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Let f(x, y) be a holomorphic function in a polydisc G. Denote by △ the mapping of f to
its partial derivative with respect to x. Denote by I the mapping of f to one arbitrarily chosen
from the class of all antiderivatives of the function f antiderivative with respect to x.

To choose an antiderivative we can, for instance, integrate the function f with respect to x

along a path with the beginning in the center of the polydisc G.
Let us extend the mappings △ and I to analytical functions. To define the mapping I we

pick a germ of an analytical function F (x, y) at some point and consider its representative in the
polydisc. For the representative we construct an antiderivative with the help of the mapping I

and then continue the obtained antiderivative along all the paths, along which the continuation
of the initial function is possible.

Remark 1. Note that all analytic antiderivatives of an analytic function F differ by an analytic
function depending on the variable y (because an antiderivative in the polydisc in which the
function is represented by its Taylor series is defined up to a function of the variable y which
depend on the initial point of the path of integration). It follows that all analytic antiderivatives
of F have simultaneously either finite analytical complexity (which differs not more than by one
for any two antiderivatives of F ) or infinite analytical complexity.

Remark 2. We can also define mappings similar to △ and I for the variable y, and further
without loss of generality we consider only the case of the variable x.

Let Cl be the class of all functions of finite analytical complexity and let Cl∞ be the class of
all functions of infinite analytical complexity. From the chain rule it follows that △(Cln) ⊂ Cl2n
( [1]) from which we obtain that △(Cl) ⊂ Cl, i.e. the class of all functions of finite complexity
is closed under taking derivatives.

In [2] the question about the change of complexity of functions after integration was posed.
Similar questions about elementary functions (i.e. is the antiderivative of an elementary function
also elementary) were considered in [3, 4].

The aim of this paper is to show that the class Cl is not closed under integration:
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Theorem. I(Cl) ̸⊂ Cl.

Remark 3. Arguing by contradiction, from the inclusion △(Cl) ⊂ Cl we deduce that I(Cl∞) ⊂
I(Cl∞) and from the statement of the theorem we deduce that △(Cl∞) ̸⊂ Cl∞.

For the proof of the theorem we need some auxiliary considerations.
Let Dn(f) = 0 be the differential criterion of belonging to the class Cln for the function f .

The existence of this criterion is prooved in [5] (see also [6]).
Let us formulate properties of the system Dn(f) = 0 necessary for later use:
1) Dn(f) = 0 is a system of polynomial equations with integer coefficients for derivatives

∂n+mf

∂xn∂ym
of f ;

2) the equations of the system Dn(f) = 0 do not depend on f as a variable.

Lemma 1. For any integer nonnegative number M there exists a polynomial of complexity M .

Proof. First, observe that there exist polynomials of arbitrarily high complexity. Indeed,
all equations of the system Dn(f) = 0 have finite order, and therefore a generic polynomial of
sufficiently high degree does not satisfy the equations of this system.

Pick a polynomial P (x, y) of complexity M̃, M̃ > M . In what follows, we assume that
M > 1, because in the case M = 0 the desired polynomial is a polynomial of one variable. Let
us number all monomials of the polynomial P in an arbitrary manner. Since after subtracting a
monomial the complexity of a function cannot change by more than one, subtracting successively
all monomials from P in accordance with the chosen numeration, we obtain the sequence of poly-
nomials of non-increasing complexity, in which for any j, 1 6 j 6 M̃ , there exists a polynomial
of complexity j. By the inequality 1 6 M 6 M̃ we obtain the assertion of Lemma 1.

Proposition. For all n there exist a function g(x, y) of complexity n and analytical functions
of one variable a(x), b(y), such that the function g̃(x, y) = g(x, y) + a(x) + b(y) has complexity
n+ 1.

Proof. Assume the contrary: suppose that for all functions a(x), b(y) and any function g(x, y)

of complexity n the function g̃(x, y) also has complexity n. Then since for any nonconstant
function c(z) functions g̃, c ◦ g and c ◦ g̃ have the same complexity, choosing as a, b, c the
functions ln(xα), ln(yβ), exp(z), respectively, we obtain that the multiplication of the function
g by the monomial xαyβ also does not change the complexity. But in this case it is possible
to do one after another K times the following two operations for the function g · y−K without
changing the complexity:

1) adding of an arbitrary polynomial of x of degree K,
2) multiplying by y,

and then add an arbitrary polynomial of the variable x and an arbitrary polynomial of the
variable y. Consequently, the complexity does not change after adding an arbitrary polynomial
of two variables to the function g. But by Lemma 1 there exist polynomials of arbitrarily high
complexity. It follows that described operations result in the growth of the complexity. Since
by Lemma 1 the class of all functions of complexity n is nonempty, we arrive at a contradiction,
which completes the proof. 2

Let {eq1 = 0, . . . , eqk(n) = 0} be the equations of the system Dn(f) = 0.

Lemma 2. The system Dn(f) = 0 essentially depends on fx :=
∂f

∂x
, i.e. there exists j,

1 6 j 6 k(n), such that
∂ (eqj)

∂ (fx)
̸≡ 0.
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Proof. Assume the contrary. Since the equations of the system Dn(f) = 0 do not depend on
f as a variable (property 2) and do not depend on fx by our assumption (note that due to the
symmetry of the equations Dn(f) = 0 in relation to x and y these equations do not depend also
on fy), for all functions g(x, y) functions g and g̃ = g + x+ y have the same complexity. But it
is impossible in view of the Statement above, because the transformation (x, y) −→ (a(x), b(y))

does not change the complexity.
The proof of Lemma 2 is complete. 2

Consider the set Cln(G) of functions from the class Cln, such that they have a holomorphic
representative (i.e. an element) in a common for all functions polydisc G. Cln(G) is a metric
space as a subset of the Fréchet space O(G) of all functions holomorphic in the polydisc G.

Lemma 3. For any n the space Cln(G) is complete in the topology of uniform convergence on
compact subsets of G.

Proof. Let us show that the subset Cln(G) of the space O(G) is closed, from which in
view of the completeness of the space O(G) the completeness of the space Cln(G) follows. If
fk −→ f , where fk ∈ Cln(G), then by the Weierstrass theorem all derivatives of the functions fk
also converge to the derivatives of f , and therefore from the identities Dn(fk) = 0 the identity
Dn(f) = 0 follows.

The proof of Lemma 3 is complete. 2

Proof of the Theorem. It suffices to show that there exists a holomorphic in the polydisc G

function of finite complexity, such that its antiderivative with respect to x has infinite complexity.
Assume the contrary: let all antiderivatives of functions of finite complexity also be of finite
complexity. Suppose that the mapping I sends the function hx into h and suppose that hx ∈
Cln(G). The criterion of belonging to the class Cln(G) is Dn(hx) = 0. By our assumption,
for any function hx ∈ Cln(G) there exists the number m = m(hx), such that h ∈ Clm(G), or,
equivalently, Dm(h) = 0. Hence we obtain that

Cln(G) =
∪
m

∪
h∈Clm(G),m=m(hx)

hx.

Note that the system Dn(hx) = 0 does not depend on hx as a variable (property 2), while
by Lemma 2 the system Dm(h) = 0 depends on hx as a variable. Consequently, equations of
the system Dm(h) = 0 determine a nowhere dense subset in the set H(G) of all holomorphic in
G solutions hx of the system Dn(hx) = 0 in the topology induced from the topology of uniform
convergence, since for any open neighbourhood it is possible to vary the value of the derivative
hx at any fixed point, values of the other derivatives being fixed. But by Lemma 3 the space
Cln(G) is complete, consequently, it is impossible to represent it as a countable union of nowhere
dense sets, which contradicts our assumption. Therefore there exist solutions hx, such that the
function h has infinite complexity.

The proof of the Theorem is complete. 2

For analytical functions f(x1, . . . , xN ) of larger number of variables it is possible to construct
a similar system of classes Cln(N) ( [7]). Let Cl(N) be the class of all functions in N variables
of finite complexity. From the Theorem we obtain

Corollary 1. I(Cl(N)) ̸⊂ Cl(N).

Proof. It suffices to consider a function f(x1, x2, . . . , xN ) as a function of two variables x1, x2

with parameters x3, . . . , xN .
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The proof of the Corollary is complete. 2

For the case N > 2 it is possible to give concrete examples of functions of finite complexity,
such that after integration the complexity becomes infinite.

Example 1. Case N = 3.
Consider the solution of the heat equation uy = uxx of infinite complexity:

u(x, y) =

∞∑
r=1

e−
√
prerx+r2y,

where pr is r-th prime number.
We write u(x, y) in the form of the Poisson integral:

u(x, y) =
1

2
√
πy

∫ ∞

−∞
exp

(
− (x− ζ)2

4 y

)
φ(ζ)dζ,

where φ(ζ) is the initial function.
Observe that the complexity of the integrand is finite and is equal to two. Indeed, firstly,

the complexity of this function is greater than one, since its complexity as the function of two
variables (y, ζ) equals two, the value of x being fixed (this can be verified by substituting the
function under consideration in the differential criterion of belonging to the first complexity
class), and, secondly, the complexity of this function is not greater than two.

Consider the functions U−(x, y, z) :=
1

2
√
πy

z∫
−∞

exp
(
− (x− ζ)2

4 y

)
φ(ζ)dζ and U+(x, y, z) :=

1

2
√
πy

∞∫
z

exp
(
− (x− ζ)2

4 y

)
φ(ζ)dζ. Since U− +U+ = u holds, at least one (an hence both due to

the symmetry) of the functions U−, U+ has infinite complexity.
Thus, any of the two functions U−, U+ gives the desired example.

Example 2. Case N > 3.
Let us add to the functions U−, U+ from Example 1 above N − 3 parameters (multiplying,

for instance, by N − 3 variables): V±(x1, x2, x3, x4, . . . , xN ) := U±(x1, x2, x3) ·
∏N

j=4 xj .
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Об аналитической сложности первообразных
Мария А.Степанова
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Россия

Показано, что класс всех функций двух переменных конечной аналитической сложности не за-
мкнут относительно операции интегрирования. Отсюда следует также и незамкнутость от-
носительно операции интегрирования класса всех функций конечной аналитической сложности
для трех и большего числа переменных. Для случая трех и большего числа переменных приведены
конкретные примеры функций конечной сложности, первообразные которых имеют бесконечную
сложность.

Ключевые слова: аналитическая сложность, интегрирование, функции конечной сложности.
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