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1. Introduction and preliminaries

The classical geometry is based on the duality between the geometry and the commutative
algebra. In commutative algebra, the product of two algebraic quantities is independent from
the order. In Quantum Mechanics, following Heisenberg’s viewpoint, the geometry of the states
space describing a microscopic system, an atom for example, has a new property such as the
momentum and the position are non-commuting operators [1–7]:

[xi, xj ] = iθij , [pi, pj ] = iσij , [xi, pj ] = iδij . (1)

The purpose of noncommutative geometry is to generalize the duality of space geometry [8–10]
and algebra to the more general situation where the algebra is not commutative. This leads to
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change two fundamental concepts of mathematics, those of space and symmetry and adjusts all
the mathematical tools in these new paradigms.

The prime interest of the theory comes entirely from new and unexpected phenomena that
have no counterpart in the case of commutative geometry. The commutative Riemannian geom-
etry which provides a framework of general relativity was generalized by Einstein to "quantum"
version.

The passage of the Riemann geometry to the noncommutative geometry [11] is the transition
from the measurement of distances to the use of operators algebra. This gives a notion of a
spectral nature of geometric space which is more flexible.

The noncommutative geometry treats both the noninteger dimension space [12,13], an infinite
dimension space, especially "quantum" space and finally the space-time itself. If we take into
account, not only the electromagnetic strength (which led to Poincaré, Einstein and Minkowski
model of spacetime), but also the weak and strong forces, the use of the noncommutative space-
time properties becomes necessary.

Furthermore, Feynman paths integrals method encounters substantial difficulties when used
in a noncommutative space because it is basically meaningless to talk about path in a noncom-
mutative spacetime. Therefore the formulation of path integrals must done not in the space
of noncommutative coordinates itself but in the space of noncommutative phase space (mixed
space). This is required by the spirit of the Feynman path integrals construction.

Indeed, we consider a space-time (2 + 1)-dimensions, which can be easily generalized to
higher dimensions. So, to conciliate our work in the canonical formalism, we used a full basis of
commuting operators. We shall take as space, the configuration space (x1, p2) built on commuting
operators such that we avoid the noncommutativity.

In this paper we are mainly concerned with two coupled harmonic oscillators with arbitrary
time dependent frequencies and masses leading to use some time-dependent transformations. The
originality of this work, is the description of the system in the noncommutative mixed phase space
by using the path integral techniques to extract the "Berry’s phase". We recall that Berry’s phase
has attracted the attention of many physicists, it was first discovered in 1956, and rediscovered in
1984 by Berry who has published a paper [14] which has until now deeply influenced the physical
community. Therein he considers cyclic evolutions of systems under special conditions, namely
adiabatic ones. He finds that an additional phase factor occurs in contrast to the well known
dynamical phase factor. This phenomenon can be described by "global change without local
change". Berry points out the geometrical character of this phase which is not negligible because
of its non integrable character [15]. This was not the first time such a phase factor appears,
for instance, considerations of the Born-Oppenheimer approximation done by Mead and Truhlar
in 1979 revealed also this additional phase factor but it had been neglected [16]. Berry showed
that this was not correct because the phase is a gauge invariant and therefore can not be gauged
away.

A brief outline of the present paper is as follows: in the next section, we give the construc-
tion of the path integral in the noncommutative phase space. In Section 3, we present two
applications, the first one is the time dependent coupled harmonic oscillators in commutative
phase space, the second application deals with the time-dependent coupled harmonic oscillators
in noncommutative phase space. In each case, Berry’s phase (geometric phase) was derived as
well as the dynamic phase. A conclusion is provided in the last section.

2. Path integral in noncommutative phase space

In this section we must be concerned with Feynman’s path integral formalism, which is
described by a Hamiltonian H (x, p) made up the cartesian coordinates xi, and their canonically
conjugate momenta pj . Nevertheless, unlike the usual case, "coordinates and momenta" are
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assumed to obey the noncommutative rules.

[xi, xj ] = iθij , [pi, pj ] = iΣij , [xi, pj ] = iδij , (2)

where Θ and Σ are two-antisymmetric matrix such as Θ12 = θ and Σ12 = σ. To these com-
mutation relations correspond the deformed Poisson brackets in classical phase space defined
as

{xi, xj} = θij , {pi, pj} = Σij , {xi, pj} = δij , (3)

where Θ and Σ are noncommutative parameters.
Acting on the Heisenberg algebra (2), it is easy to found the Path integral in noncommutative

phase space. But in this work, we propose to build the path integral while maintaining the spirit
of Feynman’s construction. On this basis, we choose the mixed phase space i.e. QT = (x1, p2)
and PT = (x2, p1).

A path integral formalism in noncommutative mixed coordinates is

Kθσ(Q
i, Qf , T ) =

∫
DQDP exp

[
i

∫ [
PJ−1

θσ Q̇−H (Q,P )
]
dt

]
, (4)

where QT = (x1, p2), PT = (x2, p1) and (Jθ,σ)ij =

(
θ 1
−1 −σ

)
is the symplectic form. For

simplicity, the propagator (4), using linear canonical transformation which known as Bopp-shift
in form matrix, may be written as

Kθσ(Q
i, Qf , T ) =

∫
DQDP exp

[
i

∫ [
PJ−1

0,0 Q̇−Hθσ

(
Q, ĀP

)]
dt

]
, (5)

where
J0,0 =

(
0 1
−1 0

)
, Ā =

(
1 θ
σ 1

)
.

As θ and σ are very small parameters, we set Ā = 1 + β, with β =

(
0 θ
σ 0

)
, then

Hθσ

(
Q, ĀP

)
= H(Q,P ) +Hβ(Q,P ), (6)

with Hβ(Q,P ) is now a small perturbation added to the Hamiltonian such that we can use
Taylor’s expansion of the Hamiltonian

Hβ(Q,P ) ≃ (βP )
T ∂H(Q,P )

∂P
+
∑
ij

1

2!
(βP )

T
i (βP )j

∂2H(Q,P )

∂Pi∂Pj
. (7)

The Feynman’s formalism for a general potential in noncommutative phase space is given by

Kθσ(Q
i, Qf , T ) =

∫
DQDP exp

[
i

∫
dt
(
PJ−1Q̇−H(Q,P )−Hβ(Q,P )

)]
. (8)

The main goal of this paper is to find Berry phase of the 2-dimensional coupled harmonic oscilla-
tors in two cases the first one in commutative phase space, and the second case in noncommuta-
tive phase space, under the Euclidean path integral formalism. The original premise for Berry’s
phase is the adiabatic theorem of quantum mechanics [17], which deals with a system coupled
to a slowly changing environment: the Hamiltonian system H (t) varies adiabatically.

To extract the Berry’s phase from the propagator (8) , we follow the method used by Kashiwa
to obtain the Berry’s phase for one dimension harmonic oscillator , in which it summarizes as
follows [18].
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1. Consider the Euclidean kernel for the given Hamiltonian: ( t → −it) while keeping the
external variables unchanged.

2. Examine the large T limit of the kernel.

3. Find the imaginary part of O(T ) from the exponent of the kernel.

So, In the Euclidean space ( t → −it) and for adiabatic approximation, we set s =
t

T
with T

very large, the(8) is given by:

Kθσ(Q
i, Qf , T ) =

∫
DQDP exp

[
T

∫
ds

(
i

T
PJ−1Q̇−H(Q,P )−Hβ(Q,P )

)]
, (9)

this latter is the Feynman’s formalism in non-commutative phase space. where, we put θ, σ → 0,
will return (9) to the commutative phase space (the usual phase space ) ,i.e, the (9) is given

K(Qi, Qf , T ) =

∫
DQDP exp

[
T

∫
ds

(
i

T
PJ−1Q̇−H(Q,P )

)]
. (10)

2.1. Time-dependent coupled harmonic oscillators in commutative
phase space

Consider a pair of coupled general time-dependent oscillators with same frequencies and
masses whose Hamiltonian in commutative phase space takes the form [21].

The quantum mechanical evolution of the system can be described by the Feynman propaga-
tor, in the mixed phase space QT = (x1, p2) and PT = (x2, p1) (formulation of Feynman’s path
integral), which is defined formally by

K(Qf , Qi; t) =

∫
DQDP =

= exp
[ ∫ (

(PJ−1
0,0 Q̇− 1

2
PM (t)P − 1

2
QW (t)Q− Pλ (t)Q

)
dt
]
. (11)

The matrices M(t), W (t) and λ(t) are time dependent functions given respectively by(
µ1 (t) 0
0 µ2 (t)

)
,

(
ω2
1 (t) 0
0 ω2

2 (t)

)
,

(
0 λ2 (t)

λ1 (t) 0

)
, (12)

where

µ1 (t) = m (t)ω2 (t) , µ2 (t) =
1

m (t)
, (13)

ω1 (t) = ω (t)
√

m (t), ω2 (t) =
1√
m (t)

. (14)

Now, we follow the steps [18] that we have mentioned previously, we take t → −it, and in

order to specify the adiabatic parameter
1

T
, we introduce a scaled times s = t/T in (11), and

after using change the variable P → JP on a level of Lagrange in (11), we get

K(Qi, Qf , T ) =

∫
DQDP =

= exp
[
T

∫ (
i

T
PQ̇− 1

2
P
(
J0,0MJ−1

0,0

)
P − 1

2
QW (s)Q− P (Jλ (s))Q

)
ds
]
. (15)
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If we want to transform a Hamiltonton into a simpler and more convenient one, this is
possible by using time-dependent canonical conversion, as the latter is very useful and effective
in researching the properties of dynamical systems described by a time-dependent Hamiltonian.
To simplify the Action given in (15), Let us introduce the canonical transformations which define
the new phase space (Q,P ) → (X,Π) [22–24] given by,(

P1

P2

)
=

 1√
µ2(s)

0

0 1√
µ1(s)

[( Π1

Π2

)
−
(

β1 (s) 0
0 β2 (s)

)(
X1

X2

)]
,

(
Q1

Q2

)
=

( √
µ2 (s) 0

0
√
µ1 (s)

)(
X1

X2

)
, (16)

where the functions β (s) can be conveniently chosen to make separation of variables straightfor-
ward possible. As a result of the transformation, and after using the gaussian integration over
Π, one may write (15) as

K(Qf
j , Q

i
j ;T ) =

∫
DX exp

i [X (β (s))X]
T
0

2
=

= exp

{
T

∫ (
− 1

2T 2

·
X

·
X − 1

2
(Ωc

1)
2
(s)X2

1 − 1

2
(Ωc

2)
2
(s)X2

2

)
ds

}
, (17)

where (
Ωc

(1,2) (s)
)2

= µ(2,1)ω
2
(1,2) − β2

(1,2) +
i

T
µ(2,1)

d

ds

(
β(1,2)

µ(2,1)

)
(18)

with

β1 (s) = λ1 (s)−
i

2T

µ̇2 (s)

µ2 (s)
, (19)

β2 (s) = −λ2 (s)−
i

2T

µ̇2 (s)

µ2 (s)
. (20)

Therefore, the propagator K(Qf
j , Q

i
j ;T ) in (17) is now reduced to the sum of the propagators

for two uncoupled general time-dependent oscillators of frequencies Ωc
(1,2)(s), and same masses

m(1,2) (s) = 1.
We know that the WKB-approximation, ~-expansion with ~ → 0 is almost equivalent to the

adiabatic approximation, 1
T -expansion with T → ∞, It is known as well as that the easiest way to

do the WKB approximation is the path integral, this is confirmed by Kashiwa in his article [18],
for this reason we see that the most appropriate way to perform an addiabatic approximation is
the path integral.

It is clear that we can see that the adiabatic approximation in (15), so it is very easy to treat
this latter directly by the semi-classical methods, in which case we resort to the Van Vleck-Pauli
formula [18].

Hence, we have the Van Vleck-Pauli formula

K(Qf , Qi;T ) =

√
det

(
i

2π

∂2S

∂Xf∂Xi

)
exp

(
−S

(
Xf , Xi;T

))
, (21)

where, S
(
Xf , Xi;T

)
is the classical action defined by

S
(
Xf , Xi;T

)
=

i [X (β (s))X]
T
0

2
+

∫ T

0

L
(
Xf , Xi;T

)
dt, (22)
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with
L =

−1

2T 2

(
dXj

ds

)(
dXj

ds

)
− 1

2

(
Ωc

j(s)
)2

(Xj)
2
, j = 1, 2 (23)

Now, that we have done all the steps described in APPENDIX , we get the propagator that
accompanies this latter (23),

K(Qf , Qi;T ) =
2∏

j=1

K(Qf

j , Q
i
j ;T ), (24)

with

K(Qf

j , Q
i
j ;T ) =

{ 2

Π
j=1

(
wc

j(T )w
c
j(0)

) 1
2

2 sinhΘj(T )

}
exp

−

√
wc

j(T )w
c
j(0)

2 sinhΘj(T )
=

=

{(√
wc

j(T )

wc
j(0)

(
Xf

j

)2
+

√
wc

j(0)

wc
j(T )

(
Xi

j

)2)
coshΘj(s)− 2Xf

j X
i
j

}
=

= − exp
i [Xβ (s)X]

T
0

2

)
(25)

and where X1 and X2 are given by (16).
As it is known, informations on the ground state can be derived by setting T → ∞ in (25) .

In fact, when we take this limit we obtain:

K(Qf , Qi;T ) ∼
T→∞

(
2

Π
j=1

(
wc

j(T )w
c
j(0)

) 1
4

)
e−

1
2Σ

2
j=1Θj(T )×

×
2

Π
j=1

exp

{((
wc

j(T ) + iβ (T )
) (

Xf
j

)2
+
(
wc

j(0)− iβ (0)
) (

Xi
j

)2)}
. (26)

In this formula, the imaginary part of Θ1(T ) and Θ2(T ) given by (63), corresponds to the Berry
phase,

γ(1,2)(T ) =
1

4

∫
dt

(
µ(2,1) (t)

w(1,2)(t)

d

dt

(
λ(1,2) (t)

µ(2,1) (t)

))
(27)

or

γ1(T ) =
1

4

∫ T

0

dt

(
1

m (t)
√
ω2 (t)− λ2

1 (t)

d

dt
(m (t)λ1 (t))

)
, (28)

γ2(T ) =
1

4

∫ T

0

dt

(
m (t)ω2 (t)√
ω2 (t)− λ2

2 (t)

d

dt

(
λ2 (t)

m (t)ω2 (t)

))
. (29)

whereas the real parts of Θ1(T ) and Θ2(T ), correspond to the dynamical phase.

2.2. Time-dependent coupled harmonic oscillator in noncommutative
phase space

To specify a particular system in the context of non-commutative quantum mechanics it is
necessary to define the Hamiltonian Hθσ = Hnc. The latter must be chosen so that it is reduced
to standard Hamiltonian. We consider a system of two coupled harmonic oscillators where the
hamiltonian H (t) is an explicit function of time, via the frequency ω (t) and the mass m (t) which
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are functions of time. In the case of noncommutative phase space, this system is described by
the following hamiltonian:

Hθσ (x1, x2; p1, p2) ≃
(

1

2m (t)
+

m (t) θ2ω2 (t)

2

)
p21 +

p22
2m(t)

+
1

2
m(t)ω2(t)x2

1 +

+

(
m (t)ω2 (t)

2
+

σ2

2m (t)

)
x2
2 + λ1 (t)σx1x2 + λ2θp1p2 +

+

(
σ

m (t)
+ θm (t)ω2 (t)

)
p1x2 + λ1 (t) p1x1 + λ2 (t) p2x2, (30)

where θ and σ are the deformed parameters defined above in Section 2.
We rewrite (30) using mixed coordinates Q = (Q1, Q2) = (x1, p2) and P = (P1, P2) = (x2, p1).

Therefore the compact form of the above Hamiltonian is:

Hθσ(Q,P ) =
1

2
PM(t)P +

1

2
QW (t)Q+ Pλ(t)Q, (31)

where

M(t) =

(
µ1(t) b (t)
b (t) µ2(t)

)
, W (t) =

(
ω2
1 (t) 0
0 ω2

2 (t)

)
, λ (t) =

(
λ1 (t)σ λ2 (t)
λ1 (t) λ2 (t) θ

)
(32)

with

µ1(t) =

(
m (t)ω2 (t) +

σ2

m (t)

)
, µ2(t) =

(
1

m (t)
+m (t) θ2ω2 (t)

)
, (33)

b (t) =

(
σ

m (t)
+ θm (t)ω2 (t)

)
, (34)

ω1 (t) =
√
m (t)ω (t) , ω2 (t) =

1√
m (t)

. (35)

We suggested setting θ = −σ and m2 (t)ω2 (t) = 1 to facilitate calculations, avoid repetition
and reduce steps.

After this simplification, the matrix becomes as follows:

M(t) =

 µ1(t) =
1

m (t)

(
1 + σ2

)
0

0 µ2(t) =
1

m (t)

(
1 + σ2

)
 . (36)

The quantum mechanical evolution of the hamiltonian (30) can be described by the prop-
agator, in the non-commutative phase space formulation of Feynman’s path integral, which is
defined by:

Kθσ(Q
f , Qi;T ) =

∫
DQDP =

= exp
[
T

∫ (( i

T
PQ̇− 1

2

(
P
(
J−1M(s)J

)
P +QW (s)Q+ 2P

(
J−1λ(s)

)
Q
) ))

ds
]
. (37)

In this subsection, we are mainly interested to find the Berry’s phase in the Euclidean path
integral formalism in non-commutative phase space.

And to find the Berry phase in non-commutative phase space, we will follow the same steps
we took in the case of the commutative phase space of two coupled harmonic oscillators, then
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we compare between the both applications in order to highlight the impact of the deformation
parameters (θ, σ) on the hamiltonian.

We can see the path integral (37) is not trivial but can be important. In the case of mak-
ing this equation (37) to a more easily form, it is useful to use the time-dependent canonical
transformation. This transformation leads to an effective diagonal Hamiltonian in terms of non-
commutative coordinates.

In order to remove the matrix
(
J−1M(s)J

)
and

(
J−1λ(s)

)
, we can use the time-dependent

canonical transformation (P,Q) → (Π, X) similar to that provided in [23] and [24]:

(
P1

P2

)
=


1
√
µ

0

0
1
√
µ

(( Π1

Π2

)
−
(

β11 (s) β12 (s)
β21 (s) β22 (s)

)(
X1

X2

))
, (38)

(
Q1

Q2

)
=

( √
µ 0
0

√
µ

)(
X1

X2

)
. (39)

Hence, the new propagator for the system becomes

Kθσ(Q
f , Qi;T ) =

∫
DXDΠexp

[
i (X (β (s) + βt (s))X)

2

]T
0

×

× exp (T )

∫
ds

(
i

T
ΠẊ − 1

2
ΠΠ− 1

2
XΩnc(s)X

)
, (40)

where

(Ωnc
1 )

2
= µω2

1 (t) + λ2
1 − σ2

(
λ1λ2 −

1

2
λ2
2

)
− i

T
µ
d

ds

(
β11

µ

)
, (41)

(Ωnc
2 )

2
= µω2

2 (t) + λ2
2 − σ2

(
λ1λ2 −

1

2
λ2
1

)
− i

T
µ
d

ds

(
β22

µ

)
, (42)

Ωnc
3 = − i

T
µ
d

ds

(
β12

µ

)
− i

T
µ
d

ds

(
β21

µ

)
(43)

and the matrices elements of β (s) are

β(11) (s) = λ(1,2) −
i

2T

µ̇

µ
, (44)

β(22) (s) = −λ(1,2) −
i

2T

µ̇

µ
, (45)

β(12,21) (s) = −σλ(2,1) (46)

in this case we took σ̇ = 0, and in put λ1 = −λ2 = λ the relations (41), (42) and (43) becomes:(
Ωnc

(1,2)

)2
(s) =

(
wnc

(1,2)

)2
(s)− 1

T
ω̃nc
(1,2)(s), (47)

where (
wnc

(1,2)

)2
(s) =

(
wc

(1,2)

)2
(s)− 3σ2

2
λ2(s) (48)

and
ω̃nc
(1,2)(s) = −iµ

d

ds

(
λ(s)

µ

)
, (49)
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where Ωc and Ωnc are commutative and noncommutative frecuency.
The Π-integration in (40) is easily performed to give the new propagator:

Kθσ(Q
f , Qi;T ) =

√
2π

∫
DX exp

[
i (X (β (s) + βt (s))X)

2

]T
0

=

= exp

[
T

∫
ds

( ∑
j=1,2

(
−1

2T 2

(
Ẋ2 − Ω2

j (s)X
2
j

)))]
(50)

The final expression of the propagator, for the system of two coupled harmonic oscillators in
non-commutative phase space governed by the Hamiltonian (30), is given by

K(Qf

j , Q
i
j ;T ) =

{
2

Π
j=1

(
wnc

j (T )wnc
j (0)

) 1
2

2 sinhΘj(T )

}
exp

−

√
wnc

j (T )wnc
j (0)

2 sinhΘj(T )
×

×

{(√
wnc

j (T )

wnc
j (0)

(
Xf

j

)2
+

√
wnc

j (0)

wnc
j (T )

(
Xi

j

)2)
coshΘj(s)− 2Xf

j X
i
j

}
−

− exp

[
i (X (β (s) + βt (s))X)

2

]T
0

)
, (51)

with

Θ(1,2)(s) = T

∫ s

0

dτ

(
wnc

(1,2)(τ)−
i

2T

µ(τ)

wnc
(1,2)(s)

d

dτ

(
λ(τ)

µ(τ)

))
. (52)

When we put T → ∞ we have a real and imaginary part. This last corresponds to the Berry’s
phase which are as follows

γ
(1,2)
θσ (s) =

T

4

∫
dτ

 µ(τ) d
dτ

(
λ(τ)
µ(τ)

)
√(

wc
(1,2)

)2
(s)− 3σ2

2 λ2(s)

 . (53)

Finally, we have found the Berry phase in the non-commutative state where depends this latter
to the deformed parameters θ and σ, after we used a method of adiabatical approximation. In
the case of θ = σ = 0, we can obtain exactly Berry’s phase in the commutative phase space case.

Conclusion
In this paper we applied the path integral construction [1] in the noncommutative phase

space, in which the structure of the phase space is deformed by introducing two deformation
parameters θ and σ. We present an alternative treatment (via path integral formalism) for the
problem of the coupled harmonic oscillators in two dimensions with time-dependent mass and
frequency. We study two cases: the first one in commutative phase space and the second in
noncommutative phase space. The treatment is based on the use of time-dependent canonical
transformation and auxiliary time-dependent transformation by path integral techniques. To
each canonical transformation correspond a new mass and a new frequency.

We know that the Berry phase is limited to the adiabatic approximation. We have calculated
Berry phase in each case following the semi-classical solution via path integral. The result are
two functions γ(1) (t) and γ(2) (t) in terms of the system parameters are m (t) , ω (t), λ1 (t) and
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λ2 (t) in the commutative case, but, in the case of the non-commutative phase space, the result
are two functions also γ

(1)
θσ (t) and γ

(2)
θσ (t) in the terms of the system parameters m (t) , ω (t),

λ1 (t) and λ2 (t) , in addition to the deformations parameters θ and σ, It is easy to see that we
find the result of the Berry phase in commutative case in the limit θ, σ → 0.

References

[1] C.S.Acatrinei, J. Phys. A: Math. Gen., 37(2004), 1225–1230.
DOI: 10.1088/0305-4470/37/4/010

[2] C.S.Acatrinei, J. Phys. A: Math. Theor., 40(2007), F929–F933.

[3] B.Dragovish, Z.Rakic, Path Integral Approach to Noncommutative Quantum Mechanics,
2004, arXiv:hep-th/0401198v1.

[4] M.R.Douglas, N.A.Nekrasov, Rev. Mod. Phys., 73(2001), 977, arXiv:hep-th/0106048v4.
DOI: 10.1103/RevModPhys.73.977

[5] M.Chaichian, A.Demichev, P.Presnajder, M.M.Sheikh-Jabbari, A.Tureanu, Phys. Lett. B,
527(2002), 149–154. DOI: 10.1016/S0370-2693(02)01176-0

[6] C.Duval, P.Horvathy, Phys. Lett. B, 479(2000), 284, DOI: 10.1016/S0370-2693(00)00341-5;
C.Duval, P.Horvathy, J. Phys. A, 34(2001), 10097, DOI: 10.1088/0305-4470/34/47/314;
P.Horvathy, Ann. Phys., 299(2002), 128, DOI: 10.1006/aphy.2002.6271.

[7] L.Gouba, A comparative review of four formulations of noncommutative quantum mechan-
ics, 2016, arXiv:hep-th/1603.07176v2.

[8] A.Connes, M.R.Douglas, A.Schwarz, JHEP, (1998), DOI:10.1088/1126-6708/1998/02/003.

[9] M.Dubois-Violette, Noncommutative differential geometry, quantum mechanics and gauge
Theory, In: 19th International Conference on Differential-geometric Methods in Theoretical
Physics, C.Bartocci, U. Bruzzo, R. Cianci eds., Lecture Notes in Physics, Vol. 375, Rapallo,
Italy, 1990, 13–24. DOI: 10.1007/3-540-53763-5

[10] V.P.Nair, A.P.Polychronakos, Phys. Lett. B, 505(2001), 267.
DOI:10.1016/S0370-2693(01)00339-2

[11] A.Connes, Noncommutative Geometry, Academic Press, London, 1994.

[12] J.Bros, The Geometry of Relativistic Spacetime: from Euclid’s Geometry to Minkowski’s
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Appendix
Rewrite equation (18) as follows(

Ωc
j (s)

)2
=
(
wc

j (s)
)2 − 1

T
w̃j (s) , j = 1, 2, (54)

where

wc
(1,2) (s) =

(
µ(2,1)ω

2
(1,2) − λ2

(1,2) (s)
) 1

2

(55)

and
w̃(1,2) (s) = −iµ(2,1)

d

ds

(
β(1,2)

µ(2,1)

)
. (56)

From the Lagrangian (23) we extract the motion equations(
d2X(1,2)

ds2

)
− T 2Ω2

(1,2)(s)X(1,2) = 0. (57)

The boundary conditions are

X(j)(0) =
Qi

(1,2)√
µ(2,1) (0)

, X(j)(T ) =
Qf

(1,2)√
µ(2,1) (T )

, j = 1, 2. (58)

Now the only task needed here is to find a classical solution Xc
(j) of Equation (57), we consider

for this the two Ansatz

X(1,2) = eT
∫ s
0
dσρ(1,2)(σ)a(1,2); ρ(1,2)(s) =

∞∑
n=0

ρ(1,2)n (0)

(
1

T

)n

, (59)

where a(1,2) is a given constant. Substituting equation (59) into (57), and using (54), lead to

T 2
(
ρ
(1,2)
0

)2
+ T ρ̇

(1,2)
0 +

(
ρ
(1,2)
1

)2
− T 2

(
wc

(1,2) (s)
)2

− Tw̃(1,2) (s) = 0. (60)
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By identification of coefficients with respect to T, and by restricting to O(T 2) and O(T ), we
obtain 

ρ
(1,2)
0 = ±wc

(1,2)(s) O(T 2)

ρ
(1,2)
1 =

−ρ̇
(1,2)
0 + w̃(1,2)(s)

2ρ
(1,2)
0

O(T ).
(61)

Finally, by taking into account the boundary condition (58), we get

X(1,2)(s) =
1√

wc
(1,2)(s) sinhΘ(1,2)(T )


√

wc
(1,2)(T )

µ(1,2) (T )
Qf

(1,2) sinhΘ12(s) +

+

√
wc

(1,2)(0)

µ(1,2) (0)
Qi

(1,2) sinh Θ̄(1,2)(s)

×
{
1 +O

(
1

T

)}
, (62)

where

Θ(1,2)(s) = T

∫ s

0

dτ

(
wc

(1,2)(τ)−
i

2T

µ(2,1)(τ)

wc
(1,2)(τ)

d

dτ

(
λ(1,2)(τ)

µ(2,1)(τ)

))
(63)

and Θ̄j(s) = Θj(T ) − Θj(s). The action S
(
Xf , Xi;T

)
could be computed using the last solu-

tion. Indeed, integration by parts in the kinetic term of the action and the use of the motion
equation (57) give

S
(
Xf , Xi;T

)
=

i [Xβ (s)X]
T
0

2
+

∫ T

0

(
−1

2T 2

(
dXj

ds

)(
dXj

ds

)
− 1

2
Ω2

j (s)X
2
j

)
ds =

=
i [Xβ (s)X]

T
0

2
+

1

2T

[
X(1,2)

dX(1,2)

ds

]T
0

≃ S1 + S2. (64)

Straightforward calculation provides

S2 =

√
wc

(1,2)(T )w
c
(1,2)(0)

2 sinhΘ(1,2)(T )
×

×



√√√√wc

(1,2)(T )

wc
(1,2)(0)

(
Xf

(1,2)

)2
+

√√√√wc
(1,2)(0)

wc
(1,2)(T )

(
Xi

(1,2)

)2 cothΘ(1,2)(T )− 2Xf
(1,2)X

i
(1,2)

 , (65)

yielding the determinant to√√√√det

(
i

2π

∂2S

∂Xf
(1,2)∂X

i
(1,2)

)
=

√
wc

(1,2)(T )w
c
(1,2)(0)

2 sinhΘ(1,2)(T )
.

√
wc

(1,2)(T )w
c
(1,2)(0)

µ(1,2)(0)µ(1,2)(T )
(66)
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Фаза Берри для нестационарных связанных
гармонических осцилляторов в некоммутативном
фазовом пространстве с помощью методов интеграла
по траектории
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Университет Касди Мербах

Уаргла, Алжир

Аннотация. Целью данной работы является описание фазы Берри в формализме евклидова инте-
грала по путям для двумерной квадратичной системы: двух связанных во времени гармонических
осцилляторов. Эта обработка достигается с помощью адиабатического приближения в коммута-
тивном и некоммутативном фазовом пространстве.

Ключевые слова: фаза Берри, некоммутативное фазовое пространство, связанные осциллято-
ры.
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