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Abstract. A self–similar solution to one model of the far momentumless swirling turbulent wake is
proposed in the paper.
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Introduction

Turbulent swirling wakes are usually generated during flow past around a body. Swirls are
inserted into the flow by propulsors and they can be formed in various technological devices.
An overview of papers devoted to experimental and numerical investigations of the swirling
turbulent wakes is presented in [1, 2]. The similarity laws of the swirling turbulent flow decay
are investigated [3]. Asymptotic and numerical analysis of the swirling turbulent wakes was
performed [4–6]. The classical k− ε model of turbulence was used in these studies. It was shown
that even if the tangential component of the mean velocity is small it significantly affects the
flow pattern in the turbulent wake and this influence can be traced at sufficiently large distances
behind a body.

The streamwise component of the excess momentum J and angular momentum M are impor-
tant integral characteristics of the swirling turbulent wake. The case J = 0, M = 0 corresponds
to the swirling turbulent wake behind a self–propelled body. This configuration can be imple-
mented in a wake behind the self–propelled body of revolution (the thrust of a body propulsor
compensates the hydrodynamic drag force) with compensation of the swirl introduced by a
propulsor.

Numerical modelling of the swirling momentumless turbulent wake (J = 0) with nonzero
angular momentum was carried out on the basis of the second–order semi–empirical models of
turbulence [7–9]. Furthermore, a comparison with experimental data [7] obtained in a wind
tunnel in the wake past an ellipsoid of revolution was performed. The drag was compensated by
momentum of a swirling jet exhausted from its trailing part and the swirl introduced by the jet
was balanced out by the rotation of the body part in the opposite direction.

Experimental results on the swirling turbulent wake for M ̸= 0 were presented [10–14].
It should be noted that there is a discrepancy in the results obtained by different authors.
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Experimental data on the swirling turbulent wakes with various total excess momentum and
angular momentum were presented [11].

The swirling momentumless turbulent wake with nonzero angular momentum was numerically
simulated [15–20]. Simulations were based on simplified e − ε model of turbulence [15, 16] and
on the hierarchy of improved semi–empirical second–order models of turbulence [18–20]. Good
agreement with experimental data was obtained [11]. Numerical analysis of decay of a swirling
turbulent wake corresponding to the case J = 0 and M ̸= 0 was carried out [20]. It was shown
that at distances of about 1000 diameters behind the body the flow becomes substantially self–
similar. Simplified mathematical models of a far momentumless swirling turbulent wake were
constructed and their applicability in the case of large distances from the body was proved.

Self–similar solutions of certain semi–empirical models of free turbulent shear flows were
constructed on the basis of group–theoretic analysis and modified shooting method [21–24]. The
obtained results are in agreement with the experimental data. In addition to that, a comparison
of obtained self–similar solutions of the three–dimensional far momentumless turbulent wake
model in a passive stratified medium with results of direct numerical solutions of the complete
model was conducted [22]. Moreover, it was found that solutions obtained by the shooting
method play the role of an attracting set for solutions obtained by direct numerical calculations
of the complete model.

The purpose of this study is to construct self–similar solutions of the simplified model of the
far swirling momentumless turbulent wake (J = 0, M ̸= 0) [20] on the basis of the previously
developed approach [21–24].

1. Problem statement

In order to demonstrate the flow pattern, a scheme of the experimental set-up (Fig. 1) adapted
from [11] is presented. In Fig. 1, the wake develops along x axis, r is the radius, U0 is the

Fig. 1. Scheme of the experimental setup (1 is the sphere, 2 is the tube which delivers the air to
form a swirling jet that flows from the rear of the sphere, 3 are tension members, 4 is the throat
of the wind tunnel)

undisturbed flow velocity. A special nozzle for a tangential air flow exhausting was built into the
trailing edge of the sphere to provide swirling stream behind the sphere.

The following semi–empirical model of turbulence [20] is used to describe the flow in a far
momentumless swirling turbulent wake:
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Here U1 = U − U0 is the deficit of the mean longitudinal velocity component, W is the mean
tangential velocity component, k is the kinetic energy of turbulence, and ε is the kinetic energy
dissipation. It is assumed that the fluid is incompressible and the flow is steady. Moreover, in
what follows the undisturbed flow velocity U0 is taken to be unity. The empirical constants are
as follows [20]:

Cu = Cw = 0.25, Ce = 0.147, Cε = 0.113, Cε1 = 1.44, Cε2 = 1.92.

Model (1)–(4) is a simplification of more complicated mathematical model that includes a
system of averaged equations of motion, continuity, transport of normal Reynolds stresses and
turbulence energy dissipation rate in a rotationally–symmetrical flow in the approximation of
a thin shear layer [9, 18, 19, 25]. Moreover, turbulent tangential stresses are determined from
nonequilibrium algebraic relations [9, 19, 26]. The simplification introduced in [20] is based on the
fact that absolute axial value of the longitudinal velocity component decreases much faster than
the maximum absolute value of the tangential velocity component. Therefore, at large distances
from the body one can neglect the contribution of this quantity to the term that describes
production of turbulence energy . Simplification is based on the far wake approximation and
on the replacement of equations for the transfer of normal stresses by a single equation for the
turbulence energy balance. In addition, the ratio of the turbulence energy production term to
the kinetic energy dissipation is set equal to zero in expressions for turbulent viscosity coefficients
(this ratio does not exceed 0.1 in the far wake).

Conservation of total excess momentum and angular momentum follow from equations (1)–(4)
and initial and boundary conditions for the considered flow:
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M = 2πρ
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here ρ is the fluid density.
It was shown that at large distances behind the body a flow becomes close to self–similar

[20]. Therefore, it is natural to seek the self–similar reductions of model (1)–(4).

2. Self–similar reduction

A group analysis is used to construct self-similar solutions [27]. The Lie algebra basis of
equations (1)–(4) consists of the following infinitesimal generators:
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Using the linear combination of operators X3 and X4 it is not difficult to obtain the following
representation for a solution of the initial model (1)–(4):

U1 = x2α−2U2(t), W = xα−1W1(t), e = x2α−2K(t), ε = x2α−3E(t), t = r/xα, (7)

here t is a self–similar variable, α is an arbitrary constant appearing in the linear combination
of operators X3 and X4.

Using the law of conservation (6) and representation (7) for W , it is not difficult to show that
α should be equal to 0.25. Let us remark that decay laws (7) of required functions are in an
agreement with the results of numerical calculations of the initial model [20]. They are presented
in Fig. 2. In this figure, D is the diameter of a body; L1/2 ∼ xα is the characteristic scale of the
wake width; |U10| is the absolute axial value of the defect of longitudinal velocity component;
|Wm| is the maximum absolute value of the tangential velocity component; e0 is the axial value
of kinetic energy of turbulent disturbances; ε0 is the axial value of kinetic energy dissipation.
Markers correspond to experimental data. It can be noted that the decay law of an axial value of
the defect of longitudinal velocity component changes at about 1000 diameters behind the body.
This is apparently due to the fact that swirl term in equation (1) is negligible at large distances
from the body (see, [11]).

Fig. 2. Variation of dimensionless scale turbulence characteristics in the swirling momentumless
wake versus distance from the body

In this case the Lie algebra basis of equations (1)–(4) consists of the following infinitesimal
generators:
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Corresponding self–similar representation of solution has the form

U1 = xβU2(t), W = xα−1W1(t), e = x2α−2K(t), ε = x2α−3E(t), t = r/xα. (8)

Here β is an arbitrary constant. Let us remark that in the self–propulsion mode (J = 0, M = 0)
the mean tangential velocity component decreases much faster (see, [9]).

Using representation (7), we obtain a reduction of initial mathematical model (1)–(4) to the
following system of ordinary differential equations:
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For representation (8) the first equation of the reduced system has the following form:

Cu
K2U ′′

2

E
+

(
Cu

K

E

(
2K ′ − KE′

E
+

K

t

)
+ αt

)
U ′
2 − βU2 = 0. (13)

Reduced system (10)–(13) is solved numerically.

3. Calculation results

Solutions of reduced system (10)–(13) have to satisfy the following conditions:

U ′
2(0) = W1(0) = K ′(0) = E′(0) = 0,

U2(a) = W1(a) = K(a) = E(a) = 0.

The first group of conditions takes into account that flow is symmetric with respect to the Ox axis.
The second group of conditions follows from the requirement that flow is undisturbed outside the
turbulent wake domain (all required functions have to take zero values in this domain). The value
of a related with the turbulent wake semi-width can be either set equal to unity in calculations
because equations of reduced system (10)–(13) are invariant with respect to the transformation
of extension or taken from the experimental data. It should also be noted that coefficients of
system (10)–(13) have singularities in boundary conditions.

For numerical solution of the boundary value problem the modified shooting method was
used, together with the asymptotic expansion of the solution in the vicinity of the singular point
t = a

U2= c1|t− a|α1 + o (|t− a|α1) , W1= c2|t− a|α2 + o (|t− a|α2) , K= c3|t− a|α3 + o (|t− a|α3) ,
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As the result of calculations the following values were obtained:

β = −2.09, U2(0) = 0.35378, W ′
1(0) = −0.916, K(0) = 1.14357, E(0) = 1.32668.

In Fig. 3 self-similar profiles of solutions obtained by the shooting method are compared
with numerical results obtained on the basis of the full model of equations (1)–(4) [20] (1–3 are
numerical results [20], 4 are self-similar solutions obtained by the shooting method).

Fig. 3. Self-similar normalized profiles of the deficit of the mean longitudinal velocity component,
the mean tangential velocity component, and the kinetic energy of turbulence

Self-similar distributions presented in Fig. 3 are very close to numerical results [20]. Therefore,
this indicates the applicability of simplified mathematical models [20] to simulations of the far
field of swirling momentumless turbulent wake.

Self-similar profiles of turbulence energy and tangential velocity components are finite bell-
shaped functions. At the same time the self–similar profile of the defect of the velocity longitudi-
nal component has regions of negative and positive values. This is in agreement with conservation
laws (5) and (6).
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Автомодельность дальнего закрученного безымпульсного
турбулентного следа

Алексей В. Шмидт
Институт вычислительного моделирования СО РАН

Красноярск, Российская Федерация

Аннотация. В работе проведено построение автомодельного решения полуэмпирической модели
дальнего безымпульсного закрученного турбулентного следа.

Ключевые слова: дальний закрученный турбулентный след, автомодельное решение, метод
стрельбы.
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