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In this paper under some conditions on parameters of the q-state Potts model on a Cayley tree of order
k we prove existence of the periodic (non translation-invariant) Gibbs measures. Also we give a result
about the number of such measures.
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Introduction

The main problem for a given hamiltonian is the description of all corresponding limiting
Gibbs measures (see f.e. [1,3]). This problem was fully studied for the Ising model on the Cayley
tree. For example, in [4] an uncountable set of extremal Gibbs measures is constructed and in [5]
a necessity and sufficient condition of extremity of unordered phase for Ising model on a Cayley
tree is found.

The Potts model is a generalization of the Ising model. The Potts model is not studied
to the same extent as the Ising model. For example, in [6] a ferromagnetic Potts model with
three-states on a second-order Cayley tree was considered and it was proved that there exists
a critical temperature T, > 0 such that for T' < T, there are three translation-invariant and
uncountably many not translation-invariant Gibbs measures. The results of [6] on the Potts
model with finitely many states were generalized to a Cayley tree of an arbitrary (finite) order
in [7].

It was proved [8] that the translation-invariant Gibbs measure of the antiferromagnetic Potts
model with an external field is unique. In [9] the Potts model with a countable number of states
and nonzero external field on a Cayley tree was considered. It is proved that this model has a
unique translation-invariant Gibbs measure.

Other properties of the Potts model on a Cayley tree were studied in [10, p. 105-121]. In [11]
it were showed that the Potts model (with an external field @ € R) admits only periodic Gibbs
measure of period two; it was considered the case o = 0, and on the base of the same invariants,
is was proved that all periodic Gibbs measures are neccesarily translation-invariant; it were
found conditions under which the Potts model with a nonzero external field admits periodic
(non translation-invariant) Gibbs measures. In [12] it was fully describe the set of translation-
invariant Gibbs measures for the ferromagnetic g-state Potts model and it is proved that the
number of translation-invariant measures can be up to 27 — 1. In [13] for g-state Potts model
(with an external field & € R) on the Cayley tree of order k = 3 and k = 4 under some conditions
on parameters it was proved existence of periodic (non translation-invariant) Gibbs measures of
period two. In [14] a ferromagnetic Potts model (with zero external field o € R) on a Cayley
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tree of order k > 3 was studied and it was proved that there exists a critical temperature T, such
that for T' < T, there exist at least two of periodic (non translation-invariant) Gibbs measures.

In this paper under some conditions on parameters of the g-state Potts model on a Cayley
tree of order k > 2 we shall prove existence of the periodic (non translation-invariant) Gibbs
measures, and we give a lower bound for number of these measures.

1. Definitions and known facts

The Cayley tree 3* of order k > 1 is an infinite tree, i.e., a graph without cycles, such that
exactly k + 1 edges originate from each vertex. Let I* = (V, L, i), where V is the set of vertices
%, L the set of edges and i is the incidence function setting each edge I € L into correspondence
with its endpoints z,y € V. If i(l) = {z,y}, then the vertices x and y are called the nearest
neighbors, denoted by | = (z,y). The distance d(z,y),z,y € V on the Cayley tree is the number
of edges of the shortest path from x to y:

d(xz,y) = min {d|3z = o, 21,...,24-1,24 =y € V such that (zg,z1),...,(T4—1,2a)}-
For a fixed 20 € V we set W,, = {z € V | d(z,2°) = n},
Vo= {zeV | dz,2°) <n}, Ly={l=(z,y)€L | z,yeV,}. (1)

It is known that there exists a one-to-one correspondence between the set of vertices V' of the
Cayley tree S* and the group Gy, that is the free product of k + 1 cyclic groups of second order
with the generators a,aqg, ..., ag+1-

We consider the model in which the spin variables take values in the set ® = {1,2,...,¢},
q > 2 and are located at the tree vertices. A configuration o on V is then defined as a function
x €V — o(z) € ®; the set of all configurations coincides with Q = ®V.

The Hamiltonian of the Potts model is defined as

H(@)==J Y So@pow) (2)

(z,y)EL

0, if i#£3j
1, if i=j.
Define a finite-dimensional distribution of a probability measure p in the volume V,, as

where J € R, (z,y) are nearest neighbors and §;; is the Kronecker symbol: d;; =

,Un(o'n) = Z;l €xXp {6H71,(0'n) + Z ho(z),w} ) (3)

zeW,

where 3 = 1/T, T > 0 is temperature, Z,, ! is the normalizing factor, {h, = (h14,...,hgz) €
R%,x € V} is a collection of vectors and

Hy(on) = —J Z 0o ()0 (y)

(z,y)ELR

is the restriction of Hamiltonian on V,,.
We say that the probability distributions (3) are compatible if for all n > 1 and o,,_; € ®"V»-1:

Z pin(On—1V wn) = pn—1(0n-1). (4)

Wn, cdPWn
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Here 0,,_1 V w, is the concatenation of the configurations. In this case, there exists a unique
measure 4 on ®Y such that, for all n and o, € ®'»

p{elv, = on}) = pn(on)-

Such a measure is called a splitting Gibbs measure corresponding to the Hamiltonian (2) and
vector-valued function h,,xz € V.
The following statement describes conditions on h,, guaranteeing compatibility of w,,(o,,).

Theorem 1 ( [8]). The probability distributions p,(oy), n = 1,2,... in (3) are compatible for
Potts model iff, for any x € V' the following equation holds:

he= > F(hy,0), (5)

yeS(z)

where F: h = (hy,...,hq—1) € R — F(h,0) = (Fy,...,F,_1) € R1™! is defined as

q—1
(0 —1)ei + 3 el +1
Fi =In =1

q—1
0+ > ehi
j=1

and 0 = exp(JB), S(x) is the set of direct successors of x and hy = (h1,5, ..., hg—1,4) With

Biw="hiz—hge i=1,...,q—1.

Let ék be a subgroup of the group Gy.

Definition 1. The set of vectors h = {h,, x € Gy} is said to be ék-periodic if hyaw = hy for all
r € Gi,y € Gg.

The Gg-periodic sets are said to be translation-invariant.

Definition 2. The measure u is said to be @k—periodz’c if it corresponds to the @k—periodz’c set
of vectors h.

The following theorem characterizes periodic Gibbs measures.

Theorem 2 ( [11]). Let K be a normal divisor of finite index in the group Gi. Then for the
Potts model, all K-periodic Gibbs measures are either Gf)-periodic or translation-invariant,
where G,(f) = {x € Gy, : the length of x is even}.

2. Periodic Gibbs measures

We consider case ¢ > 3, ie. 0 :V — & = {1,2,3,...,q}. By Theorem 2, we have only

G,(f)—periodic Gibbs measures corresponding to the sets of vectors h = {h, € RI™1 : x € G} of
the form
b { h, if |x| is even,
T, if |z is odd.
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Here h = (h1,ha, ..., hg—1), L = (1,12, ...,l4—1). From equality (5), we then obtain

(0 - 1exp(l) + 5 exp(ly) + 1

j=1

hi = k1n —
> exp(lj) +0
j=1

- i=Tg=1.
(0 —1)exp(hs) + > exp(h;) +1
li = kln =

q—1
> exp(h;) + 0
j=1

)

We introduce the notations exp(h;) = z;, exp(l;) = y;. We can then rewrite the last system
of equations for t =1,¢ — 1 as

q—1 k
(0 — 1y + Zlyj +1
j=
T; = g—1 )
Z:l y; +0
Jf -1 k (6)
0—-1)z; + lej +1
J:
Yi = -1
Z z; + 0
j=1

Remark 1. 1. In the case ¢ = 2, the Potts model coincides with the Ising model which was
studied in [8].

2. In the case k =2, ¢ = 3 and J < 0, it was proved that all G;f)—periodic Gibbs measures
on base of invariant I = {(x1,72,%1,%2) € R* : 21 = 2, y1 = y2} are translation-invariant
(see [11]).

3. In the case k > 1, ¢ = 3 and J > 0, it was proved that all G,(f)—periodic Gibbs measures
are translation-invariant (see [11]).

For¢>3, 0<0 <1, k>3, we define

Im:{z:(u,v)Equlxqul:xi:x, yi=y,i=1m; x;,=y; =1, i=m+1,¢qg—1},

ie. u=(z,2,...,2,1,1,...,1), v=(y,9,..,y,1,1,...,1) and
N—— SN——

m m

’

I, ={2=(uv) ER" ' xR :x;=x, i=T,m; x;=1, i=m+1,q—1—m;

ri=yi=q—mq—Ly=y,i=1lmy;=lLi=m+1lqg-1-—myy =x,i=q—m,q— 1},

ie. u=(z,z,...z,,1,.... Ly, y,....,y), v=(y,y,...,y, 1, 1,...., 1, z,x,...,x). Here 2m < q — 1.
S—— —— SN—— N——

m m m m
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We consider the map W : RI™! x RI™! — R9~! x RI™1, defined as

q—1 k
(0 = Dy; + Zlyj +1
!’ j:
x; = | ,
> Y+ 0
j=1
q—1 k
(6 —1Da; + lej +1
’ _ j:
yi - q—1
Z i+ 0
=1

We note that the system (6) is the equation z = W(z). Solving the system (6) is therefore
equivalent to finding fixed points of the map z = W(z), where z = (u,v), z = (u,v ).

Lemma 1. Sets I, and I;n are invariant subsets relatively to the map W.

The proof is similar to that of Lemma 2 in [11].
The case I,,,. In the case we rewrite the system (6) as

x:(9y+<m—1>y+<q—m>>’“

0+my+(qg—m-—1) ’
[0z + (m—1)x+ (¢ —m) b

y( 0+ mz+(g—m—1) )

or

x = f*(y), _Oz+(m-—1z+(¢—m)
{ Y= F*(z). where f(z) = e pp— (8)

and f*(r) is k-power of function f(z).

Remark 2. Let 7 € S;_1 be a permutation. We shall define the action of 7 to the vector
= (21,%2,...,2q-1) a8 T(T) = (Tr(1), Tr(2)s - Tr(q—1))- LThen w(A) = {(7z,7y) : (x,y) € A},
where A = I, or I;n is also invariant subset relatively to the map W but in cases 7(I,,) and
7(I,,) corresponding system of equations coincides with (7) and (9) (see below), respectively.

m
Therefore without loss of generality, we can consider sets I, n I,,,.

k— 1
Proposition 1. Let k> 3,3<qg<k+1, 0., = et

on I, has at least three solutions for 0 < 8 < 0., it has at least one solution for 8 = 6., and it
has only one solution for 0 > 0.,..

< 1. Then system of equations (6)

Proof. By (8) we obtain
= g(z) = f*(f*(2)).

We have
@-1)(0+q—1)

(@) = (0+my+q—m—1)2;
g () = K (P @) £ (@) 7 @) f ().

Consequently, for 0 < 6 < 1 the function f(x) decreases monotonically and the equation f(z) = x

has a unique solution z = 1 such that f'(1) = We note that g(z) is increasing

0+qg—1

-1 \?
and z = 1 is a solution to g(z) = z. If ¢'(1) = K*(f'(1))? = <k9+1> > 1 then this
q—
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solution is not unique, because in this case for > 1 the graph of the function g lies above the
bisector and tl;e function g is bounded. Thus a critical value for § can be found by the equation
(keir%) = 1 which for 8 < 1 gives 6., = kkij_—:l
the equation g(x) = z has at least three solutions zfj < =7 =1 < 3, i.e. the equation g(z) =«
has at least two roots, which are distinct from roots of the equation f(z) = z. For 6 = 6., the
graph of the function g tangents to the bisector in x = 1. This means that in this condition the
equation g(z) = x has at least one solution. Besides it is clear that for § > 6., the equation
g(x) = x has a unique solution z7 = 1, which it is solution to equation f(z) = z. o

The case I,,. We consider the set I,,,. We rewrite the system of equations (6) on this set as

. Hence it follows that for 0 < 6 < 6.,

o (60— Dy +my+(qg—2m—1)+ma+1\"
N 0 +mz+my+(qg—2m—1) ’

k (9)
B (6—1)x+mx+(q—2m—1)+my+1)
y_< ’

0+ mz +my+ (¢ —2m —1)

where exp(h;) = z;, exp(l;) = y;.
Remark 3. 1. For m = 0 we obtain v = (1,1,...,1), v = (1,1,..., 1), which corresponds to the
translation-invariant Gibbs measure. Thus we consider the case m > 1.

2. Inthecase k=2, ¢g=3, m=1on I;n it was proved that all G,(f)-periodic Gibbs measures
are translation-invariant (see [11]).

In the last system substituting {/z = z, % = t, we obtain

(0 +m — 1)tk + mzk +q—2m
Zz =
O+mzFk+mth+g—2m—1"
(O +m—1)zF +mtk +q—2m

04+ mzk +mthk +qg—2m—1 °

(10)
t =

From the first equation of (10) we find ¢, t:

k_mzkﬂ—mzk—|—(0+q—2m—1)z—q—|—2m.

t
O0+m—1—-—mz

1
o mzFtl —m2k + (0 4+ qg—2m — 1)z —q+2m\*
N 0+m—1—mz

and substitute to the second equation of (10). Then we obtain

f(z) =[(0+2m—1)zF —mz*" +mz +qg—2m* (0 +m — 1 —mz)—

(11).

—(mzF+qg—m—14+0)Fm*t —m2k 4+ (0 +q—2m —1)2 —g+2m] = 0.

We consider the function f(z). We note that f(0) = (g—2m)*(§+m—1)+(¢—2m)(6+q—m—1) > 0
for 2m < q. Besides f(1) = 0 and f(z) — —oo for z — 4o00. Consequently it is clear that if
f/(1) > 0, then the equation (11) has at least three solutions. Therefore we consider

P =2 = )5 25— 2 = (2 = 1) (s 27 ) (s 4 ) >0

where s = 0 — 1 < 0. Consequently, if s+ kLH <0,ie. 0<f<1— kLH = 0., then f’(1) > 0.

Thus we proved the following
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k— 1
Proposition 2. Letk >3,3<qg<k+1, 0., = ki—(&}flr
(6) onT,:

1) for 0 < 0 < 0., has at least three solutions;
2) for 0 = 0., has at least one solution;

3) for 8 > 0., has only one solution.

< 1. Then the system of equations

Remark 4. It is clear that in Propositions 1 and 2 one of measures corresponds to the so-
lution 7 = 1 which is translation-invariant, the remainning measures are G,(f)—periodic (non-
translation-invariant), and in case 6 > 6., the measure corresponding to the unique solution
x7 =1. /
Similarly as in [12, p. 6], it is easy to show that for 0 < # < 6., on each I,,, and I,,,, where
m = 1,2, ...,q, the number of G,(f)—periodic (non-translation-invariant) Gibbs measures is not
less than 2 (%) and 2- (7) - (7,™), respectively. Consequently, the number on (J?,_; I,,, and

9 I is not less than

respectively.
Thus we have the

Theorem 3. Fork >3,3<qg<k+1 and0 <0 <6, for the Potts model exist at least
la/2] q g—m
2-1279-1 :
2 () (%)
m=1

G,(f)—pem'odz'c (non translation-invariant) Gibbs measures.

Remark 5. In [12] the number and the description of all translation-invariant Gibbs measures
for the Potts model were given.
Acknowledgments. The author is grateful to Professor U. A. Rozikov for useful discussions.
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Hosple nepuoanvieckue mepbl I'ndoca ajis mogenn Ilorrca
C ¢-COCTOHUAMU Ha gepeBe Kajm

Pycram>kxon M. XaknumoB

B dannoti cmamove usywaemcs modeav ITommea ¢ q-cocmosnusamu na depese Kaau nopsdka k u noxasa-

HO CYULLCTNBOBANUE NEPUOOUNECKUT (HE MPAHCAAUUOHHO-UHBAPUAHMHLLEL) Mmep [ubbea npu HeKOMOpoLLT

YCAOBUAT HaA NaApamempv, amoti modeau. Kpome mozo, yxasama HUNCHAA 2PAHUYA KOAUNECTNEG CYULe-

cmsyrowux nepuoduveckur mep Iubbea.

Kamoueswie caosa: depeso Koau, xondueypayua, modeav I[lommea, mepa ['ubbca, nepuoduneckue mepo,

MPAHCAAUUOHHO-UHBAPUAHIMHBLE MEDDL.
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