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Abstract. We studied the structuredness in total transcriptome of Si-
berian larch. To do that, the contigs from total transcriptome has been
labeled with the reads comprising the tissue specific transcriptomes, and
the distribution of the contigs from the total transcriptome has been
developed with respect to the mutual entropy of the frequencies of occur-
rence of reads from tissue specific transcriptomes. It was found that a
number of contigs contain comparable amounts of reads from different
tissues, so the chimeric transcripts to be extremely abundant. On the
contrary, the transcripts with high tissue specificity do not yield a reli-
able clustering revealing the tissue specificity. This fact makes usage of
total transcriptome for the purposes of differential expression arguable.
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Clustering

1 Introduction

Transcriptome is a set of all the symbol sequences from ℵ = {A,C,G,T} alphabet
corresponding to the entire ensemble of RNA moleculae (of mRNA moleculae)
found in a cell (or in a sample). In a genome deciphering, transcriptome sequenc-
ing, assembling and annotation goes ahead. The point is that one may not be
sure a transcriptome is stable, in terms of the composition of the sequences men-
tioned above. Indeed, the set definitely depends on a tissue, on a development
stage, on a life cycle stage, and many other factors.

Stipulating a stability of a genome in an organism, one may expect that
various tissues exhibit different expression of genes; this is a common place for
multicellular organisms, and may take place in unicellular ones, if different stages
of a life cycle are considered. Such difference is claimed differential expression.
This latter is essential in a study of various physiological processes run in an
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organism, and may tell a researcher a lot concerning some peculiarities in func-
tioning of biochemical and genetic networks.

Total transcriptome is the ensemble of all RNA (or mRNA) sequences gath-
ered regardless their origin, through a bulky source sampled from an organism,
or a tissue, etc. Since some genes in specific tissues, or cells may be suppressed
or yield lowered expression due to some other reasons, one may expect that total
transcriptome make a useful tool for assembling of all the genes observed in a
sample, if assembled totally. Here we checked this idea on the total transcriptome
of Larix sibirica Ledeb.

So, the goal of the study was to compare the efficiency of a “help and sup-
port” in specific transcriptome assembling, through the implementation of the
total one. To do that, we have sequenced, filtered and cleaned the reads, for
four specific tissues: needles, cambium, shoot, and seedling. These four specific
transcriptome have been assembled; simultaneously, a total set of reads has been
obtained through merging of all four specific ensembles into a single one. Then
the assembling of the (total) transcriptome has been carried out. Finally, we tried
to compare the total transcriptome with four specific ones to see whether some
improvement in assembling “bottle neck” transcripts in specific transcriptomes
takes place, or not; speaking in advance, we found greater losses than profits, in
such approach.

2 Materials and Methods

Sequencing of L. sibirica Ledeb. total transcriptome was carried out in Laboura-
tory of forest genomics of Siberian federal university. Four groups of tissue spe-
cific read ensembles have been obtained separately: needles, cambium, shoot and
seedling. Also, later we merged all the reads ensembles into a single one, and
assembled the total transcriptome.

Real transcriptomes (both tissue specific, and for the total one) comprise
the contigs of various lengths. Some figures characterizing the specific (as well,
as the total one) transcriptomes are shown in Table 1; the table presents the
figures for the longest contig (Lmax), average length of transcripts (〈L〉), and
total abundance of contigs in a transcriptome (M). All transcripts were longer
200 b. p.

For the proposes of the clustering and analysis of transcriptomes, we selected
the subsets of contigs, in each specific transcriptome (including the total one).
We took into the subsets sufficiently long contigs, only. The idea standing behind
such selection is following: shorter contigs would yield rather abundant subsets
of points (in 64-dimensional space) that are in local quasi-equilibrium: in other
words, too many short contigs would have zero frequency of some triplets. More-
over, a greater number of triplets would be presented in a single copy, in a
number of such shorter contigs, thus yielding a kind of quasi-equilibrium over
the subspace determined by these triplets.

To avoid the above mentioned effect, we have eliminated shorter contigs.
We comprise sufficiently long contigs, to carry out clustering and visualization
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of the data. Table 1 shows the figures used to select the contigs involved into
analysis: Ld is the cut-off length of the contigs, in each specific transcriptome.
That former means that we selected the contigs longer than Ld; Md figures show
the abundances of the sets of selected longer contigs.

To gain the total transcriptome, the reads ensembles obtained for each spe-
cific tissue have been merged into a single ensemble, and assembling has been car-
ried out [1,2]. Common idea in total transcriptome implementation is to enforce
the coverage level of the genes expressed in various tissues, thus improving assem-
bling of de novo sequence. Not discussing here an efficiency (quite arguable,
frankly speaking), we just stress that a total transcriptome still is a good first
step, in any genome deciphering being a kind of mean filed approximation.

2.1 Frequency Dictionaries

To analyze statistical properties of transcriptomes, we used a conversion of them
into frequency dictionaries; in particular, we focused on triplet frequency dictio-
naries, only. Formally, a triplet frequency dictionary is the list of all triplets
ω = ν1ν2ν3 observed in a sequence T. This is the triplet frequency dictio-
nary W(3,1). More generally, let t be the step of a move of the reading frame
(of the length 3) identifying a triplet ω. Then the frequency dictionary W(3,t) is
the list of triplets identified in T, if the reading frame moves along T with the
step t. Definitely, one gets t different triplet frequency dictionaries here: there
are t different starting positions of the first location of the reading frame.

Further, we shall focus on the dictionaries W(3,1) and W(3,3). In such capacity,
there could be 3 triplet frequency dictionaries of W(3,3) type. The analysis of
statistical properties of transcriptome provided here is based on the fact that
three different frequency dictionaries W(3,3) determined over coding part of a
genome differ seriously from similar dictionaries determined over non-coding
ones [3–6]. This difference stands behind the analysis.

We did not derive all three versions of triplet frequency dictionaries of W(3,3)

type for the transcripts; instead, we developed the clustering of triplet frequency
dictionaries expecting them to gather into the clusters corresponding to the phase
(i.e. reading frame shift figure t = {0; 1; 2}) and strand embedment (leading vs.
ladder).

2.2 Clustering and Visualization

We used freely distributed software ViDaExpert by Andrew Zinovyev
(bioinfo.curie.fr) for visualization data. Also, K-means clustering technique
[7] has been applied, to prove a structuredness in transcriptome data. To retrieve
a structure pattern in transcriptome (any of them, enlisted above), each contig
was converted into frequency dictionary W(3,1). Everywhere further we shall
denote it as W3; to distinguish different dictionaries, we shall use an upper
index in square brackets: W

[j]
3 , so that f

[j]
ω ∈ W

[j]
3 . Here f

[j]
ω is the frequency of

a triplet ω. Well known Euclidean metrics
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has been used to determine a distance between two triplet frequency dictionar-
ies W

[1]
3 and W

[2]
3 , for clustering and visualization purposes.

Using ViDaExpert software, we considered the distribution of points corre-
sponding to frequency dictionaries in three-dimensional projection; the choice
of axes for the projection was carried out automatically, since we observed the
distribution in three principal components (the first one, the second one, and
the third one), mainly, not in triplets.

To prove (or disprove) visually observed clustering, we used K-means, pro-
vided by the same software. The choice of K was determined by the stability of
clustering: we always started from K = 2 and stopped at K� where clustering
became unstable. Besides, we also used elastic map technique, for the purposes of
visualization, mainly. Detailed description of that methodology could be found
in [8–12].

2.3 Chargaff’s Parity Discrepancy

Chargaff’s parity rules stipulate several fundamental properties of nucleotide
sequences describing a kind of symmetry in them. We used these rules to ana-
lyze the observed cluster patterns, in transcriptomes. Tot begin with, Chargaff’s
substitution rule stipulates that in double stranded DNA molecule nucleotide A
always opposes to nucleotide T, and vice versa. Same is true for the couple of
nucleotides C ⇔ G.

The first Chargaff’s parity rule stipulates that the number of A’s matches
the number of T’s with a good accuracy, when counted over a single strand;
obviously, similar proximal equity is observed for C’s and G’s. Finally, the second
Chargaff’s parity rule stipulates a proximal equity of frequencies of the strings
comprising complementary palindrome: fω ≈ fω. Here ω and ω are two strings
counted over the same strand, so that they are read equally in opposite directions,
with respect to the substitution rule, e.g., CTGA ⇔ TCAG; see [13–18] for details.

Genomes differ in the figures of discrepancy of the second Chargaff’s parity
rule [19]; same is true for various parts of a genome. Thus, one can compare the
transcriptomes in terms of this discrepancy. To do it, let’s introduce that former:
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where ω and ω are two triplets comprising complementary palindrome. Here we
must take into account both couples: f

[1]
ω −f

[2]
ω and f

[2]
ω −f

[1]
ω , since they exhibit

different figures, in general.
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Formula (2) measures a deviation between two frequency dictionaries; thus,
one may expect that two dictionaries W

[1]
3 and W

[2]
3 may comprise the triplets

from the opposite strands, if μ → 0. An inner discrepancy measure determined
within a dictionary is another important characteristics of a dictionary. To mea-
sure it, one should change the formula (2) for

ξ (W3) =
1
32

√ ∑
ω∈Ω∗

(
fω − fω

)2

, (3)

where Ω∗ is the set of 32 couples of triplets comprising complementary palin-
dromes. Obviously, here |fω−fω| ≡ |fω−fω|. We shall use the figures determined
by (2) and (3) for transcriptome analysis.

2.4 Mutual Entropy to Measure the Quality of Total Transcriptome

The key aim of this paper is to compare tissue specific transcriptomes vs. the
total one. To do it, we implemented a measure based on the mutual entropy
calculation of the reads distribution over contigs of the total transcriptome.
Describe this point in more detail. We used four tissues to get the tissue specific
transcriptomes: needles, cambium, shoot and seedling. Surely, the abundance of
the reads sets is different, for various tissues. So great difference in the abun-
dances of the reads ensembles gathered for different tissues must be taken into
account, and we have done it in the following way.

Table 1. Some figures characterizing transcriptomes. Lmin is the minimal contig length,
Lmax the maximal contig length, 〈L〉 is average contig length, Ld is the selection length,
and Md is the abundance of contig set taken into consideration and NR is the reads
set abundance.

Transcriptome Lmax 〈L〉 Ld M Md NR

Needles 9880 354 1000 59317 1851 2 504 853

Shoot 17893 532 5000 590240 1754 23 986 314

Seedlings 11008 455 2500 174805 1943 8 698 074

Cambium 20596 497 5000 628197 1455 9 563 901

Let Nneedles, Nshoot, Nseeding and Ncambium be the numbers of the reads, in
each read ensemble, respectively. Let then change the numbers for frequencies
of the tissue specificity, as it occurs in the joint set of the reads:

fneedles =
Nneedles

Ntotal
, fshoot =

Nshoot

Ntotal
, fseedings =

Nseedings

Ntotal
, fcambium =

Ncambium

Ntotal
,

where Ntotal is the sum of all N ’s shown above. The figures of fneedles, fshoot,
fseedings and fcambium provide the background to study the difference between
total transcriptome and the specific ones.
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(a) (b)

(c) (d)

Fig. 1. Distribution of transcripts with greater mutual entropy (4) from total transcrip-
tome; (a) is the case of W(3,1), (b) case of W(3,3). K-means is shown in (c) (K = 2)
and in (d) K = 3; both cases are of W(3,1) type.

At the next stage, the numbers Mtissue (frequencies ϕtissue, respectively) of
each tissue specific reads set observed over each transcript from the total tran-
scriptome were obtained; to do it, we used back reads mapping over the total
transcriptome transcripts. Thus, each transcript from total transcriptome was
converted into a point in four-dimensional Euclidean space with the frequencies
of tissue specific reads being the coordinates.
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Finally, the mutual entropy

Sk =
4∑

j=1

ϕj · ln
(

ϕj

fj

)
(4)

was determined for each transcript taken into consideration from the total tran-
scriptome; here the index j enlists the tissues. The transcripts list was descending
ordered, and the top part of the list has been analyzed. Index k in (4) enumerates
the transcripts in the total transcriptome. Obviously, ϕj figures were determined
for each transcript from the total transcriptome individually, while f figures were
the same. Mutual entropy (4) measures a deviation of the distribution of the tis-
sue specificity of reads observed within a transcript: if Sk = 0, then the k-th
transcript does not differ from the ensemble of the reads of the total transcrip-
tome, and, in such capacity, is stipulated to be the most chimeric one. On the
contrary, if a transcript yields the maximal deviation of (4) from zero, then it
means the highest level of tissue specificity. It should be born in mind that the
maximum of (4) depends on the specific tissue: in particular,

max
{
Sk

}
= − ln fk . (5)

(a) (b)

Fig. 2. Distribution of contigs with higher preference of the tissue specific reads occur-
rence; the case of W(3,1) is left and the case of W(3,3) is right. (Color figure online)

3 Results and Discussion

The visualization of the total transcriptome (via transformation of sufficiently
long contigs into triplet frequency dictionaries W(3,1) and W(3,3)) reveals a struc-
turedness in that latter. Figure 1 shows the distribution of the contigs. Appar-
ently, there are two clusters in the Fig. 1(a) and six clusters in Fig. 1(b). The
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clusters shown in Fig. 1 are provided by elastic map technique. Clustering with
K-means for K = 2 and K = 3 is shown in Fig. 1(c) (two classes pattern)
and Fig. 1(d) (three classes pattern). It should be said that these two patterns
are very stable: more than 85 % of the runs of K-means converted to the same
points distribution. The distributions provided by K-means with K ≥ 4 were
quite unstable.

Figure 2 answers the key question of the paper, whether the total transcrip-
tome supports better assembling of tissue-specific ones, or not. Here we traced
the distribution of the contigs with increased content of tissue-specific reads. To
do that, we firstly identified the contigs with high level of mutual entropy (4),
then checked what tissue reads prevail in a contig, and labeled it according to
the tissue prevalence. Figure 2 shows the obtained distribution; here rosy circles
represent cambium, green triangles represent needles and brown pentagons rep-
resent seedlings. Evidently, there is no preference in the tissue-specific enriched
contigs over the clusters.

Also, Chargaff’s discrepancies behaviour looks quite remarkable: for K-means
classification with K = 2 the intraclasses discrepancies are ξ1 = 5.45× 10−4 and
ξ1 = 5.90 × 10−4, respectively, with the interclass discrepancy μ(1,2) = 8.20 ×
10−4. Here the discrepancy between two classes seems to exceed those figures
observed within a class. The situation is different, for K = 3. Here the intraclass
discrepancies differ rather apparently, for three classes: ξ1 = 6.29 × 10−4, ξ2 =
2.64 × 10−4 and ξ3 = 5.91 × 10−4, respectively. Obviously, the second class
falls out of the general pattern of Chargaff’s discrepancies. This fact may tell
that the second class comprises the contigs from the opposite strands, unlike
the first one and the third one. Same idea is supported by the figures of the
interclass discrepancies; these are μ(1,2) = 3.32 × 10−4, μ(2,3) = 4.27 × 10−4, but
μ(1,3) = 3.71 × 10−5.

That is a common place that a researcher is not guaranteed against the
necessity to study total transcriptome, instead of a (tissue) specific one. Such
situations may take place when a new (or rare) specimen is under analysis.
Hence, one has to have a tool to evaluate the limits of knowledge that could be
retrieved from the total transcriptome. Indeed, one may prefer to add sugar to
a salty solution; others may want to add salt to a sweety sirup; nobody is able
to distinguish the results. Meanwhile, significant number of chimeric transcripts
may make a problem in analysis of a total transcriptome, say, in differential
expression evaluation. If the tissue specificity of various reads is known á priori
then one may eliminate the chimeric contigs from the ensemble due to specific
entropy evaluation. The results presented above show some patterns revealed
through clustering; this structuredness may be used for elimination of chimeric
contigs. Nonetheless, the reliable approach to do it still awaits for further
implementations.
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