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In this paper we give a full description for divisors of elementary differentials of all kinds. An analog

of Appell’s expansion formula for univalent functions on a variable torus is obtained. All basic type

of vector bundles of meromorphic differentials of integer order over a Teichmüller space for torus are

studied.
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Introduction

Univalent differentials (of order q = 1 and q = 2 in particular) even on a fixed surface have
found a lot of applications in mathematical physics (algebraic-geometric integration of nonlinear
equations in the works of S.P.Novikov, I.M.Krichever), in theoretical physics (R.Dick), and also
in analytic number theory in the works by H.M.Farkas and I.Kra [1].

The main difference of the results of this paper from the classical ones found in the books by
J. Springer [2], H.M.Farkas and I.Kra [1] and in other books on the geometric function theory
on a compact Riemann surface is that we consider all objects on a variable compact Riemann
surface Fµ of genus g = 1 (torus) [3, 4]. For the general theory of univalent differentials a big role
is played by so called elementary differentials of integer order q that have the minimal number
of poles: either one pole of order > 2, or two simple poles, and depend holomorphically on the
modules of the torus Fµ. For the first time we give a full description for divisors of elementary
abelian q-differentials of all kinds. An analog of Appel’s expansion formula for univalent functions
on a variable torus is obtained. We study also all basic types of vector bundles of meromorphic
differentials of integer order q 6= 1 over a Teichmüller space for torus.

Preliminaries

Let F0 be a fixed compact Riemann surface of genus g = 1, F0 = C/Γ, where Γ is a group

with two generators A1(z) = z + ω, B1(z) = z + ω
′

, Im
ω

′

ω
> 0. Let µ0 =

ω
′

ω
. The fundamental

group of the surface F0 has an algebraic representation

Γ ∼= π1(F0) =< a1, b1 : a1b1 = b1a1 > .

The class [F0, {a1, b1}] of conformally equivalent marked compact Riemann surfaces of genus one

is uniquely defined by a complex parameter (module) µ0 =
ω

′

ω
, which lies in the upper half plane

H = {z ∈ C : Im z > 0}. Here F0 = C/Γ0 where Γ0 is the group generated by two generators

A01(z) = z + 1, B01(z) = z + µ0.
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Every other class
[
Fµ, {aµ

1 , bµ
1}

]
of conformally equivalent marked compact Riemann surfaces

of genus one is uniquely defined by a complex parameter (module) µ ∈ H and Fµ = C/Γµ where
Γµ is generated by Aµ1(z) = z +1, Bµ1(z) = z +µ. Moreover, there is a quasiconformal mapping

f̃µ : F0 → Fµ, and its lifting fµ : C → C on the universal covering surface gives an isomorphism

between the marked group Γ0 and the marked group Γµ = fµΓ0f
−1
µ with aµ

1 = f̃µ(a1), bµ
1 =

f̃µ(b1).
The Teichmüller space T1 = T1(F0), of the classes

[
Fµ, {aµ

1 , bµ
1}

]
of conformally equivalent

marked compact Riemann surfaces of genus one can be parametrized by points from H, and it
is a 1-dimensional complex analytic manifold. This space with the Teichmüller metric is biholo-

morphically isometric to the space

(
H,

|dz|

2y

)
, z = x + iy, with constant negative curvature [3].

Next, for every natural number n > 1 there is a fiber bundle over T1 such that its fibre over
µ ∈ T1 as the space of all integer divisors of degree n on Fµ. Locally holomorphic sections of this
bundle define on every Fµ an integer divisor Dµ of degree n that holomorphically depends on µ
[5, p. 261, 268].

Definition. A q-differential φ with respect to the group Γ on C is a differential φ(z)dzq

such that
φ(Tz)(T ′z)q = φ(z), z ∈ C, T ∈ Γ.

In particular, for q = 0, this is a meromorphic function with respect to Γ.
Let D be a divisor on F. Introduce following the spaces: L(D;F ) of meromorphic functions f

on F such that (f) > D, and Ωq(D;F ) of meromorphic q-differentials ω on F such that (ω) > D.
Denote by r(D) = dimC L(D;F ) and iq(D) = dimC Ωq(D;F ) the dimensions of these complex
vector spaces.

Theorem (Riemann-Roch) [1, p. 73]. Let F be a compact Riemann surface of genus g = 1.
Then for every divisor D on F

r(D−1) = deg D + i(D).

Theorem (Riemann-Roch for q-differentials) [4, p.43]. For every q ∈ Z on a compact Rie-
mann surface F of genus one

iq(D) = −deg D + r(1/D).

Theorem (Abel) [1, p.93; 4, p.67]. Let [F ; {a1, b1}] be a marked compact Riemann surface
of genus one and

D =
Pα1

1 ...Pαm
m

Qβ1

1 ...Qβs
s

be a divisor of degree zero on F. Then there exists a function f on F with

(f) = D ⇔ ϕ(D) =

m∑

j=1

αjϕ(Pj) −

s∑

k=1

βkϕ(Qk) = 0

in J(F ) = ϕ(F ), where ϕ is the Jacobi mapping from F to J(F ).

1. Univalent elementary q-differentials on a variable torus

In this section we establish the general form of elementary univalent q-differentials on the
torus Fµ.

– 332 –



Tatyana S.Krepizina Univalent Differentials of Integer Order on Variable Torus

Let us find first the general form of q-differentials τ
(m)
q;Q with the only pole Q = Q(µ) exactly

of order m > 2 on Fµ, q ∈ Z.
By the Riemann-Roch theorem for q-differentials on Fµ [4, p.43] we find the dimension

iq

(
1

Qm

)
= dimC Ωq

(
1

Qm
;Fµ

)
= −deg D + r(Qm),

where D =
1

Qm
. Hence iq

(
1

Qm

)
= m > 2. Here r(Qm) = 0, so deg(Qm) = m > 0 under our

conditions. This can also be proved by contradiction: if there existed a function g on Fµ such
that (g) > Qm, then 0 = deg(g) > deg(Qm) > 2.

Since deg Qm−1 = m − 1 > 1 > 0,

iq

(
1

Qm−1

)
= −deg

(
1

Qm−1

)
+ r(Qm−1) = m − 1.

Therefore, iq

(
1

Qm

)
= iq

(
1

Qm−1

)
+ 1. Hence there exists a q-differential τ

(m)
q;Q with the pole

exactly of order m at the point Q on Fµ, i. e. the divisor
(
τ

(m)
q;Q

)
=

R1 · · ·Rm

Qm
on Fµ, Rj 6=

Q, j = 1, ...,m.

Construct now such a differential explicitly: τ
(m)
q;Q = fdzq, q ∈ Z, where dz is a holomorphic

differential on Fµ that depends holomorphically on µ. The univalent function f has the divisor

(f) =
R1 · · ·Rm

Qm
, since (dz) = 1. By the Abel theorem [4] we get the equation

ϕP0
(µ)(R1 · · ·Rm) − ϕP0

(µ)(Qm) = 0

in the Jacobi manifold J(Fµ), where P0 is an initial point different from Q. We understand this
equation as an equality in the variable Jacobian J(Fµ), i. e. in the fibre of the universal Jacobi
bundle that lies over the marked surface Fµ. Therefore

ϕ(R1) = ϕ(Qm) − ϕ(R2 · · ·Rm). (1)

Thus, for zeros of the function f we have m − 1 > 1 free parameters that can be arbitrarily
chosen on Fµ locally holomorphically depending on µ. By the theorem of C.Earle [5, p. 268]
we can choose the divisor R2 · · ·Rm in such a way that it does not contain the point Q on Fµ

and is a locally holomorphic section of the bundle of integer divisors of degree m − 1 over the
Teichmüller space T1.

Solving the Jacobi problem in the universal bundle over T1, we find the divisor R1 on Fµ,
which is a unique solution to the equation (1) [1, p. 95, 97]. Here the point R1 6= Q and
R1 depends holomorphically on our parameter, since the right hand side in (1) was chosen as
holomorphically depending on µ. Indeed, if R1 = Q then consider the divisor D = R2...Rm with
m − 1 free points. By the theorem on free points [1, p. 125] we have the inequality

m − 1 + 1 6

(
1

D

)
= m − 1 + i(D),

and hence 1 6 i(D). Therefore we see that there exists a differential ω 6= 0, (ω) > D. Conse-
quently, we have an impossible inequality

0 = deg(ω) > deg D = m − 1 > 1.

Thus, the divisor (τ
(m)
q;Q ) =

R1R2 · · ·Rm

Qm
is the most general for q-differentials τ

(m)
q;Q with the

only pole exactly of order m > 2 on Fµ with the point Q ∈ Fµ. Therefore, we have proved the
following theorem.
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Theorem 1.1. On a variable torus Fµ for every natural number m > 1, q ∈ Z there exists an

elementary q-differential τ
(m)
q;Q with the pole at the point Q = Q(µ) ∈ Fµ exactly of order m locally

holomorphically depending on µ, whose divisor is of the form
(
τ

(m)
q;Q

)
=

R1 · · ·Rm

Qm
,

where
ϕ(R1) = ϕ(Qm) − ϕ(R2 · · ·Rm).

Here the divisors R2...Rm and Q = Q(µ) are chosen as locally holomorphic sections of the bundle
of integer divisors over T1 of degrees m − 1 and 1 respectively for µ from a sufficiently small
neighborhood U(µ0) ⊂ T1.

Corollary 1.1. Under the assumptions of theorem 1.1 there exists a q-differential

τ̃
(m)
q;Q =

(
1

zm
+ O(1)

)
dzq

in a neighborhood of the point Q on Fµ.

Proof. For every q ∈ Z, m > 1, there exists a q-differential

τ
(m)
q;Q =

(c−m

zm
+ ... +

c−1

z1
+ O(1)

)
dzq, c−m 6= 0

in a neighborhood of the point Q on Fµ. The Abelian 1-differential
τ

(m)
q;Q

dzq−1
has the residue c−1 = 0

at the point Q by the residue theorem on Fµ. For m = 2 we have a q-differential

τ̃
(2)
q;Q =

1

c−2
τ

(2)
q;Q =

(
1

z2
+ O(1)

)
dzq.

By induction, for every m > 1 we can get a q-differential

τ̃
(m)
q;Q =

(
1

zm
+ O(1)

)
dzq

in a neighborhood of the point Q on Fµ. Moreover, such q-differential can be obtained by differ-
entiating with respect to the parameter z(Q) from the formula

τ̃
(m)
q;Q =

1

(−m + 1)...(−2)

[
τ̃

(2)
q;Q

](m−2)

Q
.

Thus, we have proved the corollary. 2

Remark 1.1. For every q ∈ Z by the Riemann-Roch theorem for q-differentials we have the
equality

iq(D) = −deg D + r

(
1

D

)

and iq(1) = 1. Therefore iq

(
1

Q

)
= 1 + r(Q) = 1. Also iq

(
1

Q

)
= r

(
1

Q

)
= 1, where the first

equality follows from the isomorphism given by division by the differential dzq on the torus Fµ.

Because of that we have iq

(
1

Q

)
= 1 = iq(1). Therefore, there is no a q-differential τq;Q on the

torus Fµ with the only pole at Q exactly of order one for every q ∈ Z. This fact can be also
proved by using the residue theorem for abelian differentials of order one on Fµ [7, 8].

Now we establish the general form for univalent q-differentials τq;Q1Q2
of the third kind with

exactly two simple poles at different points Q1 = Q1(µ) and Q2 = Q2(µ) on Fµ that depend
holomorphically on the parameter µ.
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Proposition 1.1. On a variable torus Fµ for every integer q there exists an elementary q-
differential τq;Q1Q2

of the third kind with exactly two simple poles at different points Q1 = Q1(µ)
and Q2 = Q2(µ) on Fµ locally holomorphically depending on µ with the divisor (τq;Q1Q2

) =
R1R2

Q1Q2
, where ϕ(R1) = ϕ(Q1Q2)−ϕ(R2) in J(Fµ). Here the points R2, Q1 = Q1(µ), Q2 = Q2(µ)

can be chosen as locally holomorphic sections of the bundle of integer divisors of degree one over
T1 for µ from a sufficiently small neighborhood U(µ0) ⊂ T1.

Proof. For q ∈ Z, set τq;Q1Q2
= τQ1Q2

dzq−1, where τQ1Q2
is the classical abelian differential

of the third kind on Fµ that depends holomorphically on µ [1, p.51; 6].
Such a differential τq;Q1Q2

can also be taken as τ = fdzq, where f is a univalent function

with the divisor (f) =
R1R2

Q1Q2
. By Abel’s theorem we have the equality

ϕ(R1) = ϕ(Q1Q2) − ϕ(R2) (2)

in J(Fµ). The divisor R1 is the only solution to the equation (2). Moreover, we can take the
points such that Rj 6= Q1, Q2, j = 1, 2. Indeed, if R1 = Q1 for R2 6= Q1, Q2, then ϕ(R2) = ϕ(Q2)
and R2 = Q2. We arrive at a contradiction which proves the preposition. 2

2. An analog of Appell’s expansion formula for

meromorphic functions on a variable torus

In this section we find an analog of Appell’s formula where the terms (summands) have poles
only at one point on Fµ and depend holomorphically on µ.

Let f be a function on a variable torus Fµ with s simple poles Q1, Q2, ..., Qs and residues
c1, ..., cs at them respectively. Consider the expression

f1 = f − c1T
(1)
Q1

− ... − csT
(1)
Qs

,

where T
(1)
Qk

(z) = −

∫
τ

(2)
Qk

is a branch of the elementary abelian integral of the second kind

[1, p.51] with only simple pole at Qk and the residue +1 at Qk depends holomorphically on
µ, k = 1, ..., s. Then f1 is an abelian integral of the first kind on the torus Fµ. Therefore

f1 = C1

∫
dz + C = C1z + C on Fµ.

Theorem 2.1. Let f be a function on a variable torus Fµ with simple poles Q1, ..., Ql and
residues c1, ..., cl at them, and poles at Ql+1, ..., Qs with multiplicities nl+1, ..., ns, nk > 2, k =
l + 1, ..., s, and given principal parts at them. Then

f = C1z + C +

l∑

j=1

cjT
(1)
Qj

+

+

s∑

k=l+1

[
Ak,1T

(1)
Qk

+ Ak,2

∂T
(1)
Qk

∂Qk

+
Ak,3

2!

∂2T
(1)
Qk

∂Q2
k

+ ... +
Ak,nk

(nk − 1)!

∂nk−1T
(1)
Qk

∂Qnk−1
k

]
,

where C1, C are complex numbers and

f =
Ak,nk

(z − z(Qk))nk
+ ... +

Ak,2

(z − z(Qk))2
+

Ak,1

z − z(Qk)
+ O(1)

in a punctured neighborhood of Qk, k = l + 1, ..., s, on Fµ, and all terms depend holomorphically
on µ.
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Proof. If Q1 is a pole of order n1, n1 > 2, then in the previous formula the term c1T
(1)
Q1

is
replaced by the sum

A11T
(1)
Q1

+ A12

∂T
(1)
Q1

∂Q1
+

A13

2

∂2T
(1)
Q1

∂Q2
1

+ ... +
A1,n1

(n1 − 1)!

∂n1−1T
(1)
Q1

∂Qn1−1
1

,

where Akj are the coefficients of the principal part of the Laurent series for the function f
in a punctured neighborhood of the point Qk, j = 1, ..., nk(Qk), k = l + 1, ..., s. Indeed, in a

neighborhood of the point Qk we have the expansions T
(1)
Qk

=
1

z − z(Qk)
+ O(1), z(Qk) = ak;

(T
(1)
Qk

)′ak
=

1

(z − ak)2
+ O(1); ...; (T

(1)
Qk

)
(m)
ak =

m!

(z − ak)m+1
+ O(1), 1 6 m 6 nk(Qk) − 1, where

nk(Qk) is the order of the pole at the point Qk for f, k = l + 1, ..., s. The theorem is proved. 2

3. The space of meromorphic q-differentials on

a variable torus

Denote by Ωq

(
1

Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn

;Fµ

)
the space of q-differentials on Fµ that are mul-

tiples of the divisor
1

Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn

, where q ∈ Z, α1, ..., αl > 2, n > 1, 0 6 l 6 n,

and the points P1, ..., Pn are pairwise distinct, and by Ωq(1;Fµ) the subspace of holomorphic q-
differentials on Fµ. The divisor Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn is chosen as a locally holomorphic section
of the bundle of integer divisors of degree α1 + · · · + αl + n − l over T1.

By the Riemann-Roch theorem for q-differentials we find the dimensions of these spaces. For
every q we have dim Ωq(1;Fµ) = 1, and

iq

(
1

Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn

)
= −deg

(
1

Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn

)
+ r (Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn) =

= α1 + · · · + αl + n − l (> 1).

Therefore

dim Ωq

(
1

Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn

;Fµ

)
/Ωq(1;Fµ) = α1 + · · · + αl + n − l − 1 (> 1).

Consider the following collections of q-differentials:

τ
(2)
q;P1

, ..., τ
(α1)
q;P1

, ..., τ
(2)
q;Pl

, ..., τ
(αl)
q;Pl

, τq;P1P2
, ..., τq;P1Pn

, for l > 1; (4)

τq;P1P2
, ..., τq;P1Pn

, for l = 0. (5)

Let us show that the coset classes of q-differentials from (4) are linearly independent over C.
Assume that there exists a linear combination of differentials from (4)

C
(2)
1 τ

(2)
q;P1

+ · · ·+ C
(α1)
1 τ

(α1)
q;P1

+ · · ·+ C
(2)
l τ

(2)
q;Pl

+ · · ·+ C
(αl)
l τ

(αl)
q;Pl

+ C2τq;P1P2
+ · · ·+ Cnτq;P1Pn

= ω,

where ω is a holomorphic q-differential, such that not all its coefficients are zeroes.

The coefficients C
(2)
1 = · · · = C

(αl)
l = 0, since in the right hand side the points P1, ..., Pl are

not poles of order > 2. We are left with the equality

C2τq;P1P2
+ · · · + Cnτq;P1Pn

= ω.
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Since the points P2, ..., Pn are not singular for the right hand side, C2 = · · · = Cn = 0. Thus, the
coset classes for q-differentials from (4) is a base for the quotient space.

Let us now show that the collection (5) is linearly independent over C. Suppose that there
exists a linear combination C2τq;P1P2

+· · ·+Cnτq;P1Pn
= ω, where ω is a holomorphic q-differential,

such that not all its coefficients are zeroes. The coefficients C2 = · · · = Cn = 0, since P2, ..., Pn

are not singular for the right hand side. Therefore the coset classes of q-differentials from (5)
form a base for the quotient space. Thus, we have proved the following theorem.

Theorem 3.1. The vector bundle E1 =
⋃
µ

Ωq

(
1

Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn

;Fµ

)
/Ωq(1;Fµ) of rank

d = α1 + · · · + αl + n − l − 1, where α1, ..., αl > 2, n > 1, 0 6 l 6 n, q ∈ Z, over T1 is complex
analytic equivalent to the direct product T1 ×C

d, and the coset classes of q-differentials from the
collections (4), (5) give a base of locally holomorphic sections of this bundle over T1.

Consider the collection of q-differentials

dzq; τ
(2)
q;P1

, ..., τ
(α1)
q;P1

, ..., τ
(2)
q;Pl

, ..., τ
(αl)
q;Pl

, τq;P1P2
, ..., τq;P1Pn

. (6)

Let us show that q-differentials from(6) are linearly independent over C. Assume again that
there exists a linear combination

C1dzq + C
(2)
1 τ

(2)
q;P1

+ · · · + C
(α1)
1 τ

(α1)
q;P1

+ C
(2)
l τ

(2)
q;Pl

+ · · · + C
(αl)
l τ

(αl)
q;Pl

+

+C2τq;P1P2
+ · · · + Cnτq;P1Pn

= 0,

such that not all its coefficients are zeroes. The coefficients C
(2)
1 = · · · = C

(αl)
l = 0 and C2 =

· · · = Cn = 0, since in the right hand side there are no singular points. So we have C1dzq = 0,
which implies C1 = 0. Therefore the collection (6) of q−differentials is a base for the space

Ωq

(
1

Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn

;Fµ

)
. This prove the following theorem.

Theorem 3.2. The vector bundle E2 =
⋃
µ

Ωq

(
1

Pα1

1 · · ·Pαl

l Pl+1 · · ·Pn

;Fµ

)
of rank d1 = α1 +

· · ·+ αl + n− l over T1 is complex analytic equivalent to the direct product T1 × C
d1 . Moreover,

q-differentials of (6) give a base of locally holomorphic sections of this bundle over T1, where
α1, ..., αl > 2, n > 1, 0 6 l 6 n, and q ∈ Z.

Remark 3.1. For q = 0, l = 0 the collection (6) is 1, τ0;P1P2
= f2, ..., τ0;P1Pn

= fn and is

a base for the space L

(
1

P1...Pn

;Fµ

)
, where fj are non-constant functions, and (fj) >

1

P1Pj

,

j = 2, ..., n, on Fµ.

Remark 3.2. In particular, for q = 1 and for a fixed torus F Corollary 1.1 and Theorems
2.1, 3.1, 3.2 imply classical theorems on abelian 1-differentials found in [1, 2].
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Однозначные дифференциалы целого порядка
на переменном торе

Татьяна С. Крепицина

В этой работе дано полное описание дивизоров элементарных дифференциалов всех родов. Полу-

чен аналог формулы Аппеля разложения однозначной функции на переменном торе. Исследованы

основные типы векторных расслоений из мероморфных дифференциалов целого порядка над про-

странством Тейхмюллера для тора.

Ключевые слова: однозначные мероморфные дифференциалы целого порядка, дивизоры, векторные

расслоения, пространство Тейхмюллера.
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