there exists a q-differential
~m) _ (1
Tq;Q = (Z'm + 0(1)) qu

in a neighborhood of the point Q@ on F),.

where

Proof. For every q € Z, m > 1, there exists a g-differential
q“g_(z—+ +—+O()) o #0
M
in a neighborhood of the point @ on F),. The Abelian 1-differential 7o 49 7 has the residue c_; =0
at the point @) by the residue theorem on F},. For m = 2 we have a ¢- dlfferentlal
(2 1 2
Tq(;%? = 077;;6)2 = (22 + O(l)) dz9.

—2

By induction, for every m > 1 we can get a g-differential
~ 1
(EYCB) = <Zm + 0(1)) dz?

in a neighborhood of the point @ on F},. Moreover, such g¢-differential can be obtained by differ-
entiating with respect to the parameter z(Q) from the formula

~(m) _ 1 ~(2)1(m—2)
6@ T (Tt 1)..(—-2) Fadle
Thus, we have proved the corollary. O
Remark 1.1. For every g € Z by the Riemann-Roch theorem for ¢-differentials we have the
equality
1
iq(D) = —deg D —
iq(D) egD+r (D)

1 1 1
and i,(1) = 1. Therefore i, (Q) =1+7(Q) =1. Also i, (Q) =r o)~ 1, where the first

equality follows from the isomorphism given by division by the differential dz? on the torus Fj,.
1
Because of that we have i, <) = 1 = i4(1). Therefore, there is no a g-differential 74, on the

torus F), with the only pole at () exactly of order one for every ¢ € Z. This fact can be also
proved by using the residue theorem for abelian differentials of order one on F), [7, 8.

Now we establish the general form for univalent g-differentials 74,¢, g, of the third kind with
exactly two simple poles at different points @1 = Q1(1) and Q2 = Q2(p) on F), that depend
holomorphically on the parameter u.
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Proposition 1.1. On a variable torus F), for every integer q there ewists an elementary g-
differential 74.0,0, of the third kind with exactly two simple poles at different points Q1 = Q1 ()
and Q2 = Q2(p) on F, locally holomorphically depending on p with the divisor (74,0,q,) =

giRz, where p(R1) = p(Q1Q2) —@(R2) in J(F,). Here the points Ry, Q1 = Q1(p), Q2 = Q2()

can be chosen as locally holomorphic sections of the bundle of integer divisors of degree one over
Ty for pu from a sufficiently small neighborhood U (o) C T1.

Proof. For q € Z, set T4.0,0, = TQ,Q,d29" 1, where ¢, ¢, is the classical abelian differential
of the third kind on F), that depends holomorphically on p [1, p.51; 6].
Such a differential 74,0,¢, can also be taken as 7 = fdz?, where f is a univalent function

with the divisor (f) 14

= ——=. By Abel’s theorem we have the equality
Q1Q2

0(R1) = p(Q1Q2) — ¢(R2) (2)

in J(F,). The divisor R; is the only solution to the equation (2). Moreover, we can take the
points such that R; # Q1,Q2, j =1, 2. Indeed, if Ry = Q1 for Ry # Q1, @2, then ¢(R3) = ¢(Q2)
and Ry = Q. We arrive at a contradiction which proves the preposition. O

2.  An analog of Appell’s expansion formula for
meromorphic functions on a variable torus

In this section we find an analog of Appell’s formula where the terms (summands) have poles
only at one point on F), and depend holomorphically on .

Let f be a function on a variable torus F), with s simple poles @1, @2, ..., Qs and residues
1, ..., Cs at them respectively. Consider the expression

f1 = f — ClT(ll) — . CSTé;S),
where Tgk)(z) = — / Tgk) is a branch of the elementary abelian integral of the second kind

[1, p.51] with only simple pole at Qf and the residue +1 at @ depends holomorphically on
i, k = 1,...,s. Then f; is an abelian integral of the first kind on the torus F),. Therefore

flzcl/dz-i-C:Clz—i-ConFM.

Theorem 2.1. Let f be a function on a variable torus F,, with simple poles Q1,...,Q; and
residues ci, ...,c; at them, and poles at Qi41, ..., Qs with multiplicities ny41,...,ns, N = 2,k =
l+1,...,s, and given principal parts at them. Then

l
f=Ciz+C+ chng)—F

j=1

1 1 e —1 (1
8Ték) Ak73 62Ték) kyn ok 1Ték)

Qs + 20 0Q3 et (ne — D! aQre—t |’
where C,C are complex numbers and

Akon, Ap 2 A
— Tk 4+ ’ + ’
(z — 2(Qr))™ (2= 2(Qr))* 2z —2(Qk)

in a punctured neighborhood of Qr, k =1+1,....s, on Fy,, and all terms depend holomorphically
on .

S
+ Z Ak,1Té21k?+Ak,2

k=l+1

f= +0(1)
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Proof. If Q1 is a pole of order ni,n; > 2, then in the previous formula the term cngl) is
replaced by the sum

(1) (1) ny—1n(1
Ty Ay 0°T, Arn, 0TS

Q1

4.+ ,
001 2 0Q3 (n; —1)! aQ?l—l

where Ay; are the coeflicients of the principal part of the Laurent series for the function f
in a punctured neighborhood of the point Qk,j = 1,...,nk(Qk), k = 1+ 1,...;s. Indeed, in a

1
' =200 +0(1),2(Qk) = ax;

Alch(gll) + A1z

neighborhood of the point @; we have the expansions Tgk) =

1 1 1 m !
(Tc(gk)):lk = Goa)? +O(1);..5 (Ték))gkl) = Goagrtt +0(1), 1 < m < ng(Qk) — 1, where

nk(Qg) is the order of the pole at the point Q for f, k =1+ 1,...,s. The theorem is proved. O

3. The space of meromorphic g-differentials on
a variable torus

1
P PPy, P,
1

Denote by 4 ( 9Fu> the space of g-differentials on F), that are mul-

tiples of the divisor , where q € Z, aq,...,a0 =2 2, n > 1, 0 <1 < n,

PP PM Py Py
and the points P, ..., P,, are pairwise distinct, and by Q¢(1; F,) the subspace of holomorphic ¢-
differentials on F),. The divisor P{*' --- P Pi11 - - - P, is chosen as a locally holomorphic section
of the bundle of integer divisors of degree a; + -+ + a; +n — [ over T;.

By the Riemann-Roch theorem for g-differentials we find the dimensions of these spaces. For
every g we have dimQ%(1; F,,) = 1, and

1 1
; =—d P PMP - Py) =
Zq<P1‘11...PlalPl+1...Pn) eg(pfél...]alal]3l+1...Pn)+r( 1 p )
=a+--F+a+n—10 (1)
Therefore

1
P PMPyy-- Py,

diqu( ;F;L)/Qq(l;Fu)=Oé1+---+az+n—l—l (= 1).

Consider the following collections of ¢-differentials:

) (1) (2) (eur) .
TaPyr - TgiPy s Tgibys s TqiPy s Tas Py Pas o TPy Py fOT 121 (4)

Tq;P1P27"'7Tq;P1Pn7 fOI‘ l = 0 (5)

Let us show that the coset classes of g-differentials from (4) are linearly independent over C.
Assume that there exists a linear combination of differentials from (4)

C’fz)réi);l 4+ O{QI)T;:)‘];I) 4+ C’l(z)r(fl);l 4+ C’l(al)T;f;éL) +Cotgp P+ -+ CnTgp P, = W,

where w is a holomorphic g-differential, such that not all its coefficients are zeroes.

The coefficients CfQ) == Cl(a’) = 0, since in the right hand side the points P, ..., P, are
not poles of order > 2. We are left with the equality

Cotgpip, + -+ CnTgp P, = w.
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Since the points P, ..., P,, are not singular for the right hand side, Cy = - -- = C,, = 0. Thus, the
coset classes for g-differentials from (4) is a base for the quotient space.

Let us now show that the collection (5) is linearly independent over C. Suppose that there
exists a linear combination Co7y, p, p,+- - -+ChTg;p, P, = w, Where w is a holomorphic g-differential,
such that not all its coefficients are zeroes. The coefficients Cy = --- = C,, = 0, since P», ..., P,
are not singular for the right hand side. Therefore the coset classes of g-differentials from (5)
form a base for the quotient space. Thus, we have proved the following theorem.

1
P PP, ---P,
d=a1+ - --+a+n—-1—1, where ay,....,ap 22, n =21, 0Kl < n,q€Z, over Ty is complex
analytic equivalent to the direct product T1 x C%, and the coset classes of q-differentials from the
collections (4), (5) give a base of locally holomorphic sections of this bundle over Ty.

Theorem 3.1. The vector bundle Fy = |JQ¢ < ;Fﬂ> /(1 F,) of rank
nw

Consider the collection of ¢-differentials

dz1; (2) L) (2) (o) (6)

Tq:,Pl’ o Tqpy s ""Tq;Pz,’ "'7Tq;Pl yTq;PyPyy++y Tq;P1 Py, +

Let us show that g-differentials from(6) are linearly independent over C. Assume again that
there exists a linear combination

Crdz? + CP 7 4 olrley) L oPr B ol
+Catgpp, + - 4 CnTgpp, =0,

such that not all its coefficients are zeroes. The coefficients C’f2) = ... = Cl(o”) =0 and Cy =
- = (), = 0, since in the right hand side there are no singular points. So we have C1dz? = 0,
which implies C; = 0. Therefore the collection (6) of g—differentials is a base for the space
1

04
(plal...plazplﬂ‘..pn

i F u) . This prove the following theorem.

1
P PMPyy-- Py
<-4 a;+n—1 over Ty is complex analytic equivalent to the direct product T; x C% . Moreover,

q-differentials of (6) give a base of locally holomorphic sections of this bundle over Ty, where
at, . 22,n>21,0<I<n,andqge’Z.

Theorem 3.2. The vector bundle Ey = |J Q4 < §Fu> of rank dy = o +
N

Remark 3.1. For ¢ = 0, [ = 0 the collection (6) is 1,70,p,p, = f2, ..., To;p, P, = [fn and is

1 1

a base for the space L | =——;F}, | , where f; are non-constant functions, and (f;) > ——-,
P..P, Py P;

j=2,..,n,onF,.

Remark 3.2. In particular, for ¢ = 1 and for a fixed torus F' Corollary 1.1 and Theorems
2.1, 3.1, 3.2 imply classical theorems on abelian 1-differentials found in [1,2].
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OanozHaunbie nuddepeHnnaIbl IeJ0ro HopsSIKa
HA IepeMeHHOM Tope

Tarpana C. Kpenununa

B amoti pabome dano noaroe onucarue usu30pos aremermaproir duddeperyuanos ecex podos. Iloay-
YeH ananoe Gopmyav, Anness pasrostcerua 00H03HawHoT GyrKyuy Ha nepemertom mope. Hceeaedosamwl
OCHOBHDBLE MUNDL BEKMOPHHLL PACCAOEHUT, U3 MEPOMOPPHLL JUPPHEPEHUUAN0E UeA020 NOPAJKG HAD NPO-
cmpancmeom Tetixmronrepa das mopa.

Karouesvie cro6a: 00H03HAUHDIE MEPOMOPPHDIE QUPPHEPEHUUANDL UEA020 NOPAJKA, JUBUSOPL, BEKMOPHDLE
paccaoerus, npocmparcmeo Tedrmrorrepa.
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