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Introduction

In 1921 Hj. Mellin wrote down an integral representing a solution y(x) of a reduced algebraic
equation of the form

yn + x1y
n−1 + . . .+ xn−1y − 1 = 0.

This integral has a non-empty domain of convergence, it is defined by conditions on arguments
θj = arg xj . A complete description of the convergence domain has been obtained relatively
recently in the paper by I. A.Antipova [3].

In the present paper we study the same problem in several variables. Consider a system of
algebraic equations of the form

yω(j)

+
∑

λ∈Λ(j)

x
(j)
λ yλ − 1 = 0, j = 1, . . . , n, (1)

where Λ(j) ⊂ Zn, and ω(j) is a column vector, the matrix made of columns ω(j) we denote

by Ω. Let us also introduce the notation Λ :=
n⊔

j=1

Λ(j) for a disjunctive union of sets Λ(j), the

cardinality of Λ we denote by N . By Λ(j) we shall denote the set Λ(j) ∪ {ω(j)}, analogously

Λ =
n⊔

j=1

Λ(j).

The set of coefficients of the system (1) runs over the vector space Cλ ∼= CN
x , where coordinates

of points x = (xλ) are indexed by the elements λ ∈ Λ. A group of coordinates corresponding
to indices λ ∈ Λ(i) we, as a rule, write as x

(i)
λ , having identified CΛ with CΛ(1)× . . . × CΛ(n)

;

sometimes for elements of CΛ(i)

we use the notation xλ, λ ∈ Λ(i). Denote also by X the diagonal
matrix with xλ on the diagonal (X = diag[x]).
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The set Λ we will also treat as a matrix

Λ =
(
Λ(1), . . . ,Λ(n)

)
=

(
λ1, . . . , λN

)
,

whose columns are the vectors λk =
(
λk
1 , . . . , λ

k
n

)
of exponents of monomials of the system (1).

Here we mean that a block Λ(i) of the matrix Λ corresponds to the ith equation of the system (1);
enumeration of columns λk in each block Λ(i) is arbitrary but fixed.

Denote by χ the characteristic matrix of the set Λ.
In this notation the system (1) can be written in a matrix form:

yΩ + yΛXχT − I = 0. (2)

We are interested in a branch of a solution y(x) = (y1(x), . . . , yn(x)) of the system (1) with
the condition y(0) = (1, . . . , 1) , which we call the principal solution. Following [2, 4], to a
monomial yµ = yµ1

1 . . . yµn
n of the principal solution y = y(x) of the system we put into the

correspondence the Mellin-Barnes integral:

yµ(x) → 1

(2πi)N

∫
γ+iRN

Γ(u)Γ(Ω−1µ− Ω−1Λu)

Γ(Ω−1µ− Ω−1Λu+ χu+ I)
Q(u)x−udu, (3)

where the vector γ is from the polyhedron

{u ∈ RN
>0 : ⟨φj ,u⟩ < µj , j = 1, . . . , n},

and Q(u) is a polynomial given by the determinant

Q(u) = det
(
diag[Ω−1 · (µ− Λ · u)] + Ω−1 · Λ · diag[u]χT

)
. (4)

The integral (3) is obtained by a formal computation of the Mellin transform of yµ(x) using
linearization.

Consider the following matrices made of exponents of monomials of the system (1):
λ
(1)
1 · · · λ

(n)
1

...
. . .

...
λ
(1)
n · · · λ

(n)
n

 , (5)

where each column vector λ(j) =
(
λ
(j)
1 . . . λ

(j)
n

)T

runs over the corresponding set Λ(j).

Theorem 1. The integral (3) corresponding to a system of algebraic equations (1) has a non-
empty domain of convergence and represents the monomial function of the solution if and only
if the determinants of all matrices of the form (5) are non-zero and have the same sign.

Note that in [9] and [10] analogous results have been obtained for systems with a diagonal
matrix ω and non-negative exponents of monomials λ ∈ Λ(j). Applications of these results for
study of discriminants of systems are given in [11].
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Convergence of the Mellin-Barnes integral

In this section we prove the convergence of the Mellin-Barnes integral (3) under hypothesis
of Theorem 1.

Recall that a multiple Mellin-Barnes integral has the form

Φ(z) =
1

(2πi)m

∫
γ+iRm

Γ(A · s+ c)

Γ(B · s+ d)
z−sds, (6)

where A ∈ Rm×p, B ∈ Rm×q, c ∈ Cp, d ∈ Cq, z, s ∈ Cm, and the vector γ is chosen such that
the integration set γ + iRm does not contain poles of Γ functions of the numerator.

We shall assume that the variable z varies in a Riemannian covering of the complex algebraic
torus (C \ {0})m, consequently, the factors in the integral kernel are defined as

z
−sj
j = e−sj log zj , arg zj ∈ R.

Denote θ = Argz = (arg z1, . . . , arg zm) and introduce the function

g(v) =

p∑
j=1

|⟨Aj ,v⟩| −
q∑

k=1

|⟨Bk,v⟩| ,

where Aj and Bk are rows of matrices A and B, respectively.
The next theorem gives a description of the convergence domain of a multiple Mellin-Barnes

integral.

Theorem 2 (Nilsson, Passare, Tsikh). For an integration set γ + iRm that does not contain
singularities of the integrand the convergence domain of the Mellin-Barnes integral (6) has the
form Arg−1(U), where

U =
∩

∥v∥=1

{
θ ∈ Rm : |⟨v, θ⟩| < π

2
g(v)

}
. (7)

In the case when the set U is not empty it coincides with the interior Θ◦ of the polyhedron

Θ =
{
θ ∈ Rm : |⟨vν , θ⟩| 6

π

2
g(vν), ν = 1, . . . , d

}
, (8)

where ±v1, . . . ,±vd is the set of unit vectors generating the fan K defined by a decomposition
of Rm by hyperplanes ⟨Aj ,v⟩ = 0, j = 1, . . . , p and ⟨Bk,v⟩ = 0, k = 1, . . . , q.

Thus, the convergence domain of the integral (6) is not empty if the function g(v) is positive
on the compact set (sphere) ∥v∥ = 1. Since g(v) is homogeneous, this is equivalent to its
positivity for v ̸= 0.

As has been established in earlier papers, the convergence domain of a Mellin-Barnes integral
does not depend on the presence of a polynomial factor Q(u).

For the integral (3) the function g(v) is

g(v) = ∥v∥+ ∥Ω−1Λv∥ − ∥(χ− Ω−1Λ)v∥,

where ∥v∥ = |v1|+ . . .+ |vN |.
The matrix Φ = Ω−1Λ inherits its block structure from the matrix Λ compatible with the

characteristic matrix χ; the blocks of this matrix are denoted by Φ(j). In [9] it has been shown
that in this case the function g(v) vanishes only for v = 0 if and only if all diagonal minors
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of matrices φ =
(
φ(1), . . . , φ(n)

)
are positive, here φ(j) is an arbitrary column vector of the

matrix Φ(j).
Consider a diagonal minor of order p of this matrix, it may be obtained as the determinant

of a product of two rectangular matrices:

φ
j1,...,jp
j1,...,jp

= det
(
(Ω−1)j1,...,jp · λj1,...,jp

)
,

where λ = Ωφ.
By the Cauchy-Binet formula, the determinant of a product of two such matrices is a sum of

products of minors of these matrices:

φ
j1,...,jp
j1,...,jp

=
∑

16k1<...<kp6n

(Ω−1)
k1...,kp

j1,...,jp
· λj1,...,jp

k1...,kp
.

By definition,

Ω−1 =
adjΩT

|Ω|
.

Therefore, by the Jacobi identity the minor (Ω−1)
k1...,kp

j1,...,jp
can be computed as:

(Ω−1)
k1...,kp

j1,...,jp
=

(−1)σ

|Ω|
Ω

jp+1,...,jn
kp+1...,kn

,

where σ is the order of the permutation(
j1 . . . jn
k1 . . . kn

)
.

Substituting these expressions into the formula for the minor φ
j1,...,jp
j1,...,jp

and using the Laplace
expansion along several columns we get

φ
j1,...,jp
j1,...,jp

=
|A|
|Ω|

> 0,

where A is the matrix whose columns with numbers js are equal to λ(js), and all the remaining
columns are the corresponding columns of Ω, i.e. A is a matrix of the form (5).

Since the choice of a matrix φ and an order of a minor p is arbitrary, it follows that all
determinants of matrices of the form (5) has the same sign. Thus, we have proved that under the
hypothesis of Theorem 1 the Mellin-Barnes integral corresponding to a solution of the system (1)
converges.

Solution of the system as a Taylor series

Consider the system (2):
yΩ + yΛXχT − I = 0.

The following statement holds

Theorem 3. The monomial ŷµ(x) of the principal solution of the system (2) is given by the
Taylor series

ŷl(x) =
∑
k∈ZN

>

ckx
k (9)
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with the coefficients

ck =
(−1)

|k|

k!

Γ
(
Ω−1 · µ+Ω−1 · Λ · k

)
Γ(Ω−1 · µ+Ω−1 · Λ · k− χ · k+ I)

·Q(k), (10)

where Q(k) = det
(
diag

[
Ω−1 · (µ+ Λ · k)

]
− Ω−1 · Λ · diag[k] · χT

)
.

Proof. First, let us linearize the system (2). Consider it as a system in CN
x × Cn

y and make
in CN+n the following change of variables:

y = W−Ω−1

; x = ξ ⊙WΩ−1Λ−χ.

In the new variable the system becomes

W = ξχT + I.

Represent the inverse ξ(x) as an implicit function given by the system of equations

F (ξ,x) = ξ ⊙WΩ−1Λ−χ − x.

Zeroes of these functions define the change of linearization. Therefore, the monomial function
of the solution can be found by A. P.Yuzhakov’s logarithmic residue formula. According to this
formula

yµ(x) =
1

(2πi)N

∫
Γε

yµ(ξ)∆(ξ)dξ

F I(ξ,x)
, (11)

where Γε = {ξ ∈ CN : |ξλ| = ε, λ ∈ Λ}, ∆(ξ) is the Jacobian of the mapping F (ξ, x) with
respect to variables ξ (notice that the Jacobian does not contain variables x), F I(ξ, x) denotes
the product F1(ξ,x) · . . . ·FN (ξ,x). The radius ε is chosen in such a way that the corresponding
polydisc lies outside zeroes of the Jacobian ∆(ξ).

Lemma 1. The Jacobian of F (ξ,x) with respect to ξ is

∆(ξ) = W (Ω−1Λ−χ)I−I det
(
E +Ω−1Λ · Ξ · χT

)
, (12)

here and further on Ξ = diag[ξ].

Proof. The component of the mapping F (ξ,x) with the index λ(j) ∈ Λ(j), j = 1, . . . , n has
the form

Fλ(j) = ξλ(j)

n∏
k=1

W
(Ω−1Λ−χ)λ

(j)

k

k

here (Ω−1Λ− χ)λ
(j)

k denotes the k-th component of the column with the index λ(j) of the matrix
Ω−1Λ− χ.

Non-diagonal elements of the Jacobian are

∂Fλ(j)

∂ξη(i)

= ξλ(j)(Ω−1Λ− χ)λ
(j)

i

n∏
k=1

W
(Ω−1Λ−χ)λ

(j)

k −δik
k , λ(j) ∈ Λ(j), η(i) ∈ Λ(i),

and if i = j then λ(j) ̸= η(i).
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Its diagonal elements has the form

∂Fλ(j)

∂ξλ(j)

=
n∏

k=1

W
(Ω−1Λ−χ)λ

(j)

k

k

(
1 + ξλ(j)(Ω−1Λ− χ)λ

(j)

j W−1
j

)
, λ(j) ∈ Λ(j),

where δjk is the Kronecker delta.
From each row of the Jacobian we factor out

W (Ω−1Λ−2χ)λ
(j)

=

n∏
k=1

W
(Ω−1Λ−χ)λ

(j)

k −δjk
k .

Then, before the Jacobian we have the factor W (Ω−1Λ−2χ)I , and the elements of the Jacobian
become

∂Fλ(j)

∂ξη(i)

= ξλ(j)(Ω−1Λ− χ)λ
(j)

i , λ(j) ∈ Λ(j), η(i) ∈ Λ(i),

outside the diagonal, and

∂Fλ(j)

∂ξλ(j)

= Wj + ξλ(j)(Ω−1Λ− χ)λ
(j)

j , λ(j) ∈ Λ(j),

on the diagonal.
In each i-th block-column of the obtained determinant subtract one column of this block

from all other columns of the block, the chosen columns we shall call marked, and their indices
are denoted by ′η(i), while ′Λ(i) := Λ(i) \ {′η(i)} denote indices of not marked columns of the ith
block.

The elements of the Jacobian then take the form:

∂Fλ(j)

∂ξη(i)

= 0; λ(j) ∈ Λ(j), η(i) ∈ ′Λ(i), i ̸= j,

for those in non-diagonal blocks in not marked columns.

∂F′η(j)

∂ξη(j)

= −Wj , η(j) ∈ ′Λ(j),

for elements in diagonal blocks in marked columns.

∂Fλ(j)

∂ξλ(j)

= Wj , λ(j) ∈ ′Λ(j),

for diagonal elements in not marked columns.

∂F′η(j)

∂ξ′η(j)

= Wj + ξ′η(j)(Ω−1Λ− χ)
′η(j)

j ,

for diagonal elements in marked columns.

∂Fλ

∂ξ′η(i)

= ξλ(Ω
−1Λ− χ)λi , λ ∈ Λ \ {η(i)},

for all other elements in marked columns, and

∂Fλ(j)

∂ξη(j)

= 0; λ(j), η(j) ∈ ′Λ(j), λ(j) ̸= η(j),
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for all remaining elements.
Now in each jth block-row add to the row with the index ′η(j) all other rows of this block to

get
∂F′η(j)

∂ξ′η(i)

= Wjδ
j
i +

∑
λ(j)∈Λ(j)

ξλ(j)(Ω−1Λ− χ)λ
(j)

i ,

∂F′η(j)

∂ξη(j)

= 0, η(j) ∈ ′Λ(j).

Since non-zero elements are now only in marked columns and on the principal diagonal, the
Jacobian can be reduced to a determinant of order n:

∂F

∂ξ
= W (Ω−1Λ−χ)I−I det

(
E +Ω−1Λ · Ξ · χT

)
.

This proves the lemma. 2

Substitute now the expression for the Jacobian as well as the expression for yµ(ξ) into (11)

yµ(x) =
1

(2πi)N

∫
Γε

W−Ω−1µ ·W (Ω−1Λ−χ)I−I det
(
E +Ω−1Λ · Ξ · χT

)
(ξ ⊙W (Ω−1Λ−χ) − x)I

dξ (13)

and reduce the fraction in the integrand

yµ(x) =
1

(2πi)N

∫
Γε

W−Ω−1µ−I det
(
E +Ω−1Λ · Ξ · χT

)
ξI(I − x⊙ ξ−E ⊙Wχ−Ω−1Λ)I

dξ. (14)

There exists δ such that for any ξ ∈ Γε and ∥x∥ < δ we have the inequality x ⊙ ξ−E ⊙
Wχ−Ω−1Λ < I, therefore we can represent the integrand as a geometric series

yµ(x) =
1

(2πi)N

∫
Γε

W−Ω−1µ−I det
(
E +Ω−1Λ · Ξ · χT

)
ξI

×

×

 ∑
k∈ZN

>

xk · ξ−k ·W (χ−Ω−1Λ)k

 dξ.

(15)

Now change the order of integration in (15):

yµ(x) =
∑
k∈ZN

>

ckx
k,

here the coefficients ck are given by

ck =
1

(2πi)N

∫
Γε

W−Ω−1(µ+Λk)+χk−I

ξk+I
det

(
E +Ω−1Λ · Ξ · χT

)
dξ.

The coefficients of the obtained series can be computed by the Cauchy formula

ck =
1

k!

∂k

∂ξk

(
W−Ω−1(µ+Λk)+χk−I det

(
E +Ω−1Λ · Ξ · χT

)) ∣∣∣
ξ=0

.

The computation of the derivatives gives

ck =
(−1)k

k!

Γ(Ω−1(µ+ Λ · k))
Γ(Ω−1(µ+ Λ · k)− χ · k + I)

Q(k),

where Q(k) = det(diag[Ω−1(µ+ Λk)]− Ω−1Λ · diag[k] · χT ). 2
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Computation of the Mellin-Barnes integral

In this section we show that a convergent integral corresponding to a solution of a system of
algebraic equations can be computed as a hypergeometric series, which coincides with a hyper-
geometric series representing solution of this system.

Consider a system of two trinomials

y41 + x1y
2
1y

−1
2 − 1 = 0,

y42 + x2y
−1
1 y22 − 1 = 0 .

It is easy to check that this system satisfies the condition for the convergence of the Mellin-
Barnes integral, which for the monomial of the solution yµ(x) has the form

1

(2πi)2

∫
γ+iR2

Γ(u1)Γ(u2)Γ(
1
4 (µ1 − 2u1 + u2))Γ(

1
4 (µ2 + u1 − 2u2))

Γ
(
1
4 (µ1 + 2u1 + u2) + 1

)
Γ
(
1
4 (µ2 + u1 + 2u2) + 1

) Q(u)x−udu, (16)

where
Q(u) =

1

16
(µ1µ2 + µ1u1 + µ2u2) .

To compute the integral we use the principle of separating cycles of A.K. Tsikh. This principle
applies for computation of integrals

1

(2πi)s

∫
∆g

h(z)dz

f1(z) . . . fs(z)
(17)

of the Grothendieck type where poles of the meromorphic integrand are associated to a proper
holomorphic mapping f = (f1, . . . , fs) : Cs → Cs, and the integration set ∆g is the distin-
guished boundary of the polyhedron Πg associated to another proper holomorphic mapping
g = (g1, . . . , gs) : Cs → Cs. When the mappings f and g coincide, the integral (17) is equal to a
sum of Grothendieck residues of the integrand over all zeroes of f in Πg. Indeed, in this case the
distinguished boundary of ∆g is homologous to a sum of local cycles separating local divisors
Dj = fj = 0, j = 1, . . . , s, i.e. those cycles that are involved into definition of a local residue of
Grothendieck. In the problem of representation of the integral (17) by a sum of local residues a
principal role is played by the following notion.

Definition 1. A polyhedron Πg is called compatible with a family of hypersurfaces (divisors)
{Dj}, if the jth facet of the polyhedron Πg does not intersect Dj for all j, j = 1, . . . , s.

Theorem 4 (The principle of separating cycles). If a polyhedron Πg is bounded in compatible
with the family of polar divisors {Dj}, then the integral (17) is equal to a sum of Grothendieck
residues in Πg.

In case of an unbounded polyhedron, an additional condition of rapid decrease of the integrand
in Πg is required, similar to that in the classical Jordan lemma where instead of Πg we have a
half-plane. Such a condition is given in [8] and [7].

In the integral (16) the vertical subspace γ + iR2 can be seen as a distinguished boundary of
some polyhedron. Note that in the case N > 1 the number of such polyhedra is infinite. Our
task is to divide polar hypersurfaces in (16) into 2 divisors and attach to γ + iR2 a polyhedron
compatible with the obtained family.
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As a polyhedron we take
Π = {Reu1 < γ1,Reu2 < γ2}.

The family of divisors we organize as follows: polar sets of Gamma functions Γ(u1) and
Γ
(
1
4 (µ2 + u1 − 2u2)

)
(red and violet) we put into one divisor, while polar sets of Γ(u2) and

Γ
(
1
4 (µ1 − 2u1 + u2)

)
(blue and green) into another. By gray lines we depict zeroes of the

integrand (singularities of Gamma functions in the denominator and zeroes of Q(u)) (Fig. 1).

Fig. 1. Families of polar divisors of the integrand

It is easy to see that at the intersection points of oblique polar sets with vertical and horizontal
ones inside the polyhedron the residue is 0. Thus, in this case the integral (16) is a sum of residues
over all points of the lattice Z2

60 where the integrand has a pole of the first order.
A pole at a point of Z2

60 gives an expression ckx
k, where ck is defined in Theorem 3 by the

formula (10). Summing up over all points of Z60 we obtain the series from Theorem 3.
Thus, we have shown that the integral (3) under hypothesis of Theorem 1 has a non-empty

convergence domain and represents a monomial of a solution of the system of algebraic equa-
tions (1). Moreover, computations show that the integral (16) coincides with the solution in the
form of a hypergeometric series.

The research is carried out with the financial support of the RFBR, project no. 18-31-00193.
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Гипергеометрические ряды и интегралы Меллина-Барнса
для нулей системы полиномов Лорана

Владимир Р.Куликов
Сибирский федеральный университет

Красноярск, Российская Федерация

Аннотация. В работе приведен критерий сходимости интеграла Меллина-Барнса, представляю-
щего нули системы полиномов Лорана. Представлена формула в виде кратного ряда гипергеомет-
рического типа.
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