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Abstract 16 

The study investigates toxic effects of the fungicide tebuconazole (TEB) on Fusarium-infected wheat (Triticum 17 

aestivum) plants based on the morphological characteristics of root apices and changes in integrated parameters of 18 

redox homeostasis, including the contents of free proline and products of peroxidation of proteins (carbonylated 19 

proteins, CP) and lipids (malondialdehyde, MDA) in roots. In two-day-old wheat sprouts infected by Fusarium 20 

graminearum, the levels of proline, CP, and border cells of root apices are higher than in roots of uninfected sprouts by 21 

a factor of 1.4, 8.0, and 3, respectively. The triazole fungicide tebuconazole (TEB) at concentrations of 0.01, 0.10, and 22 

1.00 µg ml-1 of medium causes a dose-dependent decrease in the number of border cells. The study of the effects of 23 

TEB and fusarium infection on wheat plants in a 30-day experiment shows that the effect of the fungicide TEB on 24 

redox homeostasis in wheat roots varies depending on the plant growth stage and is significantly different in ecosystems 25 

with soil and plants infected by Fusarium phytopathogens. The study of the morphology of root apices shows that toxic 26 

effects of TEB and fusarium infection are manifested in destructive changes in root apices and degradation of the root 27 

tip mantle.  28 

Key words: Fusarium, tebuconazole, free proline, carbonylated proteins, malondialdehyde, border cells  29 
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1. Introduction 45 

Fusarium infection is one of the most common diseases affecting cereal crops. This disease is caused by soil 46 

pathogenic fungi of the genus Fusarium. Crop losses due to fusarium infection in case of maize, wheat, and rice 47 

affected by fusarium infection are economically important, as they are major sources of plant protein and their yields 48 

constitute over 55% of the total yield of cereal crops. The crop losses may range between 5 and 30%. Many Fusarium 49 

species produce mycotoxins: deoxynivalenol (vomitoxin), zearalenone, and T-2 mycotoxin (Binder et al., 2007). 50 

Fusarium infection may damage the ear and result in reduced grain yield. Mycotoxin-contaminated grain is unsuitable 51 

and even unsafe food and feed. Application of fungicides decreases the incidence of fusarium infection and reduces the 52 

levels of mycotoxins in commercial grain (Schmale and Bergstrom, 2003; SANCO, 2013). Triazole fungicides now 53 

constitute 30% of the marketed fungicides. One of them is tebuconazole (TEB). TEB is an effective multifunctional 54 

systemic fungicide used to protect a number of cereal crops. TEB rapidly penetrates into the plants through both their 55 

vegetative organs and roots. However, triazole fungicides, including TEB, are phytotoxic (Ahemad and Khan, 2012a, 56 

b). The mode of action of the triazole group is to suppress ergosterol biosynthesis, preventing the formation of cell 57 

membranes, causing the death of pathogens (Lamb et al., 2001; Hartwig et al., 2012). Thus, Fusarium-infected crops 58 

treated with triazole fungicides are adversely affected by two factors: Fusarium infection and fungicide.  59 

At the systemic level, toxic effects of triazoles lead to hormonal imbalance (Yang et al., 2014), nitrogen 60 

imbalance, lower seed germination rates, disorders of root growth and development (Serra et al., 2013, 2015), and the 61 

appearance of chromosomal abnormalities (Wandscheer et al., 2017). The fungal sterol-14-α-demethylase – the effector 62 

target of triazole fungicides in cells of mycopathogens – belongs to the evolutionarily ancient cytochrome-450(CYP)-63 

superfamily, which has also been detected in plants and animals (Lamb et al., 2001). Phytotoxicity (and toxicity of 64 

triazole fungicides for humans and animals) has been associated with the effect of fungicides on the activity of sterol 65 

demethylases and disturbance of the sterol dependent signaling (Hartwig et al., 2012). At the systemic level, sterol 66 

dependent signaling determines the activity of such processes as proliferation, differentiation, and production of 67 

reactive oxygen species (Wassmann et al., 2001; Park et al., 2008). 68 

The cause-effect chain “inhibition of sterol demethylases → sterol dependent signaling deficiency → inhibition 69 

of generation of reactive oxygen species” can be used as the basis for evaluating myco- and phytotoxicity of herbicides 70 

and for assessing plant resistance to mycopathogens. Regulated hyperproduction of reactive oxygen species (ROS) in 71 

response to pathogen invasion is one of the major protective responses of plants. In addition to being highly toxic, ROS 72 

trigger specific signaling systems, which cause changes in gene expression patterns and induce development of host 73 

plant resistance or sensitivity to pathogens (Frederickson and Loake, 2014; Swarupa et al., 2014).  74 
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Over the course of evolution, pathogenic fungi have developed scavenging systems that allow them to 75 

neutralize cytotoxic effects of the oxidative burst of the host plant. Pathogenic fungi use ROS generated in cells of their 76 

host plant to regulate expression of their own genes that control cell differentiation and hyphal growth in plant tissues 77 

(Takemoto et al., 2007). Thus, ROS signaling simultaneously determines 1) activation of plant defense response against 78 

invasion of mycopathogens, 2) stimulation of growth and differentiation of the mycopathogen in plant tissues after 79 

invasion, and 3) myco- and phytotoxicity of fungicides. In order to produce consistently high crop yields, ROS-80 

dependent readjustment of these three systems should lead to the most complete suppression of mycoinfection with the 81 

minimal phytotoxic effects.  82 

In addition to peroxidation products, there is another important indicator of the state of the plant root system: a 83 

free amino acid proline, which is an integrated indicator of the activity of root antioxidant and defense systems. Proline 84 

is a low-molecular-weight scavenger of free radicals (Signorelli et al., 2014), which also increases gene expression in 85 

antioxidant enzymes (de Carvalho et al., 2013). Activation of the synthesis of proteins with high proline contents is an 86 

important factor in the functioning of mechanisms of root defense against pathogen invasion (Cecchini et al., 2011; 87 

Plancot et al., 2013; Qamar et al., 2015). 88 

Pathogen invasion occurs through the plant roots, and, therefore, the state of the roots of infected plants can be 89 

characterized by a system of border cells (Berrocal-Lobo and Molina, 2008). Border cells constitute a specific 90 

population of metabolically active cells localized in the root apex and playing a fundamental role in root interactions 91 

with symbiotic and pathogenic organisms of the rhizosphere (Gunawardena and Hawes, 2002; Bais et al., 2006; Wen et 92 

al., 2007, 2009; Cannesan et al., 2011, 2012). The gel mantle is an excretory product of border cells, which encloses 93 

them (Cannesan et al., 2011, 2012; Hawes, 2012). Invasion of root pathogens elicits production of border cells and 94 

increases their secretory activity – as a defense response (Plancot et al., 2013). Thus, the number of border cells can be 95 

regarded as an integrated indicator of the activity of defense systems in pathogen-infected roots.  96 

The present study investigated toxic effects of the fungicide tebuconazole in Fusarium-infected wheat 97 

(Triticum aestivum) stands by examining the state of the root apices and changes in integrated parameters of redox 98 

homeostasis, including free proline content and contents of protein and lipid peroxidation in roots. 99 

2. Materials and methods 100 

2.1. Materials 101 

Fungicide: tebuconazole (TEB) is a multifunctional systemic fungicide, which is effective against a very wide 102 

range of fungal diseases of cereal crops. The chemical formula of TEB is C16H22ClN3O. Molar mass (g mol-1): 307.82. 103 

Solubility in water: 36 mg L-1 at 20°C. Melting point is 104.7°C. The substance is not hydrolyzed at pH of between 4 104 

and 9; it is stable upon exposure to light and elevated temperature. The time of degradation in soil is 177 days. A 105 
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commercial formulation Raxil Ultra (Bayer Crop Science, Russia), with tebuconazole (TEB) as the active ingredient 106 

was used. 107 

Wheat: experiments were performed in communities of soft spring wheat cv. Altaiskaya 70. 108 

2.2. Wheat cultivation 109 

Fusarium-infected and uninfected wheat seeds were used. Toxic effects of tebuconazole and fusarium infection 110 

were studied in experiments with two-week-old wheat sprouts and in the long-duration experiment with fusarium-111 

infected wheat stands in the laboratory soil system. Wheat sprouts were grown as follows: the seeds were washed in 112 

running water for 5-6 h and soaked in distilled water for 24 h at room temperature. Germinated seeds were placed into 113 

Petri dishes containing 7 ml of distilled water, 50 seeds per dish. Tebuconazole solutions of concentrations 0.01, 0.10, 114 

and 1.00 µg.ml-1 were added to the treatments – 7 ml per dish. The seeds were sprouted at room temperature under 115 

continuous light.  116 

In the other experiment, wheat plants were grown in laboratory soil microecosystems. Soil microecosystems 117 

were prepared as follows. The agrogenically-transformed soil (collected at the village of Minino, the Krasnoyarsk 118 

Territory, Siberia, Russia) was placed into 500-cm3 plastic containers (500 g soil per container). Wheat seeds were 119 

sown into the soil, at a planting density of 100.45 g seeds per 1 m2. Plants were grown in a Conviron A1000 growth 120 

chamber (Canada) for 30 days under stable conditions: at an irradiation of 100-300 µmol. m-2 s-1, under the 12L:12D 121 

photoperiod, at a temperature of 18-25°C and humidity of 65%; conditions of the experiment and soil ecosystems are 122 

described in detail elsewhere (Volova et al., 2017). In this experiment, we used infected wheat seeds. The experiment 123 

consisted of two treatments and control: in control, infected wheat seeds were sown into the soil, with no fungicide 124 

applied; in Treatment 1, seeds and the commercial formulation Raxil were buried in soil simultaneously, with Raxil 125 

applied at a concentration corresponding to 3 µg TEB/g soil; and in Treatment 2, seeds were soaked in a Raxil solution 126 

for 10 min before sowing, with no more TEB added to the soil. 127 

2.3. A biochemical study 128 

Toxic effects of TEB were evaluated by measuring changes in the integrated parameters of redox homeostasis: 129 

the contents of proline, malondialdehyde, and carbonylated proteins in roots of two-day-old wheat sprouts and wheat 130 

plants grown in soil-based systems – at Days 10, 20, and 30 of the experiment. Root samples were prepared by cutting 131 

1-cm-long terminal portions of the roots with apices. Then, the root biomass was homogenized in a 0.05 M Tris-HCl 132 

buffer solution, pH=7.4, in a hand-held homogenizer, at T=4°C. To remove coarse debris, the homogenates were 133 

centrifuged at 5000 g, for 45 min, at T=4°C. The supernatant fluid was collected and used to determine the contents of 134 

carbonylated proteins – by the method of Carty et al. (Carty et al., 2000), malondialdehyde – by the method of Bailly et 135 
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al. (Baily et al., 1996), and proline – by the method of Bates et al. (Bates et al., 1973). The contents of carbonylated 136 

proteins, malondialdehyde, and proline were calculated per 1 mg of root homogenate protein. 137 

2.4. A morphological study of root apices 138 

Prior to microscopic analysis, root apices were fixed in 2.5% glutaric aldehyde in 0.1 M phosphate buffer, 139 

pH=7.2. The root apices were rinsed in distilled water to remove the fixative and stained with 0.01% methylene blue. 140 

Using a light microscope, we counted the number of free border cells that had detached from the surface of the root and 141 

measured the size of the gel mantle (whose color had changed to blue due to the presence of a large amount of 142 

polysaccharides). Sixty to seventy root apices were analyzed in each treatment and in the control. 143 

2.5. A study of the contamination of seeds and soil by phytopathogenic fungi  144 

Intrinsic contamination of wheat seeds with phytopathogens was determined by sprouting the seeds in Petri 145 

dishes on sterile nutrient medium MEA (Russian Federal Standard 12044-93). In the experiment with wheat stands, the 146 

number of phytopathogenic fungi, including F. moniliforme, in soil was counted at Days 10, 20, and 30 of the 147 

experiment. Counting of the total microscopic fungi was performed by plating soil suspension onto Petri dishes with 148 

malt extract agar, which was supplemented with chloramphenicol (100 µg L-1 of the medium) to suppress cell growth. 149 

All platings were performed in triplicate from 102-105 dilutions of soil suspension. The dishes were incubated at a 150 

temperature of 25°C for 7-10 days. Microscopic analysis of the colonies was done using an AxioStar microscope (Carl 151 

Zeiss). Microscopic fungi were identified by their cultural and morphological properties, with identification guides 152 

(Sutton et al., 2001; Watanabe, 2002). 153 

2.6. Statistical analysis 154 

Statistical analysis of results was performed using the standard software package of Microsoft Excel, 155 

STATISTICA 8. Arithmetic means and standard deviations were determined using Student’s t test. Results are given as 156 

Х±m. 157 

3. Results and Discussion 158 

3.1. The effect of phytopathogenic infection on wheat seed germination and biochemical parameters and 159 

morphology of roots of sprouts  160 

Phytosanitary analysis of wheat seeds grown on the nutrient medium showed the presence of infections caused 161 

by the fungi of the genera Fusarium Link, Alternaria Nees, and Bipolaris Shoem. Wheat seeds infected by plant 162 

pathogens constituted 9.5±1.2%, 5.6±0.2% of which (over 50%) were infected by Fusarium species. Thus, natural 163 

infections of the seeds were caused not only by the predominant Fusarium species, but also by the phytopathogenic 164 

microscopic fungi that developed when the seeds containing internal infection were germinated. 165 
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Germination rate of uninfected Triticum aestivum seeds reached 90±3%. The roots of two-day-old sprouts 166 

contained 1.03±0.09 nM carbonylated proteins (CP)/mg protein, 10.59±0.26 µg proline/mg protein, and 0.300±0.035 167 

nM malondialdehyde (MDA)/mg protein. MDA, as a product of peroxidation of membrane lipids, can be involved in 168 

regulation of activity of cell membranes (via rearranging of the lipid bilayer and changing of the activity of membrane-169 

bound proteins) (Ansari et al., 2015; Antosik et al., 2015). The levels of CP, MDA, and proline revealed in the 170 

experiment characterize redox homeostasis in normally developing roots of uninfected Triticum aestivum sprouts.  171 

Germination rate of infected wheat seeds was lower (77±7%). The CP content in roots was 8 times higher than 172 

in the roots of uninfected sprouts (Fig. 1). The level of proline in the roots of infected sprouts was 1.4 times higher than 173 

in the roots of uninfected sprouts. These results are consistent with the notion of pathogen invasion inducing activation 174 

of the system for production of free radicals as a major defense mechanism of a plant cell exposed to biotic and abiotic 175 

stresses (Sham et al., 2014; Chanclud and Morel, 2016). An increase in the activity of protein peroxidation results from 176 

the regulated activation of generation of ROS in plant tissues as a response to invasion of pathogenic fungi; it is 177 

necessary for inducing ROS-dependent signaling of defense systems (Frederickson and Loake, 2014; Swarupa et al., 178 

2014). The level of MDA in the roots of infected sprouts was not significantly different from the MDA level in 179 

uninfected roots (Fig. 1). That may be attributed to the involvement of MDA in oxidative modification of proteins 180 

(Augustyniak et al., 2015). Thus, proportions of CP, MDA, and proline in roots of infected sprouts differed from those 181 

in roots of uninfected sprouts, suggesting a transition of the redox systems to another level of homeostasis. 182 

In the experiment with the fungicide tebuconazole (TEB) added to the culture medium at concentrations of 183 

0.01, 0.10, and 1.00 µg.ml-1, germination rate of the infected wheat seeds was similar to that of the infected seeds in the 184 

experiment without TEB addition (75±8%). None of the TEB concentrations tested in this study affected CP, MDA, and 185 

proline levels in the roots of infected sprouts (Table). 186 

Morphological dissimilarities between the root apices of uninfected and infected sprouts, with pronounced 187 

differences in the contents of carbonylated proteins, are shown in Figure 2. The root apex of an uninfected sprout is 188 

ensheathed in a small gel mantle containing border cells (BC) that have detached from the surface of the apex (Fig. 2a); 189 

there are 15±3 border cells/apex. The infected sprouts contain considerably more BC (47±7 cells/apex). Thus, ROS 190 

signaling may be involved in activation of BC production in response to invasion of pathogenic fungi. As the number of 191 

BC in the root apices of infected sprouts increased, the size of the gel mantle increased, too (Fig. 2b, c, d). The 192 

scattering of the border cells around the root apex corresponds to the size of the gel mantle. In the root apices of 193 

infected sprouts, the border cells inside the gel mantle may form large aggregates (Fig. 2b), and layers of border cells 194 

may peel off the lateral surface of the root apex (Fig. 2d).  195 
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Formation of the gel mantle is caused by activation of the excretory function of border cells, which defends the 196 

root apex against pathogen invasion (the root apex is the most “protected” part of the root). The effectiveness of defense 197 

is determined by not only an increase in the size of the gel mantle but also changes in its composition (Baetz and 198 

Martinoia, 2014). In infected roots, border cells secrete xylogalacturonans, which are resistant to the effects of 199 

pectolytic enzymes of pathogenic fungi, and arabinogalactan proteins (Cannesan et al., 2011, 2012). 200 

Supplementation of the culture medium with the fungicide tebuconazole caused a dose-dependent decrease in 201 

the number of border cells in the root apex (Fig. 3a). At TEB concentrations of 0.01 and 0.10 µg.ml-1, the number of 202 

border cells decreased by a factor of 2, and at TEB concentration of 1.00 µg.ml-1, the number of BC dropped by a factor 203 

of 4.7 compared with the test where no TEB was applied to the soil.  204 

As the BC number in the root apex decreased, the gel mantle grew smaller, too. At the highest tebuconazole 205 

concentration in the medium (1.00 µg.ml-1), the majority of root apices were “bare”, with no noticeable gel mantle and 206 

free BC (Fig. 3b). The uninfected sprouts had no “bare” root apices. The “bareness” of the apices could be caused by 207 

fungicide phytotoxicity. As TEB diffuses through the gel mantle into the root apex, it may inhibit BC production 208 

through the sterol dependent signaling, which is involved in regulation of cell proliferation activity (Roy et al., 2011). 209 

The dramatic decrease in the number of free BC – major producers of molecular components of the gel mantle – results 210 

in the occurrence of “bare” apices. This most probably weakens the defense systems of plant tissues subjected to 211 

invasion of phytopathogens.  212 

Thus, in contrast to fusarium infection, the fungicide tebuconazole at concentrations used in the experiments 213 

did not affect the content of carbonylated proteins in the roots of infected sprouts but caused a dramatic decrease in the 214 

number of border cells and the size of the gel mantle, which eventually disappeared completely. These results, as well 215 

as detection of products of peroxidation of proteins and lipids, suggest that border cell population can be regarded as 216 

one of the effector targets of the fungicide tebuconazole, which can be used to evaluate the phytotoxicity of fungicides.  217 

3.2. Morpho-biochemical parameters of the root system of Fusarium-infected wheat grown in laboratory 218 

experiments with variously applied tebuconazole 219 

In this experiment, we used wheat seeds initially infected by phytopathogenic fungi (as in the previous 220 

experiment). In addition to that, analysis of the microbial composition of soil showed that microscopic fungi were 221 

mainly represented by Penicillium species (58-65%); fungi of the genera Fusarium, Trichoderma, and Aspergillus 222 

constituted 8-11% of the fungal population in soil samples. Fusarium species isolated from the initial soil samples were 223 

represented by F. solani and F. lateritium. No F. moniliforme was detected in the initial microbial community. 224 

Fusarium species in the initial soil constituted 3.1103 CFU∙g-1. Over the course of the experiment, Fusarium counts in 225 
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the soil supplemented with tebuconazole decreased by a factor of 1.7 compared with their counts in the initial soil and 226 

by a factor of 2.3 compared to the control (soil with no TEB supplementation). 227 

Figure 4 shows the contents of free proline and products of peroxidation of proteins (carbonylated proteins, 228 

CP) and lipids (malondialdehyde, MDA) in wheat roots at different time points of the 30-day experiment.  229 

At Day 10, the contents of proline, MDA, and CP in the control did not differ significantly between the three 230 

groups, reaching 0.189-0.232 10-6 M.mg-1 protein, 0.265-0.41 10-9 M.mg-1 protein, 0.586-0.78 10-8 M.mg-1 protein, 231 

respectively; these values were 2-3 times higher than those in the experiment with uninfected seeds. Thus, at that time 232 

point (Day 10), application of Raxil to soil and pretreatment of the seeds did not produce any significant effect on the 233 

contents of proline, CP, and MDA in wheat roots as compared to the control (Fig. 4a). The proportions of proline, 234 

MDA, and CP revealed in the experiment characterize the level of redox homeostasis resulting from the interaction 235 

between the host plant and pathogen under the experimental conditions. 236 

At Day 20, the contents of proline and MDA in roots of the control plants increased dramatically (by a factor 237 

of 19 and by a factor of 8.5) compared to Day 10 while CP decreased slightly (by a factor of 1.8) (Fig. 4b). These 238 

changes may be associated with the tillering stage – underground branching of the stem and development of the 239 

secondary root system, which occurred between Days 10 and 20 of wheat plant growth. As root biomass grew rapidly, 240 

the rates of cell proliferation and cell wall synthesis increased, requiring considerable energy expenditure. The reason 241 

for the dramatic increase in proline content is that proline is a proteinogenic amino acid involved in synthesis of 242 

arabinogalactans – glycoproteins forming cell wall matrix. Arabinogalactans are also excreted to the rhizosphere (Gong 243 

et al., 2012; Nguema-Ona et al., 2013; Kishor et al., 2015). Since large amounts of proline are used in biogenesis of cell 244 

walls and synthesis of root exudates, it is synthesized in larger quantities during rapid growth of root biomass. In 245 

addition, proline metabolism in mitochondria is accompanied by synthesis of FADH2 and NADH (Deuschle et al., 246 

2001), which supply electrons to the mitochondrial respiratory chain. Oxidative phosphorylation causes generation of 247 

ATP molecules. The high demand of the rapidly growing root system for energy equivalents during the tillering stage 248 

causes a sharp rise in proline content in wheat roots. On the other hand, the high level of proline and active oxidation of 249 

proline in mitochondria increase not only the activity of oxidative phosphorylation but also production of free radicals, 250 

which is related to this process (Kishor et al., 2005). The increase in the MDA level in wheat roots at Day 20 may be 251 

caused by the high rate of oxidative phosphorylation. 252 

In the treatments with Raxil both applied to the soil and used to pretreat seeds, at Day 20, the content of proline 253 

in wheat roots also increased dramatically but to levels somewhat lower than those in the control. MDA contents in 254 

these treatments and in the control increased to similar levels. However, the number of the F. graminearum cells in soil 255 

in the treatment with tebuconazole supplementation was lower than in the control by a factor of almost two. These 256 
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results suggest targeted effects of the fungicide on phytopathogens and lightening of the load on the defense system of 257 

wheat, including changes in the level of redox homeostasis of the roots. 258 

At Day 30, proline content in roots of the control wheat plants decreased considerably (by a factor of 16 259 

relative to Day 20) while MDA and CP contents did not change significantly (Fig. 4). In the treatment with Raxil 260 

applied to the soil, proline, MDA, and CP contents in the roots did not differ significantly from the control, suggesting 261 

that phytotoxic effects of the fungicide were softened as soil contamination with phytopathogens decreased. However, 262 

in the treatment with seeds pretreated with Raxil, proline, MDA, and CP contents in the roots were higher than in the 263 

control by a factor of 2.2, 2.0, and 1.7, respectively. That was indicative of activation of free radical processes and 264 

phytotoxic stress, as the fungicidal effect of TEB used to pretreat the seeds before sowing must have been exhausted by 265 

Day 30.  266 

This study showed that the effect of the fungicide TEB on redox homeostasis in wheat roots varied depending 267 

on the plant growth stage and was significantly different in ecosystems with soil and plants infected by Fusarium 268 

phytopathogens. At Day 20 of plant growth, during the tillering stage, tebuconazole produced the strongest phytotoxic 269 

effect on wheat plants.  270 

Morphological properties of wheat root apices in ecosystems invaded by phytopathogens, at different levels of 271 

the fungicide, are shown in Figure 5. As rhizosphere population of border cells was lost when roots were pulled out of 272 

the soil and then rinsed in water, only root apices were analyzed. Microscopic analysis of root apices did not show any 273 

age-related morphological dissimilarities between the apices at different time points of the experiment (at Days 10, 20, 274 

and 30); at the same time, morphological characteristics of root apices differed considerably between experimental 275 

groups. Roots of the wheat plants grown from the seeds initially contaminated by Fusarium had either undamaged 276 

apices (Fig. 5a) or apices with loosened cells at the tip (Fig. 5b). Most of the wheat plants grown in the soil 277 

supplemented with the fungicide Raxil had root apices with root tip mantles showing obvious signs of degradation (Fig. 278 

5d). We assumed that the fungicide TEB had a strong effect on the steroid metabolism of the host plant, functions of 279 

cell walls (Schrick et al., 2004; Höfte, 2015), and hormonal homeostasis (Lin et al., 2015). Cell wall damage, membrane 280 

system dysfunction, and disorders of hormonal homeostasis may cause a decrease in the activity of plant defense 281 

systems and help the pathogens invade the root system.  Damage of the root ultrastructure of Pennisetum americanum 282 

seedlings treated with atrazine was shown by Jiang et al. (Jiang et al., 2017). 283 

Pretreatment of the seeds with the fungicide also caused development of apices with clear signs of degradation 284 

of the root tip mantle. The lateral surfaces of the root tip mantle were most degraded (Fig. 5c, shown by arrows). Pre-285 

emergence treatment of seeds affects the functional systems of the germinating seeds more than fungicide application to 286 

soil. Penetrating through the seed coating, the fungicide can induce disorders of sterol metabolism at very early 287 



10 
 

germination stages. Sterol metabolism determines morphogenesis processes in early stages of development of the sprout 288 

(Closa et al., 52; Peng et al., 2015). Disorders of the sterol-dependent stages of morphogenesis may cause various 289 

structural and functional defects in the developing root. Thus, morphology of root apices of wheat plants reflects the 290 

effects of stresses caused by both the phytopathogen and the fungicide. 291 

Results of biochemical and morphological investigations of wheat root apices suggest that these parameters 292 

can be used as endpoints to evaluate toxic effects of the fungicide tebuconazole. Another finding is that the effect of 293 

TEB on redox homeostasis in wheat roots depends on the plant growth stage. 294 

4. Conclusion 295 

We studied toxic effects of the fungicide tebuconazole and fusarium infection on wheat roots in experiments 296 

with two-day-old wheat sprouts and 30-day experiments with wheat stands based on changes in the morphology of root 297 

apices and integrated parameters of redox homeostasis: the contents of proline and products of peroxidation of proteins 298 

(carbonylated proteins) and lipids (malondialdehyde) in roots. In experiments with two-day-old wheat sprouts infected 299 

by Fusarium, the content of carbonylated proteins in the roots dramatically increased, which was accompanied by an 300 

increase in the number of border cells and the size of the gel mantle of the root apex (compared to uninfected sprouts). 301 

The fungicide tebuconazole did not influence the content of carbonylated proteins in the roots of infected sprouts at the 302 

concentrations studied, but led to a sharp decrease in the number of border cells  and the size of the gel mantle (until 303 

complete disappearance) in the root. The study of the effects of TEB and fusarium infection on wheat plants in a 30-day 304 

experiment showed that the effect of the fungicide TEB on redox homeostasis in wheat roots varied depending on the 305 

plant growth stage and was significantly different in ecosystems with plants infected by fusarium infection. Results of 306 

biochemical and morphological investigations of wheat root apices suggest that these parameters can be used for 307 

evaluation of biological action of fusarium infection and fungicides.  308 
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Table Contents of carbonylated proteins (CP), malondialdehyde (MDA), and proline in roots of two-day-old Т. 472 

aestivum sprouts infected by F. graminearum.  473 

 474 

Content in roots 
Fungicide concentration in the medium, µg.ml-1 

 
0 0.01 0.1 1 

CP (nM.mg-1 protein) 8.31±1.22 8.98±0.96 8.91±1.10 9.05±1.53 

MDA (nM.mg-1 protein) 0.261±0.031 0.284±0.024 0.281±0.028 0.297±0.033 

Proline (µg.mg-1 protein) 15.05±1.85 15.61±1.01 16.82±1.65 15.51±1.32 
 475 
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Figure Legends 525 

Fig. 1 The contents of carbonylated proteins (nM.mg-1 protein), malondialdehyde (nM.mg-1 protein), and 526 

proline (µg.mg-1 protein) in roots of two-day-old Т. aestivum sprouts: along the X-axis: 1 – uninfected sprouts; 2 – 527 

sprouts infected by F. graminearum. Asterisks denote values of 2 significantly different from values of 1, p>0.05.  528 

Fig. 2 Morphology of the root apices of two-day-old wheat (T. aestivum) sprouts: a – the root apex of 529 

uninfected wheat sprouts; b, c, d – root apices of F. graminearum-infected sprouts  530 

Fig. 3 The effect of tebuconazole concentration on the number of border cells (BC) (a) and “bare” apices (b) in 531 

the root apices of two-day-old wheat (T. аestivum) sprouts infected with F. graminearum. Asterisks denote values 532 

significantly different from values of the test with no tebuconazole added to the medium, p>0.05.  533 

Fig. 4 The contents of proline (10-6 M/mg protein), malondialdehyde (MDA 10-9 M.mg-1 protein), and 534 

carbonylated proteins (CP, 10-8 M.mg-1 protein) in roots of wheat Т. aestivum plants infected with F. graminearum at 535 

different days of the experiment; 1 – with no fungicide application to soil (control); 2 – with Raxil Ultra added to the 536 

soil; 3 – with seeds pretreated with Raxil Ultra 537 

Fig. 5 Morphology of root apices of Fusarium-infected wheat plants: a, b – control, infected seeds, with no 538 

TEB applied to the soil: a – healthy apex and b – damaged apex; c – seeds pretreated with Raxil Ultra before sowing – 539 

insignificant degradation of the mantle on the tip of the apex and destroyed lateral surface (shown by arrows); d – soil 540 

application of Raxil Ultra – damaged apices with loosely packed cells at the tip 541 

 542 


