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Abstract

A method of computing residue integrals with integration over certain cycles for systems of tran-
scendental equations is presented. Such integrals are connected to the power sums of roots for a certain
system of equations. The described approach can be used for developing methods for the elimination of
unknowns from transcendental systems.

The problem of elimination of unknowns from systems of nonlinear algebraic equations is a classical
algebraic problem. The elimination method based on the notion of a Gröbner basis and suggested by
B. Buchberger is one of the main elimination methods in polynomial computer algebra nowadays (see, e.g.,
[4], [1]). However, this method is inapplicable to non-polynomial systems.

In 1970s in [2] L. A. Aizenberg proposed a new elimination method based on the multidimensional
residue theory, namely on the formulas of multidimensional logarithmic residue and Grothendieck residue.
The basic idea of the method was to find certain residue integrals connected to the power sums of roots of a
given system of equations without finding the roots themselves. Its further developments were implemented
in [3], [13], and [6].

In applied problems of chemical kinetics, systems of transcendental equations, namely, systems con-
sisting of exponential polynomials [5], [8] (Zeldovich–Semenov model, etc.), arise as well. However, the
elimination method developed in [3], [13], [6] can not be applied to this kind of systems. One of the obsta-
cles is the fact that the set of roots of a system of n transcendental equations in n variables is, in general,
infinite. Moreover, multi-Newton sums (with powers in Nn) of the roots of such systems lead usually to
divergent series.

In the present work we compute residue integrals for a specific kind of systems of n transcendental
equations, and deduce from this computation (provided such series converge) the values of the sums of
multi-Newton series consisting of the roots of such systems which do not belong to coordinate subspaces.
In other words, we generalize the statements from [12], [7], [9], [11], [10] to a wider class of systems of
transcendental equations.

We consider a system of functions f1(z), . . . , fn(z) of the form

fi(z1, . . . , zn) = qi(z1, . . . , zn) +Qi(z1, . . . , zn), i = 1, . . . , n,

where
qi(z1, . . . , zn) = (1− ai1z1)mi1 · . . . · (1− ainzn)min , i = 1, . . . , n,

mij are positive integers, aij ∈ C \ {0}, and Qi(z) are entire functions for i = 1, . . . , n.
Let J = (j1, . . . , jn) be a multi-index where (j1 . . . jn) is a permutation of (1 . . . n), and let aJ =

(a1j1 , . . . , anjn).
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The system
qi(z) = 0, i = 1, . . . , n (1)

has n! isolated roots in Cn. The roots of (1) are multi-indices

ãJ =
(
1/a1j1 , . . . , 1/anjn

)
.

By Γq we denote the cycle

Γq = {z ∈ Cn : |qi(z)| = ri, ri > 0, i = 1, . . . , n}.

Consider the system of equations

Fi(z, t) = qi(z) + t ·Qi(z) = 0, i = 1, . . . , n, (2)

which depends on a real parameter t > 0.
Let r1 > 0, . . . , rn > 0 be fixed real numbers. Then, for sufficiently small t > 0, the inequalities

∣∣qi(z)
∣∣ >

∣∣t ·Qi(z)
∣∣, i = 1, . . . , n

hold on the cycles Γq which is due to compactness of Γq.
By Jγ(t) we denote the residue integral

Jγ(t) =
1

(2π
√
−1)n

∫

Γq

1

zγ+I
· dF
F

=
1

(2π
√
−1)n

∫

Γq

1

zγ1+1
1 · . . . · zγn+1

n

· dF1

F1
∧ . . . ∧ dFn

Fn
,

where γ = (γ1, . . . γn) is a multi-index and I = (1, . . . , 1).
In order to formulate the main result, we introduce the following notations.
Denote by ∆ = ∆(t) the Jacobian of the system F1(z, t), . . . , Fn(z, t) with respect to z1, . . . , zn. Let

(−1)s(J) be the sign of the permutation J , and α = (α1, . . . , αn) be a multi-index of length n. By qα+I(J)
we denote qα1+1

1 [j1] · . . . · qαn+1
n [jn], where qs[js] is a product of all (1−aj1z1)mj1 · . . . · (1−ajnzn)mjn except

(1 − asjszs)msjs . Also by β(α, J) we denote the vector
(
m1j1(αj1 + 1) − 1, . . . ,mnjn(αjn + 1) − 1

)
, and

β(α, J)! =
∏
p

(
mpjp(αjp + 1)− 1

)
!. Finally, aβ+I

j denotes a
m1j1

(αj1
+1)

1j1
· . . . · amnjn (αjn+1)

njn
, and

∂||β(α(J)||

∂zβ(α,J)
=

∂m1j1
(αj1

+1)−1+...+mnjn (αjn+1)−1

∂z
m1j1

(αj1
+1)−1

1 . . . ∂z
mnjn (αjn+1)−1
n

.

Theorem 1 Under the assumptions made for the functions Fi defined by (2) the following formulas for
Jγ(t) as convergent (for sufficiently small t) series are valid:

Jγ(t) =
∑

J

∑

α

(−t)||α||+‖β(α,J)|+n (−1)s(J)

β(α, J)! · aβ+I
J

· ∂
||β(α(J)||

∂zβ(α,J)

[
∆(t)

zγ1+1
1 · . . . · zγn+1

n

· Qα

qα+I(J)

]

z=ãJ

,

where the summation is over all the multi-indices J .

These residue integrals are closely connected to the power sums of roots of the corresponding systems
of equations and therefore are essential for the development of elimination methods.
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