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The problem of identification of the source function for semievolutionary system of two partial differential
equations is considered in the paper. The investigated system of equations is obtained from the original
system by adding the time derivative containing a small parameter € > 0 to the elliptic equation. The
Cauchy problem and the second boundary-value problem are considered.
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We obtain a priori (uniform in € > 0) estimates of solutions of approximate problems. We
prove convergence of solutions approximating the inverse problems to solutions of original prob-
lems when € — 0 on the basis of the obtained a priori estimates. We obtain that the rate of
convergence of solutions of approximate problems is O(¢'/2) in class of continuous functions.
The case of the first boundary-value problem has been studied by Yu.Ya.Belov.

An identification problem of source functions in the composite type system is considered
in [1-3].

1. Formulation of the problem and reduction it to the direct
problem

Consider in the strip Gjor) = {(t,z) | 0 < t < T, = € E;} the problem of determining

€

real-valued functions (ﬂ(t, x), 161(t, x), g(t)), satisfying the system of equations
€ € € € £
w(t, x) + ann (tult, ) + ar2(t)o(t, 2) = muaa(t, z) + g(t) f (¢, 2),
E%t(t, x) + a1 (t)u(t, z) + agg(t)qu(t, T) = aUgs(t, ) + F(t,z),
where constant ¢ € (0,1]. Initial conditions are

(0, ) = uo(x), 0(0,z) = vo(z), (2)

and the overdetermination condition are
u(t,z) = o(t), ¢ e C*0,T), (3)

where ((t) is a given function, 0 <t < T and 2° is some fixed point.
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Let the functions a;;(t),7,j = 1,2, be defined on the interval [0,7] and let the functions
f(t,x), F(t,z) be defined on the strip Gjo7]. Let p1, o > 0 be given constants.
Let the relationship

|f(t,2°)| =6>0, t€[0,T], &> 0— const. 4)

is fulfilled.
Assuming sufficient smoothness of the input data

— we prove the solvability of the problem (1)—(3) for each fixed ¢ € (0, 1];

— provided periodic in x and smooth input data f,F,ug,vg we prove the existence of a
sufficiently smooth solution w, v, g in Qp = [0,T] x [0,1] for the boundary conditions

g (t,0) = 04(t,0) = Uy (t,1) = 0. (t,1) =0, te[0,T];

— we prove the existence of solution u, v, g to the second boundary problem (1°) (2°), (3°),
where
w=limu, v=Ilimo g—hmf]
e—0 e—0 e—0

and (1°), (2), (3°) denote (1), (2), (3) with e =0 (as & = u, 0 = v, g = g);

— we obtain an estimate of the rate of convergence of 161,15),5 to u,v, g, respectively , when
e — 0.

Let us assume that the following consistency condition is fulfilled

up (2%) = ¢(0), (5)

functions a;;(t), i,j = 1,2, are of class C2[0, T]. Let us also assume that matrix

Alt) = ( an(t) aa(t) >

agl(t) a922 (t)
generates a symmetric and coercive bilinear form a(¢, &, x) = (A(¢)€, x) and

a(t,&,x) = a(t,x,§), V& x € Es,

6
a(t,&,€) = k|€]? VE=(&1,6&) € By, t€[0,T), k>0 const. ©

Let us reduce inverse problem (1)—(2) to an subsidiary direct problem. In system (1) we set

z =20

{%(t) + a1 (t)p(t) + ar2(£)0(t, 2°) = p1tsg (t a°) + g(t) £ (. 2°), (7)
£y (Lmo) + a21(t)(t) + age(t)v ( ) = ugvm (t,xo) + F(t,xo).

From (7) we obtain

B(t) + ar2(t)o(t, 2°) — patg, (¢, 2°)

g(t) = ) :

where
U(t) = @e(t) + ann (t)p(t)

is known.
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Substituting expression for E(t) in (1) we obtain the following direct problem:

W (t, ) + a1 (D)u(t, @) + a1 (t)0(t, x) =
P(t) + a12(t)v(t, 2°) — p1tes(t, 2°)

= ,ulaaca:(t:x) + f(t IO) f(t,x), (9)

ey (t, ) + an (O)a(t, ) + a2 (D)0(t, @) = poves(t, ) + F(t, ),
w(0, ) = ug(z), (10)
0(0, ) = vo(z) (11)

2. Proof the solvability of problem (1)—(3) for ¢ € (0, 1]

We use the method of weak approximation [4,5] to prove the existence of a solution of direct
problem (9)—(11). We reduce problem (9)—(11) to the problem

eT eT
Uy (t,l‘) = 3U1uxw<t7 Z’),
(12)
eT eT . - 1
EV (t,l’) :3H2vx2¢(taz)7 JT <t < (]+§) Ts

G, (t,2) + 3an ()@ (t,z) =0, i~
13
ety (t,x) +3an(t)o () =0, (j+3)r<t<(j+2)

eT eT

Y(t) + a2t (t = F,2%) — g, (t — 3,2°)
f(t,20)

i, (t,x) = —3a12(t)0 (t—Z,2) +3 f(t,2),
E’IE}Z(t,w) = —3a21(t)15;(t — g,x) + F(t,x),

<j+§>r<t<(j+1)ﬂ (14)

@ (t,2)l<o = uo(2), (15)
3 (t,2)li<o = vo(2). (16)

Here j =0,1,...,N—1and 7N =T.
The input data are sufficiently smooth functions. They have all continuous derivatives oc-
curring in given below relations (17)—(19) and satisfy these relations:

la;(O < C, =12, j=12, (17)
6k 6k dk dk
p®l+ ¢ 0] +]e" 0] < (t2) € Gom. (19)

Next we consider some proofs assuming, for convenience, that the constant C' is greater than
unity and the constant p > 5 is an odd number.
We obtain uniform estimates with respect 7

ak

oxk

eT

v (t,x)

eT

k
‘ 0 < C(E)v k:077p+67 (t71') € G[O,T]v (20)
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8j eT
@Ut (t, .T)

8j eT
@’Ut (t, .’I;)

Taking into account (20), (21), the Arzela’s theorem [6] and the convergence theorem of the
weak approximation method [4], we can prove the following theorem.

Theorem 1. Let conditions (4)—(6), (17)—~(19) are fulfilled. Then there exists a unique solution
u(t,z), o(t, ), g(t) of problem (1)~(3) in the class

< C(E), 7=0,..,p+4, (t,l’) € G[O,T]~ (21)

i

Z(T) = {ﬁ(t,x),%(t,x),g(tﬂﬂ( ) € Ct 7p+4(G([O,T])7 "E](tvx) € Ctl,f+4(G[0,T])> ;(t) € C([O,T])},

and the following relations hold

P+6 k:
('u(tw) ’8’“ (t,2) >+H ’010T]
k=0
0 ¢ 0«
au(t x)| + Ev(t,x) <C(e), (t,x) e G, (22)

where
Cr M (Gor) = {f(m,z)m € C(G[OVT]) kf € C(Gom), k=0,. ,p+4} )

In the general case, the constant C(¢) in (22) depends on ¢ and the input data.

3. Periodicity

Assumption 1. Let us assume that the constant #° € (0,1), the input data uo(z),vo(z),
f(t,x), F(t,z) are periodic in x functions with period 2] > 0 and the series

- k
x) = kz:oozk cos Tﬂ-x,
= Z B, cos k—ﬂx,
ka cos
ZFk cos —x

converge uniformly on [0,/] and Q, together with their derivatives with respect to  of order
p+4.

Solution &T(t,x), o (t,z) converges uniformly in G[I‘({T] for any fixed M > 0 together with
its derivatives with respect to = up to order p +4 to ﬁ(t, x), 151(t7 z). Considering Assumptions 1,

the components of solution u(t, x), v(t, z) are periodic functions with respect to variable z with
period 2l. Then we have the following theorem.

(23)

Theorem 2. Let Assumption 1 and the conditions of Theorem 1 hold. Then for any fixred ¢ > 0
the components 4, v of the solution (ﬁ, 0, 5) to problem (1)—(3) are periodic functions with respect
to variable x with period 2l and they satisfy the following relations

82m+1 (t 0) 52m+1 (t Z) a2m+1 (t 0) a2m+1 (t l)
Or2m+1 - Or2m+1 - Ox2m+1 - Ox2m+1

=0, m=0,1,...
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Remark 1. It follows from relation (22) and system (1) that gtm gzkﬁ(t x), g;n g;kﬁ(t,x),
2m + k < p + 6 exist, they are continuous in Gjg 7} and

am ak £ am ak 1>
o 9| g et € €@ (10) € Gy .
Let us assume that
o7 1 0 o
Ml,y—mix 3xjf(t )|, Ml,j:Hlf;X EYY) jf(t, )‘,
o ! o
M, ; —max QF(t r)|, Mj; =max 5% 027 (t,z)|, (26)
M, :o<33§+2{M1’j’M1]} M, = 0<)op2 {85, Mz 5

In what follows we assume that the conditions of Theorems 1 and 2 are fulfilled.

4. The solution existence of the second boundary problem

Let us consider problem (1)-(3) in G[o ) with boundary condition
€ 15 € 13
Uy (t,0) = vy (¢,0) = ug(t,1) = v (¢,1) =0, t€]0,T). (27)

Let us prove that the uniform with respect to ¢ family of estimates {5}} = {5, 151} solutions
of (1)—(3), (27) exists under conditions (5)—(13).

Let us introduce ) ) )
E. _ 6- E- o 8'7 1> 8J I o 53
iy = (:85) = {5 5 ) = 77 (9),

Let us differentiate j times (j < p) problem (1), (2) with respect to . Then we multiply the

0 0 0
result of differentiating by G_Gta’li)jq,g =% 8taj+2’ 3t5]+2 , where constant 8 > 0, and

integrate over Q; = (0,t) x (0,1), t € (0,T). This can be done by virtue of Remark 1.
We have the following relations

, 0 0 , 0 0
/Qte By &ja aJ+2d$dV+€/cgt€ ey Qsjja 04 odxdv+
—6v e O« _ove 0 ¢
+ e Valv,w;, ij+2 dxdv — pq e uj+25uj+2dxdu—
t t

0 3]
—/,62/ e_‘g”zs)j+28—1gjj+2dxduz/ e_g”gfj /U/J+2dxdy+/ e_‘g”Fj—%jJrgdxdu, (28)
Qi v . I

t

ey 9 1\
I, = —/te %9, Ujpodrdy = /te (ayuﬁl) dzdv, (29)

I ——5/ e 816) 818; dxdv = &:/ e gf} dedl/ (30)
S S Al A A av I ’

8 € € a £
Iy =— —ov U, —1W; dd—_/ —ov 1y Wi | dedy =
3 /Qte a (V,’LUJ, 8yw]+2> xdv t e val| v, witl, 8ng+1 xdv
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1 6 —0v € € 0
- Q/Qt o [e ? a(vaj+17wj+1>] da:dy+2/Q

1 : e 1 : e
- 5/ e "a (V, lng+17wj+1> dxdy = 567‘%/ a (fij+1(t7$)ﬂ€l’j+1(tvx)> dr—
t 0

— € £
e <1/, wj+1,wj+1) dxdv—
t

1t 0
~5 / a (1/, t%j+1(a:),1%j+1(a:)) dx + B / e %a (1/, 5]_7‘.!,.1,5]_7’.},_1) dxdv—
0 t

1 /
—5/ e " (V,fl}j+1,5}j+1) dxdv, (31)
t

7’ _Va 2 1o : 2
=ty [ et (i) i = et [ (ate)

0 : 2
+ % e (ﬁj+2)2dxdu - %/ (3j+2(x)) dz, (32)
Q¢ 0

i [ 0D e V= 2o [ ()
I = ) /Qte By (11]+2> dxdv = 5 € /0 (UJ+2(t,I)) dz+

9,&2 —0v [ E 2 H2 ! 0 2
—|—7 Qte 0 (’Uj+2> dxdu—;/o (vj+2(x)) dr. (33)

Substitution of (29)—(33) into (28) gives

9 ? ) ?
/ e (81/1813’4-1) dxdy+5/ e <aysj+1> dxdv+

1 ! 0
3" [a(wista) b)) dev+g [ e (i) dadv-
0

t

1 , ! 2 0 2
2 / e (V7 W1, ij+1) drdy + ﬂe_et/ yya(t,@)do + B2 e dudut
2 Q. 2 0 2 Q+ !
f2 g 2 2t —ove?
+ 5 € /0 Vi ot x)dr + > e v odrdy =

Qt
_01_/5 8 13 — Qv a €
= e gf] 5Uj+2dl’dl/ + e F] al}j_i_dedZ/—‘,—

t

Lo 0 pmo o2 pa 02
2/0 a(O,wj+1(x),wj+1(ac)) dx—l——&-?/o uj+2(m)dx+?/0 Vjyo(z)dr.  (34)

In system (1) we set # = 20 € (0,1) and evaluate function g(t). We obtain

' ai11 a121EJ ,3?0 - ﬂim 7350
é(t)zw(t)ﬂt w(t)+f(t,$) ) = Hteg (8, 27) (35)
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By virtue of (4) and conditions imposed on ¢, ¢, a11, a2, p1 function f} satisfies inequality

Ssl(t)’ <Oy (1+

’f}(t,zo)’ +

iz (1, 2°) () : (36)

where
ko p|aigf

Cl—max{5 5 s } kz%’%(‘w,(t)’+|anso(t)|)-

There is the following Embedding theorem [7].

Theorem 3. Let Q be bounded sidereal relative to some sphere domain and Q C R™. If p €
H™(Q) and n < 2m then ¢ is continuous function everywhere in the region Q0 including the
boundary of Q. Herewith we have

lello < Kllellam @, (37)

where ||¢lo@) = mﬁax lp| and K is a constant independent of the choice of function .

By virtue of Theorem 3 we obtain from (36)

é(t)’ <Oy (1 + )%(t,a:o)’ +

s (t,2%)]) < 1 iy (1)

N

C(O )

2
500 2

1/
l 3 2 1 3 9
<Gy |1+ K /chj(t,x)dx + K / 75};(
0 =0 (e
—cy(1+k( [Jico | o) <o 14k ( || +|Jac
1( + ( u(t) H3(o,z)+ (t) 300 1| 1+ u(t) P ) Hm+1(o )

m>2. (38)
where K is a constant that depends only on [.
Upon substituting (38) into (34) and summing over j from 0 to m, we obtain

2 m 1
1
Z/ (ug+1> dedy + 56"” Z/ a (V, 51j+1(t,$),5)j+1(75,$)) da+
=00
+ = Z/ v, w]+1,w]+1) drdy — - Z/ v, &j+1,1st1j+1> dxdv+
Gy F e M19 £2
+ > Z ; Uy o(t, w)de + —— Z j+2d:cd1/+
j=0
B g~ [ pi20 0
+?€7 Z/o vj+2(t,x)dx+ Z/ - ]+2d1’du
Z/ —ve, (1+KH H +K
H7n+1 0 l)

7=0

0 «
fj %uj+2dxd1/+

o) HHm+1(o,z)>

+Z/ “OvE, v]+2dxdu+02. (39)
where (s is a constant that depends only on the input data and constants 7" and .
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We have the following relations

2
Ydzdy = | e %d T :/ d 40
Z/ (v, x)dxdv = / I/Z/ (v,x)d H’”(Ol) v,  (40)
2
Ydady = [ e~ %d 0 =/ 41
Z/ (v, z)dxdv = / Z/Z/ (v,z)d Hm(Ol)y (41)
By virtue of (6) we obtain from (39)
1/ N Or ’ e
/6791} gu(y) dv + —fmclMl /6701} u(l/)H dv+
2 0 ov Hm+1(0,1) 2 0 H™+1(0,1)
£y G- ]
* 26 u) Hm™+1(0,1) * <2 @)e H™+1(0,1) +
t
+ ((9(E —a) —mMC K — a) / e |o(v H dv+
2 0 H"'+1(O 1)
e i+ 2 O+ 5 [ [
+ 5 € u(v) Hm+2(o,l)+ 5 € v(v) Hm+2(o,l)+ > J, e u(v) Hm200) v+
9#2 _0 5 ’2
Y v < laTa 7M 7Ma ’ 42
+ > /) e v(u)' frm2(0) v < Cs(I,T,a, My, Ms,Cy), (42)

where C5 is a constant depending on [,7), 4, o, p11, o, M1 j, Mo ; and constant a > 0.
I{ ~
Let us assume that o = 1 Then we choose # = 0 such that all the coefficients before integrals

in the left-hand side of previous inequality are the coefficients more than

L Kk p1 Mz}

= mm{24 2779

Then we obtain the following inequality

ye’gT
0

Hence the following estimates is implied

i) dv + H

c 2
o) (OJ)} <

SC3(Z,T,O(,M1J,M2J,01), te [O,T]

Hm+1(0,1) HH’"+2(O 1)

0
g ) d”+/ H V+/ H dv < M, Vt € [0,T], (43)
v Hm+1(0,1) Hm+2 0,l) Hm+2 0,0)
e 2 e 2 <M, ¥ 0T ; "
u( )HH”LH(O’Z) ( )HH"L+2(0 ) €[0,T], m=0,p, (44)

where M = Cg(l,T,Ol7 Ml,j,MQJ, Cl)eeT/'y.
From the last estimate we obtain for ¢ € [0,T] the following uniform with respect to e

inequality
g

Uj(t)H

By virtue of (44) we obtain

%j(t)H <C, j=0,..p+1, te[0,T. (45)

+
c((o.) c([o,1)

N

(46)

701

clo,1]
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This inequality is uniform with respect to e.
We assume the following compatibility conditions for the input data

[12000(2) + F(0,2) — as1 (0)u(z) — azz(0)0(z) = 0. (47)

Upon differentiating system (1) with respect to ¢, we obtain the system

a / / / / ,
8ta +ant +ait +ayu+ a0 = i, + 9 () f + 90 f
/ ’ ’ ’ (48)
[ &€ /£ /€ € ’
SEU +a21U + a220 + Qo1 U+ GgoU = U2V, + F',
with initial data
g 0 0 0 e
u (O,Z‘) = —an(O)u(x) - alg(O)’U(l‘) + 1 Uze + g(O)f(O,J?), (49)
€
v'(0,z) = 0. (50)
Let us differentiate problem (48)—(50) j times (j < p) with respect to = , multiply the result

of differentiating by —e =% (% (ﬂj+2), 2 (161j+2)) and integrate Q¢, ¢ € (0,7). This can be done

by virtue of Remark 1. Then we have the following relations
, 0 5/ 0 &' , 0 e/ 0 &'
_ / e~ 81/ Ui Ujqodxdy — / e ay Vi, Vjpodadr—
Qt Qt
—ov e 0 <’ —ov ! € 0 &’
— ea | vy, 5w, dxdv — e e | v, 5o Wiy dxdv+

B ’ 8 / B ’ 8
+M1/ e €J+26 j+2dxdl/+,u2/ e E1—1-28 6J+2dxd’/—
Qt Qt

—0v ' —6vE ¢/ d &' —Ov d ¢
= —/ e gf]a J+2dxd1/—/ e ? gf]8 U4 odrdy — / 0 F; — rw v odxdy, (51)
Qt t t
v 00 s\
Ig = — , e” 31/ U5, Uy odrdy = e 5y i+t dxdy, (52)
O 0 o (0 N\
I; = —E/Q e 3u U 0 odrdy = s/ e’ <8uvj+1> dxdy, (53)

IS

I = — /Qt e g (1/’ ;», g ;+2) dxdy = /t e <V, 5;;_‘_17 BQ ;—s—l) dedy =
= ;/Q, % [e—Gva (y, ’li);-+1,’l%;-+1):| dxdv + Z/t e~ (u, ziz;-Jrhﬁ);Jrl) dedy—
— ;/Qt e (u, 51;-+1,ft);+1> dxdy = %e’“ /Ol a <t,ﬁ);+1(t,x), fu;ﬂ(t, z)) do—
_ ;/{)l a <V7 1(1)1;+1($),1%;+1(x)> dx + g / t e (u, ﬁj;-ﬂ, fu;.ﬂ) drdy—

1 , ’ ’
- 2/@ e a <1/, 5)]-+17151j+1> dxdv, (54)
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/ 0 ¢’ / 0 ¢’
Iy = —/Q e "a (vaujvayﬁjjﬂ) dxdyz/ e "a <1/ Wjt1, 7= By J+1) dxdv =
g T
== — e a (v, u/JJrl7 11 dxdu—i—f/ e a |v, wj+1, i1 | dedy—
2 Jg, Ot J 2 Jag, J
1
1/ -y ( e’ ) Gt/
- = e a (v, w]H, dedy = —
2 Ja. )
1 7t 0 o 0 oy !
—5/ a (V,wj+1(x),wj+1(m)> dm+§/ e "a (1/ Wjt1,W J+1> dxdv—
0 t

1 1" !
_5/ vy (M&M,&jﬂ) dzdv, (55)
t

, 2 l ’ 2
H1 —0v 0 3 K1 - y
ho="3 : e ? oy <uj+2> dudy = e et/o (“j+2(t,$)> da+

0 ’ 2 1 ’ 2
+ e <§j+2) dxdy — ﬂ/ (8j+2(a?)> dx, (56)
2 Q1 2 0

’ 2 ! ’ 2
H2 _on O (¢ [ e
== — (v, dzdy = = ot dx+
=75 o € o, <v]+2> vdy = —-e /0 <vj+2( ,x)) x

9/12 0w 5/ 2 112 1 ()/ 2
+ - o 2 (Uj+2> dxdv — ?/0 Viio(®) | dv. (57)

On the basis of (17)-(19), (49), (50), (51)—(57) and repeating arguments used to obtain
inequality (44), we have

SIN

(t,{i}ﬁl (t,z), jH(t,x)) dz—

2 2

S
~

<C, Vtelo,T], m=0,p. (58)
Hm+2(0,1)

u (t)

Hm™+2(0,1)

From (58) we obtain uniform with respect to € inequality

u;(t) <O, j=0,.,p+1, tel0,T]. (59)

c((o.1) c([o.1)

By virtue of (45), (59) and taking into account Arzela’s theorem [6], we can choose the

subsequence (u, %) such that it converges to the vector function (u,v) as u — 0:

ﬁ] — Uy, 5j —v; uniformly in C(Qr), j=0,..,p— 1. (60)

Taking the limit 4 — 0 in system (1) (with ¢ = p) and taking into account estimate (59)
(with j = 0), by virtue of (60) we find that the vector (u,v) satisfies in @ the following system
of equations

{ut(t) + a1 (H)ult, ) + a12(t)v(t, ) = e (6, x) + g(t) f (¢, x), (61)
as1 (H)u(t, x) + ag(t)v(t, ) = povee(t,z) + F(t,x), (t,z) € Qp
with initial conditions
u(0,z) = uo(z), ©v(0,2) =vo(z), =x€]0,], (62)
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boundary conditions
Uy (£,0) = v, (£,0) = ux(t,1) = v (¢, 1) =0, (63)

and the overdetermination condition
ult, ) = (1), (64)

Based on overdetermination condition (64), we have

_ ¢ +anp+au(t,a®) — pug(t,2°)
f(t,z0)

g(t)

in system (61).
Hence, by virtue of (60) we have

g(t) — g(t), uniformly in  C[0,T]. (65)

Let us prove the uniqueness of the solution to problem (61)—(64).

Let us assume that (115,111,511), (121712),5) are two solutions of problem (61)—(64) and @ = % — ’LQL,
~ 1 2 . 1 2
U=v-0,§=9g-

The vector (u, v, g) satisfies the system of equations

ﬂt(t) + allﬂ + ang = ,ulﬂut, + Efa (66)
21U + U220V = UoUqs.
with initial conditions
u(0,z) =v(0,z) =0, (67)
boundary conditions
Uy (£,0) = 0, (8,0) = 0 (t,1) =0 (¢,1) =0 (68)
and the overdetermination condition
u(t,z%) = 0. (69)
By virtue of conditions (67)-(69) we obtain
~ a12:[7(t7 :L'O) - Nllﬂmr (t7 zO) (70)

9= £t 20)

Let us differentiate problem (66)—(69) j times (j < p) with respect to x, multiply the result
of differentiating by e~ w; = e~ (1;,7;) and integrate over Q; = (0,t) x (0,1),¢ € (0,T). This
can be done by virtue of Remark 1. Then we have the following relations:

/ e_gyﬂj%ﬂjdxdu—i—/ e % a (v, w;, w;) dedy—

t t

*Ml/ 679”ﬂj+2ﬂjd:pd1/fu2/ 679”5j+25jdxd1/:/ e*"”gfﬂjdxdu, (71)

t

I :/ e_‘g”ﬁ'gﬂdmdu: }/ e_eygﬂzdxdvz 1e_‘% /lﬁz(t x)dr+
S Tot 2)o, Ot 2 o IV

0 v 1 [lo2
+ 5 e Musdrdy — 5 U (x)dx, (72)
Q 0
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I3 = —M1/ e_a”ﬁjﬂﬂjdmdu = ul/ e“g”ﬂ?Hdazdu, (73)

Ty = —Mz/ 6_9”5j+25jdxdu = ug/ 6_9”5]2»+1dxdu. (74)
t t

Taking into account (70), conditions (4) and the condition imposed on p;, function g satisfies
the following inequality
98] < Ca([0 (8, 2°) | + [taa (t.2°))),

where Cy = max %, |a§2|
Hence, by virtue of Theorem 3 we obtain

9] < CuK ([[a(®)|| 0.0 + 0O 1 0,1)) -

Considering relationships (40), (41), we obtain

0 liC’4Ko¢ 1 ¢ —Ov 1 ~12 1 —0t |1~112
(540 "5 = ) [ ™ Wl -+ e~ Wlma +

mM104Ka t_,,~ t—u~
+ (m—2>/0 e’ HU”?Hm(o,l)d”"'/‘l/O e~ Nl e o v+

t
+M2/O e~ [0l Frms o,y dv < 0. (75)

We choose the constant o > 0 to be sufficiently small such that

. mM104Ka
2

R

> 0. (76)

Then we choose the constant 6 to be sufficiently large such that

0 mM1C4Ka 1
g R g = 5 >0, (77)

From relation (75) we obtain
el o @) + 10l La@ry <O (78)

It follows that @ =9 = 0 in Q.
Thus we have proved the following result.

Theorem 4. Let us assume that conditions (3)—(6), (24), (25), (47) and Assumption 1 are
satisfied. Then there exists a unique solution (u,v,g) of problem (61)—(64) in the class
X(T) = {ult.),vlt.2). g lult.x) € CL27(@r) . v(t.2) € CO27(@r) . alt) € C(0.T]}.

The solution (u,v,g) to problem (61)—(64) is unique and belongs to the class of X (7). The
e £ e popop\ o
sequence (u,u g) converges to (u,v,g) as well as the subsequence (u,v, g) given above. There
is the following theorem.

Theorem 5. Let us assume that the conditions of Theorem j are satisfied. When e — 0
g €

uj—u;, v;—v; inC(Qp), j=0,.,p—1, (79)

9= g inC(0,T]). (80)
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5. Degree of convergence as ¢ — (
g 15 8(1) 6(2) €
Let us subtract system (61) from system (1) and denote (u — U,V — v) =|r ,7 =T

Then we obtain the following system of equations

1)
9 (1) (1) =(2) 027 €
r o 4anr  tapr = #1% +G()f(t, ),
2
68—5 +a 76”(1) +a 75”(2) = 782;( )
ot 21 22 = H2 ox2
e (1) (2) . -
for the vector r = (r ",r that satisfies conditions
r(0,2) =0, = €l0,1], (82)
32m+1 . 82m+1 .
Wr(t, 0) = WT(t, l) = O7 m = O, 1, 2. (83)
In (81) the function G is of the following form:
(2) e(1)
e t 0y _ t 0
G(t) = i(t) — g(t) = “20 ) — T (67) (51)

f(t,20) ’
Let us differentiate problem (81)—(83) three times with respect to 2, multiply the differentiated

system by e*9t75"3 and integrate over Q:,t € (0,7). Repeating arguments used in obtaining
relation (44), we have the inequality

2 2 2

(1 t 1 t (2
2 + / N ) dv + / e ) dv<eC.  (85)
m3(0,0) Jo H4(0,1) 0 H4(0,1)
By virtue of (85) it follows that
e ) 1/2 .
wj—uj|| . <e?C, j=0,2, 86
! ”HC@T) ’ (88)
Oy — Um’ <e?2C, m=0,4 (87)
L2(Qr)
Taking into account (86) and (87), we have from (84)
€ 1/2
£ = g(t) <el2c, 88
i g, (59)

Thus we have proved the following result.

Theorem 6. Let us assume that the conditions of Theorem 4 are satisfied. Then relations (86),
(87) hold.

Let us consider problem (1)—(3) and assume that the conditions of Theorem 2 are satisfied.
By virtue of the periodicity of the input data there is the following theorem.

Theorem 7. Let us assume that the conditions of Theorem /4 are satisfied. Then the solution
(u,v,g) of the problem

{ut(t) + a1 (t)ult, z) + ara(t)v(t, ) = pruz.(t, ) + g(t) f(t, ),
a1 (H)u(t, ) + a2 (t)v(t, ) = povg.(t, x) + F(t, ),
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u(0,2) = ug(z), v(0,2) =wvo(x), z€0,1], wul(t,z’)=p(t)

exists and it is unique in the class

X(1)={ult, ), v(t, 2), g(t) ult, ) € CL (G, vt 2) € CPF 7 (Gpom), g(t) € C((0,T)}

Relations (86), (87) are satisfied and when € — 0 ﬂj—> uj, 161j—> vj uniformly in Go 1y,

i=0,..,p—1, g— g, uniformly in C[0,T], ’a(t,x) —u(t,z)| <eV2C, (t,z) € Glo,1)-
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Onpegenenne pyHKIM NCTOYHUKA CUCTEM ypaBHEHU
COCTAaBHOI'O TUIIA

FOpuii 4. Beaos
Bepa I'. KonbliioBa

Paccmompena 3adana udernmudurayuu GyHkuut ucmouvHuKra 00HoMepHoT NOAYIBOMOUUOHHOT CUCTNEMDL
ypasHerutl daa 08YT YypasHeHnuli 6 wacmuouir npoudsoduunr. Mccaedosana cucmema ypasHenut, noAyweH-
HAA U3 UCTOOHOT CUCTNEMDL, 6 KOMOPOT 8 IANUNMUYECKOE YpasHeHue J00aBAEHA NPOU3BOOHAA NO BPeMe-
Hnu, codeporcawyas marvili napamemp € > 0. Paccmompenw 3adawa Kowu u emopas kpaesas 3a0ava.

Karoueswie caosa: udenmugurayus, obpamnas 3a0a4a, ypasrerue napaboiuvieckozo muna, Memoo cid-
601 annpPoKCUMaAYUL, MAAVT NAPAMEMP, CLOOUMOCTD.
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