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Limit Theorem for the Joint Distribution in the Q-processes
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The Q-process is considered in this paper. A link between the Q-process and the Galton-Watson branching

process allowing immigration is established in the paper. Due to this link the limit theorem on the joint

distribution of the population size and the total state of the Q-process is proved.
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1. Preliminaries

We consider the so-called Q-processes. The Q-process is defined by the Galton-Watson process
(GWP) conditioned on non-extinction of its trajectory in the distant future. We show that the Q-
process may be replaced by some GWP allowing immigration (GWPI). We investigate asymptotic
properties of the joint distribution of the population size and the total state in Q-processes.

1.1. On simple GWP. Let us consider a GWP. Let Zn, n ∈ N0 (N0 = {0} ∪ {N = 1, 2, . . .}),
be the number of individuals in the nth generation defined recursively as

Z0 = 1, Zn =

Zn−1
∑

k=1

ζn,k,

where independent and identically distributed (i.i.d.) random variables ζn,k denote the offspring
of k-th individual in the (n− 1)th generation. Let P {Z1 = k ∈ N0} =: pk be an offspring law of
the single individual and p0 > 0, p0 +p1 6= 1. According to the branching condition the evolution
law of GWP is regulated by the probability generating function (GF) F (s) :=

∑

k∈N0

pksk,

|s| < 1 and Fn(s) := EsZn is determined by the n-step iteration of F (s). In this interpretation
A := F ′(1) = Eζnk is the mean per capita number of offsprings [see, e.g., 1, pp. 1–2].

We know that when A < 1 and A = 1 the GWP is die out asymptotically. Accordingly, in
these cases the properties of GWP are investigated on nonzero trajectories. In this context we

recall the following theorem on joint distribution of Zn and Yn :=
n−1
∑

k=0

Zk. The variable Yn

denotes the total number of offsprings of single individual until time n in GWP.

Theorem 1.1 (see, e.g., [11, p. 143]). Let A = 1 and F ′′(1) < ∞. Then two-dimensional random

vector (Zn/E [Zn|Zn > 0] ; Yn/E [Yn|Zn > 0]) weakly converges to the unique vector (Z∗;Y ∗) as

n → ∞ and the Laplace transform for (Z∗;Y ∗) is of the form

E

[

e−λZ∗−θY ∗

]

=





sh2
√

θ

2
√

θ
+ λ

(

sh
√

θ√
θ

)2




−1

, λ, θ > 0.
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The limit Laplace transform has been also obtained by D.Kennedy [10] in the study of the
behaviour of Zn conditioned on the event {Y := lim

m→∞
Ym = n} as n → ∞. Setting λ = 0 gives

the well-known conditional limit law for 2Yn/F ′′(1)n derived by A.Pakes [13, Theorem 4].
This theorem also contains (at θ = 0) the well-known A.Yaglom’s result [19]. According to

that result, limit of conditional distribution

Sn, m(x) := P

{

2Zn

F ′′(1)n
6 x |Zn+m > 0

}

exists as n → ∞ for any m ∈ N0, and lim
n→∞

Sn, m(x) = 1 − e−x, x > 0.

1.2. On Q-processes and main result. It was shown that the use of the conditioning of
not-extinction in the distant future Z∞ > 0 instead of fundamental conditioning Zn > 0 gives a
new limit distribution law which is distinct from classical one (conditioning of Zn under Z∞ > 0
means P {Zn |Z∞ > 0} = lim

m→∞
P {Zn |Zn+m > 0}). T.Harris [3] pointed out that at the same

conditions as in Theorem 1.1 the following result holds:

lim
n→∞

lim
m→∞

Sn,m(x) = 1 − e−x − xe−x, x > 0.

Later the condition Z∞ > 0 was treated by J. Lamperti and P.Ney [12], K.Athreya and
P.Ney [1, pp. 56–60], A. Pakes [13,15,17], A. Imomov [5, 6, 8], Sh. Formanov and A. Imomov [2].
Continuous time case was discussed in [7, 9, 18].

The stochastic process {Wn, n ∈ N0} defined by GWP under conditioning of Z∞ > 0 is called
the Q-process in [1, pp. 56]. In fact the Q-process {Wn, n ∈ N0} is homogeneous Markov chain
with zero state W0 = 1 and it is given by transition probabilities

Q
(n)
ij = P {Wn+k = j | Wk = i} =

= P {Zn+k = j | Zk = i, Z∞ > 0} ,

for n, i, j, k ∈ N. As it was proved in [1, pp. 56–58] these probabilities are of the form

Q
(n)
ij =

jqj−i

iβn
P {Zn+k = j | Zk = i} , (1.1)

where q is an extinction probability of GWP for which q = F (q) and β := F ′(q).

Further we need the GF W
(i)
n (s) :=

∑

j∈N

Q
(n)
ij sj . Taking into account the branching property

of GWP and (1.1), we have the following relation:

W (i)
n (s) =

[

Fn(qs)

q

]i−1

Wn(s), (1.2)

where the GF Wn(s) := W
(1)
n (s) = E

[

sWn |W0 = 1
]

is

Wn(s) = s
F ′

n(qs)

βn
, n ∈ N. (1.3)

We see that the Q-process {Wn, n ∈ N0} can be defined by GF W (s) = W1(s). Assume that
α := W ′(1) has a finite value. We find out that α = 1 + qF ′′(q)/β > 1.

We study a limit of a joint distribution of the Q-process and its total state for the case A = 1
(critical case for GWP). By the total state in the Q-process we mean the variable

Sn := W0 + W1 + · · · + Wn−1, S0 = 0.
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Theorem 1.2. Let A = 1. Then the random vector (Wn/EWn ; Sn/ESn) weakly converges to

a random vector (W ∗;S∗) as n → ∞. The vector has the following Laplace transform

E

[

e−λW∗−θS∗

]

=

[

ch
√

θ +
λ

2

sh
√

θ√
θ

]−2

, λ, θ > 0.

We note that the same limit Laplace transform appears in paper of A. Pakes [17] but in the
different context.

Further we use the joint GF

Jn(s;x) :=
∑

i∈N0

∑

k∈N0

P {Wn = i, Sn = k} sixk, (s;x) ∈ D, (1.4)

on the set D =
{

|s| 6 1, |x| 6 1 :
√

(s − 1)2 + (x − 1)2 > r > 0
}

.

In Section 2 we establish a link between the Q-processes and GWPI. This link allows us to
find out the necessary relations for GF Jn(s;x). In Section 3 we discuss several preliminary
results on properties of GFs when A = 1. These results are used to prove the Theorem 1.2 in
Section 4.

2. Q-processes as GWPI

By iterating F (s), the GF (1.3) may be written as

Wn(s) = s

n−1
∏

k=0

G

(

Fk(qs)

q

)

, (2.1)

with G(s) = F ′(qs)/β. It is easy to see that the following random sum of random variables is
comparable with GF (2.1):

W0 = 1, Wn+1 = 1 +

Wn−1
∑

k=1

ξn+1, k + ηn+1, (2.2)

where ξn,k are i.i.d. random variables with common GF F (qs)/q for all n and k. Variables
ηn are i.i.d. random variables with Esηn = G(s). Then we can conclude that the Q-process
may be replaced by the following branching process. In the beginning there is one particle. The
evolution process is initiated by the stream of the immigrating particles. The emergence intensity
law is described by GF G(s). The immigrating particles in prospect undergo a transformation
according to the GF F (qs)/q. In addition, the initial particle does not disappear and does not
breed. This "immortal particle" is present throughout the evolution of the process.

Upon introducing Wn = Wn − 1, relation (2.2) is written in the form

Wn =

W n−1
∑

k=1

ξn,k + ηn. (2.2∗)

One can see that the sequence
{

Wn, n ∈ N0

}

is nothing but the GWPI with W 0 = 0 and

transition probabilities Q
(n)

ij := P
{

Wn+k = j
∣

∣W k = i
}

= Q
(n)
i+1,j+1. Here Zn+1 =

Zn
∑

k=1

ξn,k is

the "internal" GWP that obeys the GF Esξnk = F (qs)/q and arrival intensity of immigranting
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particles is regulated by GF G(s). We refer the reader to C.Heatcote [4] and A.Pakes [14, 16]
on further details regarding the GWPI with general GF G(s).

It is obvious that relations similar to relations (1.2) take place for the GF W
(i)

n (s) :=
∑

j∈N

Q
(n)

ij sj . Thus the analysis of asymptotic properties of Q-processes may be reduced to studying

of corresponding properties of GWPI. Moreover the GWPI
{

Wn, n ∈ N0

}

may be not super-
critical. Indeed, the mean number of the single individual offspring in "internal process" is

Eξnk =
∂

∂s

[

F (qs)

q

]

s=1

=

{

1 , A = 1,
β < 1 , A 6= 1.

(2.3)

The variable Yn :=
n−1
∑

k=0

Zk denotes the total progeny in the process
{

Zn, n ∈ N0

}

up to

time n. Let us define a joint GF Hn(s;x) := EsZnxY n , (s;x) ∈ D. Following the reasoning
given in [13], the following relations hold for the GF Hn(s;x):

H0(s;x) = s,

Hn+1(s;x) = x
F (qHn(s;x))

q
. (2.4)

The variable Sn :=
n−1
∑

k=0

W k represents the total progeny in the GWPI, defined by rela-

tion (2.2*). We see that the joint GF Jn(s;x) := EsW nxSn , (s;x) ∈ D has the form

Jn(s;x) =

n−1
∏

k=0

G (Hk(s;x)), (2.5)

where GF G(s) is given in (2.1) and Hn(s;x) satisfies equations (2.4) (see also [17]).
Considering (2.2) and (2.2*) we see that Sn = Sn − n and, therefore, Jn(s;x) = sxnJn(s;x).

Now using (2.4) and (2.5), we obtain the following representation for GF Jn(s;x) defined by (1.4):

Jn(s;x) = s
n−1
∏

k=0

[

xF ′ (qHk(s;x))

β

]

. (2.6)

3. Some discussion on generating functions in the case A = 1

From now on we consider the case A = 1. In this case relation (2.6) becomes

Jn(s;x) = s
n−1
∏

k=0

[xF ′ (Hk(s;x))], (3.1)

where Hn(s;x) = EsZnxYn . We have

∂Jn(s;x)

∂s

∣

∣

∣

∣

(s;x)=(1;1)

= EWn &
∂Jn(s;x)

∂x

∣

∣

∣

∣

(s;x)=(1;1)

= ESn.

Using direct differentiation, it can be found from (3.1) that

EWn = (α − 1)n + 1 & ESn =
α − 1

2
n(n + 1) + n, (3.2)
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where, as before, α = W ′(1) = 1 + F ′′(1).

Further we use the GF ∆n(s;x) := h(x) − Hn(s;x), n ∈ N0, where h(x) = ExY is the GF
of Y = lim

n→∞
Yn. This variable denotes the total number of particles participating in process

{Zn, n ∈ N0} for the duration of its evolution. Since the process dies out with probability 1 in
the discussed case, the variable Y always exists.

By virtue of P{Zn > 0} = O (1/n) as n → ∞ (see [1, p.11]) we have

Sup
(s;x)∈D

|∆n(s;x)| → 0, n → ∞. (3.3)

Using arguments given in [11, p. 127, Lemma 3], we obtain

|∆k(s;x)| 6 |∆j(s;x)|, (3.4)

for all k ∈ N0 and j = 0, 1, . . . , k.

We also know that for ∆n(s;x) the following asymptotic expansion holds:

1

∆n(s;x)
=

1

un(x)

[

1

∆0(s;x)
+

b(x) [1 − un(x)]

1 − u(x)
+

n
∑

k=1

εk(s;x)uk(x)

]

, (3.5)

where

u(x) := xF ′ (h(x)) , b(x) :=
F ′′ (h(x))

2F ′ (h(x))
,

and Sup
(s;x)∈D

|εn(s;x)| 6 εn → 0, n → ∞ (see [11, p. 136].

Further we consider the behavior of h(x) and u(x) in a neighborhood of x = 1. It is known
[11, p. 126] that

1 − h(x) ∼
√

2(1 − x)/F ′′(1) , x → 1. (3.6)

On the other hand, we have

F ′(h(x)) ∼ 1 − F ′′(1)(1 − h(x)), x → 1 (3.7)

by means of Taylor expansion. Considering relations (3.6) and (3.7) together, we obtain

u(x) ∼ 1 −
√

2F ′′(1)(1 − x), x → 1. (3.8)

4. Proof of the Theorem 1.2

We follow the method proposed by A.Pakes [14]. Let Ψn(λ; θ), λ, θ > 0, be the Laplace
transform of variable (Wn/EWn ; Sn/ESn). Taking into consideration (3.1) and (3.2), we obtain

Ψn(λ; θ) ∼ Jn(λn; θn) = λnθn
n

n−1
∏

k=0

F ′ (Hk(λn; θn)), n → ∞, (4.1)

where λn = exp{−λ/(α − 1)n}, θn = exp{−2θ
/

(α − 1)n2}. We see that the term λnθn
n on the

right-hand side of (4.1) tends to unity as n → ∞. It is ensured that Akn(λ; θ) := F ′ (Hk(λn; θn))
does not decrease with k for a fixed n and λ > 0, θ > 0. Then using the inequality ln(1 − x) >
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−x − x2
/

(1 − x), 0 6 x < 1, we obtain

ln

n−1
∏

k=0

Akn(λ; θ) =

n−1
∑

k=0

ln{1 − (1 − Akn(λ; θ))} =

= −
n−1
∑

k=0

(1 − Akn(λ; θ)) + ρ(1)
n (λ; θ) =

= In(λ; θ) + ρ(1)
n (λ; θ), (4.2)

where

In(λ; θ) = −
n−1
∑

k=0

(1 − Akn(λ; θ)), (4.3)

and

0 > ρ(1)
n (λ; θ) > −

n−1
∑

k=0

[1 − Akn(λ; θ)]
2

Akn(λ; θ)
>

>
1 − A0n(λ; θ)

A0n(λ; θ)
In(λ; θ). (4.4)

It is easy to see that 1 − A0n(λ; θ) = 1 − F ′(λn) → 0 as n → ∞. Then ρ
(1)
n (λ; θ) → 0 if In(λ; θ)

has a finite limit as n → ∞.
By Taylor expansion we have

F ′(t) = F ′(t0) − F ′′(t0)(t0 − t) + (t0 − t)g(t0; t), (4.5)

where g(t0; t) = (t0 − t)F ′′′(τ)/2 with t < τ < t0. Setting t = Hk(λn; θn) and t0 = h(θn) in (4.5)
and using the GF ∆k(s;x), equation (4.3) becomes

In(λ; θ) = − [1 − F ′(h(θn))] n − F ′′(h(θn))
n−1
∑

k=0

∆k(λn; θn) + ρ(2)
n (λ; θ), (4.6)

where

0 6 ρ(2)
n (λ; θ) =

n−1
∑

k=0

∆k(λn; θn)gkn(λ; θ) 6 ∆0(λn; θn)

n−1
∑

k=0

gkn(λ; θ). (4.7)

Here we use inequality (3.4) and relation gkn(λ; θ) := g (h(θn);Hk(λn; θn)). Using relation (3.6)
we get

∆0(λn; θn) ∼ λ − 2
√

θ

F ′′(1)n
, n → ∞. (4.8)

Considering (3.3), we see that gkn(λ; θ) → 0 as k → ∞ for all n ∈ N0. Hence the arithmetical

mean of these expressions
1

n

n−1
∑

k=0

gkn(λ; θ) → 0 as n → ∞. Then it follows from (4.7) and (4.8)

that ρ
(2)
n (λ; θ) approaches zero as n → ∞. Therefore, it follows from (3.6), (3.7) and (4.6) that

In(λ; θ) = −2
√

θ − F ′′(1)

n−1
∑

k=0

∆k(λn; θn) + o(1), n → ∞. (4.9)

Consider now the sum on the right-hand side of (4.9). From (3.5) we have

∆k(λn; θn) =
uk(θn)

1
∆0(λn;θn) + b(θn)[1−uk(θn)]

1−u(θn) + Σkn(λ; θ)
, (4.10)
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where Σkn(λ; θ) :=
n
∑

k=1

εk(λn; θn)uk(θn). Since |εk(λn; θn)| 6 εk → 0, k → ∞, and |u(x)| =

|xF ′ (h(x))| 6 F ′(1) = 1, then

1

n
Σkn(λ; θ) = o(1), n → ∞. (4.11)

Using relations (3.6)–(3.8), it is easy to find that as n → ∞

1 − u(θn) =
2
√

θ

n
(1 + o(1)) , (4.12)

b(θn) =
F ′′(1)

2
(1 + o(1)) . (4.13)

Taking into account equations (4.8), (4.10)–(4.13) we see that

∣

∣

∣

∣

∣

∣

∆k(λn; θn) − 4
√

θ

F ′′(1)n

µe−2k
√

θ/n

(

1 − e−2k
√

θ/n
)

µ + 1

∣

∣

∣

∣

∣

∣

= O

(

1

n2

)

,

as n → ∞, where µ =
(

λ − 2
√

θ
)/

4
√

θ. Then the second term in expression (4.9) can be

transformed to

F ′′(1)

n−1
∑

k=0

∆k(λn; θn) =

n−1
∑

k=0

4µ
√

θe−2k
√

θ/n

(

1 − e−2k
√

θ/n
)

µ + 1

1

n
+ o(1).

The sum on the right-hand side of the last equation can be recognized as the upper (if µ+1 < 0)
or the lower (if µ + 1 > 0) Darboux sum of the Riemann integral

1
∫

0

4µ
√

θe−2
√

θx

(

1 − e−2
√

θx

)

µ + 1
dx = 2 ln

[(

1 − e−2
√

θ
)

µ + 1
]

.

Then we finally obtain

In(λ; θ) = −2
√

θ − 2 ln

[

λ − 2
√

θ

4
√

θ

(

1 − e−2
√

θ
)

+ 1

]

+ o(1), n → ∞. (4.14)

After considering relations (4.1), (4.2) and (4.14), we complete the proof of the theorem.
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Одна предельная теорема для совместных распределений
в Q-процессах

Азам А. Имомов

Мы рассматриваем Q-процессы. Устанавливается глубокий связь между Q-процессами и вет-

вящимися процессами Гальтона-Ватсона с иммиграцией. Доказывается предельная теорема для

совместных распределений состояний и общих состояний в Q-процессе.

Ключевые слова: ветвящиеся процессы Гальтона-Ватсона; иммиграция; Q-процессы; общее со-

стояние Q-процесса; предельная теорема.
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