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Introduction

A lot of nonlinear operators are connected with problems in statistical physics, biology, ther-
modynamics, statistical mechanics and so on. One of the central problem in statistical physics is
the existence of phase transitions. Phase transitions are connected with the theory of Gibbs mea-
sures [1]. In the theory of Gibbs measures there are a lot of papers devoted to Gibbs measures on
a Cayley tree [2]. Splitting Gibbs measure is studied for models on a Cayley that can be divided
into three classes: 1) models with a finite set of spin values; 2) models with a countable set of
spin values; 3) models with a continuum set of spin values. Let us note that problems of studying
Gibbs measures for models with a finite and countable set of spin values on a Cayley tree are
reduced to the study of systems of algebraical or functional equations [3–13]. One of the main
factors is that studying translation-invariant Gibbs measures for models with a continuum set of
spin values is reduced to the study of positive fixed points of non-linear integral operator [14–20].

In the case of continuum set of spin values (i.e., [0,1]) various models with the nearest neigh-
bour interactions on a Cayley tree were considered [14–20]. It was found that the existence of
translation-invariant Gibbs measure for the models is equivalent to the existence of a positive
fixed point of Hammerstein’s nonlinear integral operator [17,20]. It was proved that the existence
of translation-invariant Gibbs measures for the models on a Cayley tree of an arbitrary order and
uniqueness of translation-invariant Gibbs measures on the Cayley tree of order one was shown
(see [16,18]).

It is found that a sufficient condition for the model has the unique translation-invariant
splitting Gibbs measure and each constructed model has at least two periodic Gibbs measures
(see [15,16]).
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Models on the Cayley tree of order two were considered [20]. The study of translation-
invariant Gibbs measures was reduced to the study of positive fixed points of some quadratic
operator on R2. Sufficient conditions were also given such that the model has one, two or three
translation-invariant Gibbs measure by using quadratic operators.

In this paper we consider the translation-invariant Gibbs measures for models on the Cayley
tree of order three given in [20] .

1. Preliminaries

A Cayley tree Γk = (V, L) of order k > 1 is an infinite homogeneous tree, i.e., a graph without
cycles with exactly k + 1 edges. Here V is the set of vertices and L is the set of edges.

Let us consider models where the spin takes values from the set [0, 1], and it is assigned to the
vertices of the tree. For A ⊂ V a configuration σA on A is an arbitrary function σA : A → [0, 1].
Let us denote ΩA = [0, 1]A. It is the set of all configurations on A. A configuration σ on V

is defined as a function x ∈ V 7→ σ(x) ∈ [0, 1], and the set of all configurations is [0, 1]V . The
Hamiltonian of the model is

H(σ) = −J
∑

⟨x,y⟩∈L

ξσ(x),σ(y), σ ∈ ΩV (1)

where J ∈ R \ {0} and β =
1

T
, T > 0 is temperature, ξ : (u, v) ∈ [0, 1]2 → ξuv ∈ R is a given

bounded measurable function. As usual, ⟨x, y⟩ stands for the nearest neighbour vertices.
We write x < y if the path from x0 to y goes through x. Vertex y is a direct successor of x

if y > x and x, y are nearest neighbours. Let us denote the set of direct successors of x by S(x).
Any vertex x ̸= x0 has k direct successors, and x0 has k + 1 direct successors.

Let h : x ∈ V 7→ hx = (ht,x, t ∈ [0, 1]) ∈ R[0,1] be mapping of x ∈ V \ {x0}.
Now, we consider the following equation

f(t, x) =
∏

y∈S(x)

1∫
0

exp(Jβξtu)f(u, y)du

1∫
0

exp(Jβξ0u)f(u, y)du

. (2)

Here and below f(t, x) = exp(ht,x − h0,x), t ∈ [0, 1] and du = λ(du) is the Lebesgue measure.
It is known that necessary and sufficient condition of the existence of the splitting Gibbs

measure for model (1) is the existence of a solution of equation (2) for any x ∈ V \ {x0}.
Thus, we know that splitting Gibbs measure µ for model (1) depends on the function f(t, x)

and each splitting Gibbs measure corresponds to a solution f(t, x) of equation (2). Let us note
that number of the Gibbs measures for model (1) is equal to the number of positive solutions of
integral equation (2).

A detailed definition of the splitting Gibbs measure for models with nearest neighbour inter-
actions and continuum set of spin values on the Cayley tree can be found in [14–20]. In what
follows the splitting Gibbs measure will be called the Gibbs measure.

Let us note that the analysis of solutions to (2) is not easy. It is difficult to give a full
description of the given potential function ξt,u. We study Gibbs measures of model (2) in the
case f(t, x) = f(t) for all x ∈ S(x). Such Gibbs measure is called translation-invariant measure.

We introduce

C+[0, 1] = {f ∈ C[0, 1] : f(x) > 0}, C>[0, 1] = C+[0, 1] \ {θ ≡ 0}.
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Let ξtu be a continuous function. For every k ∈ N we consider an integral operator Hk acting
in the cone C+[0, 1]

(Hkf)(t) =

∫ 1

0

K(t, u)fk(u)du, k ∈ N,

where K(t, u) = exp(Jβξtu).
The operator Hk is called the Hammerstein integral operator of order k.

Lemma 1 ( [16]). Let k > 2. Hamiltonian H (1) has a translation-invariant Gibbs measure iff
the Hammerstein integral operator Hk has a positive eigenvalue, i.e., the Hammerstein integral
equation

Hkf = λf, f ∈ C+[0, 1] (3)

has a non-zero positive solution for some λ > 0.

Moreover, if λ0 > 0 is an eigenvalue of the operator Hk, k > 2 then an arbitrary positive
number is the eigenvalue of the operator Hk. A number of positive eigenfunctions that correspond
to positive eigenvalues λ1 > 0 and λ2 > 0 of the operator Hk are equal (see [16]). Then we have
the following lemma.

Lemma 2. Let k > 2. A number N tigm(H) of translation-invariant Gibbs measures for model
(1) is

N tigm(H) = Nfix
+ (Hk),

where Nfix
+ (B) is a number of non-trivial positive fixed points of the operator B.

2. Main results

Let φ1(t), φ2(t) and ϕ1(t), ϕ2(t) are strictly positive functions that belong to C+[0, 1]. We
consider Hamiltonian (1) on the Cayley tree Γ3 with the potential

ξt,u =
ln (ϕ1(t)φ1(u) + ϕ2(t)φ2(u))

Jβ
. (4)

We consider the Hammerstein integral operator H3 on C+[0, 1] in the following form

(H3f)(t) =

∫ 1

0

(
ϕ1(t)φ1(u) + ϕ2(t)φ2(u)

)
f3(u)du.

Let us introduce the following designations

α11 =

∫ 1

0

φ1(u)ϕ
3
1(u)du, α12 =

∫ 1

0

φ1(u)ϕ
2
1(u)ϕ2(u)du, α21 =

∫ 1

0

φ1(u)ϕ1(u)ϕ
2
2(u)du,

α22 =

∫ 1

0

φ1(u)ϕ
3
2(u)du, β11 =

∫ 1

0

φ2(u)ϕ
3
1(u)du, β12 =

∫ 1

0

φ2(u)ϕ
2
1(u)ϕ2(u)du,

β21 =

∫ 1

0

φ2(u)ϕ1(u)ϕ
2
2(u)du, β22 =

∫ 1

0

φ2(u)ϕ
3
2(u)du.

It is easy to verify that αij > 0 and βij > 0 for all i, j ∈ {1, 2}.
We introduce a fourth degree polynomial P4(ξ)

P4(ξ) = µ0ξ
4 + µ1ξ

3 + 3µ2ξ
2 + µ3ξ − µ4, (5)
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where

µ0 = α22, µ1 = 3α21 − β22, µ2 = α12 − β21, µ3 = α11 − 3β12, µ4 = β11.

We use the following designations

Q =
(p
3

)3

+
(q
2

)2

,

θk = 2

√
−p

3
cos

(
α+ 2π(k − 2)

3

)
, k = 1, 2, 3 ,

where

p = − 3µ2
1

16µ2
0

+
3µ2

2µ0
, q =

µ3
1

32µ3
0

− 3µ1µ2

8µ2
0

+
µ3

4µ0

and

cosα = −q

2

(
−3

p

) 3
2

, α ∈ [0, π].

We also introduce

γ1 = θ3 −
µ1

4µ0
, γ2 = θ1 −

µ1

4µ0
, γ3 = θ2 −

µ1

4µ0
.

Theorem 2.1. Let Q > 0. Then model (1) on the Cayley tree of order three has the unique
translation-invariant Gibbs measure, i.e., N tigm(H) = 1.

Theorem 2.2. Let Q < 0. If one of the following conditions

(a) γ2 6 0,

(b) γ2 > 0, P4(γ2) < 0,

(c) γ2 > 0, P4(γ3) > 0,

is satisfied then model (1) on the Cayley tree of order three has the unique translation-invariant
Gibbs measure, i.e., N tigm(H) = 1.

Theorem 2.3. Let Q < 0. If one of the following conditions

(d) γ2 > 0, P4(γ2) = 0,

(e) γ2 > 0, P4(γ3) = 0,

is satisfied then model (1) on the Cayley tree of order three has two translation-invariant
Gibbs measures, i.e., N tigm(H) = 2.

Theorem 2.4. Let Q < 0. If the following condition

(f) γ2 > 0, P4(γ2) > 0, P4(γ3) < 0,

is satisfied then model (1) on the Cayley tree of order three has three translation-invariant Gibbs
measures, i.e., N tigm(H) = 3.
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3. Positive fixed points of cubic operators on R2

We introduce
R2

+ = {(x, y) ∈ R2 : x > 0, y > 0},

R2
> = {(x, y) ∈ R2 : x > 0, y > 0}.

We consider the following cubic operator (CO) C on the cone R2
+

C(x, y) = (a11x
3 + 3a12x

2y + 3a21xy
2 + a22y

3, b11x
3 + 3b12x

2y + 3b21xy
2 + b22y

3), (6)

where aij > 0 and bij > 0 for all i, j ∈ {1, 2}.
Clearly, an arbitrary non-trivial positive fixed point (x0, y0) ∈ R2

+ of the CO C is strictly
positive, i.e., x0 > 0, y0 > 0. We denote a number of fixed points of the CO C that belongs to
R2

> by Nfix
> (C).

Lemma 3. If ω = (x0, y0) ∈ R2
> is a fixed point of the CO C then ω ∈ R2

> and ξ0 =
y0
x0

is a root

of the algebraic equation

a22ξ
4 + (3a21 − b22) ξ

3 + 3 (a12 − b21) ξ
2 + (a11 − 3b12)ξ − b11 = 0. (7)

Proof. Let the point ω = (x0, y0) ∈ R2
> be a fixed point of CO C. Then

a11x
3
0 + 3a12x

2
0y0 + 3a21x0y

2
0 + a22y

3
0 = x0,

b11x
3
0 + 3b12x

2
0y0 + 3b21x0y

2
0 + b22y

3
0 = y0.

Taking into account that
y0
x0

= ξ0, we obtain

a11x
3
0 + 3a12x

3
0ξ0 + 3a21x

3
0ξ

2
0 + a22x

3
0ξ

3
0 = x0,

b11x
3
0 + 3b12x

3
0ξ0 + 3b21x

3
0ξ

2
0 + b22x

3
0ξ

3
0 = x0ξ0.

Consequently we have
x3
0

(
a11 + 3a12ξ0 + 3a21ξ

2
0 + a22ξ

3
0

)
= x0,

x3
0

(
b11 + 3b12ξ0 + 3b21ξ

2
0 + b22ξ

3
0

)
= ξ0x0.

Hence, we have
1

ξ0
=

a11 + 3a12ξ0 + 3a21ξ
2
0 + a22ξ

3
0

b11 + 3b12ξ0 + 3b21ξ20 + b22ξ30
.

Using the last equality, we obtain

a22ξ
4
0 + (3a21 − b22) ξ

3
0 + 3 (a12 − b21) ξ

2
0 + (a11 − 3b12)ξ0 − b11 = 0.

This completes the proof. 2

Lemma 4. If ξ0 is a root of algebraic equation (7) then the point ω0 = (x0, ξ0x0) ∈ R2
> is a fixed

point of the CO C, where

x0 =
1√

a11 + 3a12ξ0 + 3a21ξ20 + a22ξ30
. (8)
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Proof. Let ξ0 > 0 and ξ0 is a root of equation (7). We assume that y0 = ξ0x0, where x0 is
given by equality (8) and ω0 = (x0, ξ0x0). From the equality y0 = ξ0x0 we have

a11x
3
0 + 3a12x

2
0y0 + 3a21x0y

2
0 + a22y

3
0 = a11x

3
0 + 3a12x

2
0 (ξ0x0) + 3a21x0 (ξ0x0)

2
+ a22 (ξ0x0)

3
=

= x3
0 ·

(
a11 + 3a12ξ0 + 3a21ξ

2
0 + a22ξ

3
0

)
=

1√
a11 + 3a12ξ0 + 3a21ξ20 + a22ξ30

,

i.e.
a11x

3
0 + 3a12x

2
0y0 + 3a21x0y

2
0 + a22y

3
0 = x0.

On the other hand

a22ξ
4
0 + (3a21 − b22) ξ

3
0 + 3 (a12 − b21) ξ

2
0 + (a11 − 3b12)ξ0 − b11 = 0.

Then we obtain

b11+3b12ξ0+3b21ξ
2
0+b22ξ

3
0 = a11ξ0+3a12ξ

2
0+3a21ξ

3
0+a22ξ

4
0 = ξ0

(
a11 + 3a12ξ + 3a21ξ

2 + a22ξ
3
)
.

From the last equality we have

ξ0√
a11 + 3a12ξ0 + 3a21ξ20 + a22ξ30

=
b11 + 3b12ξ0 + 3b21ξ

2
0 + b22ξ

3
0

(
√
a11 + 3a12ξ0 + 3a21ξ20 + a22ξ30)

3
=

= b11x
3
0 + 3b12x

2
0y0 + 3b21x0y

2
0 + b22y

3
0 = y0.

This completes the proof. 2

We introduce

µ0 = a22, µ1 = 3a21 − b22, µ2 = a12 − b21, µ3 = a11 − 3b12, µ4 = b11

and define the fourth degree polynomial P4(ξ)

P4(ξ) = µ0ξ
4 + µ1ξ

3 + 3µ2ξ
2 + µ3ξ − µ4. (9)

Lemma 5. The CO C has at least one positive fixed point in R2
>, i.e., Nfix

> (C) > 1.

Proof. It is clear that P4(0) = −b11 and P4(+∞) = +∞. It means that there exists c > 0

such that P4(c) = 0. According to lemma 4, (x0, cx0) is a fixed point of CO C and

x0 =
1√

a11 + 3a12c+ 3a21c2 + a22c3
.

2

Lemma 6. A number of strictly positive fixed points of the CO C less than or equal to three,
i.e., 1 6 Nfix

> (C) 6 3.

Proof. We have the following table for the number of sign changes of the coefficients of the
polynomial P4(ξ) (Tab. 1).

Using this table and the Descartes rule, we can conclude that a number of positive solutions
of the polynomial P4(ξ) is not more than three (see [22, pp. 27–29] ), i.e., 1 6 Nfix

> (C) 6 3. 2

Let us introduce
Q =

(p
3

)3

+
(q
2

)2

,
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Table 1.

P4(ξ) µ0 µ1 µ2 µ3 µ4 the number of sign changes
1. + + + + – 1
2. + + + – – 1
3. + + – – – 1
4. + – – – – 1
5. + – – + – 3
6. + – + + – 3
7. + + – + – 3
8. + – + – – 3

θk = 2

√
−p

3
cos

(
α+ 2π(k − 2)

3

)
, k = 1, 2, 3,

where

p = − 3µ2
1

16µ2
0

+
3µ2

2µ0
, q =

µ3
1

32µ3
0

− 3µ1µ2

8µ2
0

+
µ3

4µ0

and

cosα = −q

2

(
−3

p

) 3
2

, α ∈ [0, π].

We also introduce

γ1 = θ3 −
µ1

4µ0
, γ2 = θ1 −

µ1

4µ0
, γ3 = θ2 −

µ1

4µ0
.

Theorem 3.5. Let Q > 0 then the CO C has the unique fixed point in R2
>, i.e., Nfix

> (C) = 1.

Proof.
a) Let Q > 0. Then the equation P ′

4(ξ) = 0 has one real root. This root is stationary point
of the function P4(ξ). Furthermore we have P4(0) = −b11 < 0, P4(±∞) = +∞. Consequently,
there exists the unique number ξ0 > 0 such that P4(ξ0) = 0.

b) Let Q = 0. Then the equation P ′
4(ξ) = 0 has a multiple root and all of its roots are real. A

simple root (of multiplicity 1) is stationary point of the function P4(ξ). Also P4(0) = −b11 < 0,
P4(±∞) = +∞. It indicates that there exist the unique number ξ0 > 0 such that P4(ξ0) = 0.

2

Theorem 3.6. Let Q < 0. If the CO C satisfies one of the following conditions

(a) γ2 6 0,

(b) γ2 > 0, P4(γ2) < 0,

(c) γ2 > 0, P4(γ3) > 0,

then the CO C has the unique fixed point in R2
>, i.e., Nfix

> (C) = 1.

Proof. Let Q < 0. We have

P ′
4(ξ) = 4µ0ξ

3 + 3µ1ξ
2 + 6µ2ξ + µ3. (10)
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One can find roots of the equation P ′
4(ξ) = 0 by the Vieta method (see [23]). From Q < 0 it

turns out that numbers θ1, θ2, θ3 are real and θ3 < θ1 < θ2. By the Vieta method numbers
γ1, γ2, γ3 are roots of the polynomial P ′

4(ξ). Then the polynomial P ′
4(ξ) (10) has the following

form
P ′
4(ξ) = 4µ0(ξ − γ1)(ξ − γ2)(ξ − γ3).

It follows that function P4(ξ) is an increasing (decreasing) function on the set (γ1, γ2) ∪
(γ3,+∞) ((−∞, γ1) ∪ (γ2, γ3)). The function P4(ξ) has a local maximum value at the point γ2
and local minimum values at the points γ1 and γ3.

(a) Let γ2 < 0. It is clear that minξ∈(γ2,+∞) P4(ξ) = P4(γ3) and function P4(ξ) is an increasing
function on the interval (γ3,+∞). On the other hand, we have P4(0) < 0. Consequently, we
obtain P4(γ3) < 0. It means that polynomial P4(ξ) has the unique positive root.

(b) Let γ2 > 0 and P4(γ2) < 0. Then maxξ∈(γ1,γ3) P4(ξ) = P4(γ2) < 0. Function P4(ξ) is
an increasing function on the interval (γ3,+∞). Then polynomial P4(ξ) has the unique positive
root ξ1 and ξ1 ∈ (γ3,+∞).

(c) Let γ2 > 0 and P4(γ3) > 0. Then maxξ∈(γ1,γ3) P4(ξ) = P4(γ2) > 0 and
minξ∈(γ2,+∞) P4(ξ) = P4(γ3) > 0. Using inequality P4(0) < 0, we obtain that polynomial P4(ξ)

has the unique positive root ξ1 and ξ1 ∈ (0, γ2). 2

Theorem 3.7. Let Q < 0. If the CO C satisfies one of the following conditions

(d) γ2 > 0, P4(γ2) = 0,

(e) γ2 > 0, P4(γ3) = 0,

then the CO C has two fixed points in R2
>, i.e., Nfix

> (C) = 2.

Proof. (d) Let γ2 > 0 and P4(γ2) = 0. Then maxξ∈(γ1,γ3) P4(ξ) = P4(γ2) = 0 and ξ1 = γ2 is
the root of the polynomial P4(ξ). Since P4(ξ) is an increasing function on the interval (γ3,∞), the
polynomial P4(ξ) has a root ξ2 ∈ (γ3,∞) for γ3 > 0 and P4(γ3) < 0. It is clear that polynomial
P4(ξ) does not have any other roots in the (γ3,∞).

(e) Let γ2 > 0, P4(γ3) = 0. Function P4(ξ) is an increasing function on the (−∞, γ2). Then
polynomial P4(ξ) has a positive root ξ1 ∈ (0, γ2). We have minξ∈(γ2,∞) P4(ξ) = P4(γ3) = 0. Then
ξ2 = γ3 is the second positive root of the polynomial P4(ξ). The polynomial P4(ξ) does not have
another root. 2

Theorem 3.8. Let Q < 0. If the CO C satisfies the following condition

(f) γ2 > 0, P4(γ2) > 0, P4(γ3) < 0,

then the CO C has three fixed points in R2
>, i.e., Nfix

> (C) = 3.

Proof. Let γ2 > 0, P4(γ2) > 0, P4(γ3) < 0. Function P4(ξ) is an increasing function on
the set (γ1, γ2) ∪ (γ3,+∞) and a decreasing function on the interval (γ2, γ3). Then polynomial
P4(ξ) has three positive roots ξ1 ∈ (0, γ2), ξ2 ∈ (γ2, γ3) and ξ3 ∈ (γ3,∞), as P4(0) = −b11 < 0,

P4(γ2) > 0, P4(γ3) < 0, P4(+∞) = +∞. 2

4. Proofs of the main results

Let φ1(t), φ2(t) and ϕ1(t), ϕ2(t) are strictly positive functions that belong to C+[0, 1]. We
consider the Hammerstein integral operator H3 on C+[0, 1] in the following form
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(H3f)(t) =

∫ 1

0

(ϕ1(t)φ1(u) + ϕ2(t)φ2(u)) f
3(u)du

and cubic operator C on R2 has the form

C(x, y) = (α11x
3 + 3α12x

2y + 3α21xy
2 + α22y

3, β11x
3 + 3β12x

2y + 3β21xy
2 + β22y

3).

Here

α11 =

∫ 1

0

φ1(u)ϕ
3
1(u)du, α12 =

∫ 1

0

φ1(u)ϕ
2
1(u)ϕ2(u)du, α21 =

∫ 1

0

φ1(u)ϕ1(u)ϕ
2
2(u)du,

α22 =

∫ 1

0

φ1(u)ϕ
3
2(u)du, β11 =

∫ 1

0

φ2(u)ϕ
3
1(u)du, β12 =

∫ 1

0

φ2(u)ϕ
2
1(u)ϕ2(u)du,

β21 =

∫ 1

0

φ2(u)ϕ1(u)ϕ
2
2(u)du, β22 =

∫ 1

0

φ2(u)ϕ
3
2(u)du.

It is clear that αij > 0 and βij > 0 for all i, j ∈ {1, 2}.
Lemma 7. The Hammerstein integral operator H3 has a non-trivial positive fixed point iff the
CO C has a non-trivial positive fixed point and Nfix

+ (H3) = Nfix
> (C).

Proof. Let the Hammerstein integral operator H3 has a nontrivial positive fixed point f(t) ∈
C+[0, 1]. Let us introduce

c1 =

∫ 1

0

φ1(u)f
3(u)du (11)

and

c2 =

∫ 1

0

φ2(u)f
3(u)du. (12)

It is clear that c1 > 0, c2 > 0, i.e. (c1, c2) ∈ R2
>. Then function f(t) satisfies the equality

f(t) = ϕ1(t)c1 + ϕ2(t)c2 (13)

and f(t) ∈ C>[0, 1].
Consequently, from (11) and (12) we have the following two identities for parameters c1, c2

c1 = α11c
3
1 + 3α12c

2
1c2 + 3α21c1c

2
2 + α22c

3
2,

c2 = β11c
3
1 + 3β12c

2
1c2 + 3β21c1c

2
2 + β22c

3
2.

Therefore, the point (c1, c2) is the fixed point of the CO C.
(b) Let us assume that point (x0, y0) is a non-trivial positive fixed point of the CO C and

x0, y0 satisfy the following equalities

α11x
3
0 + 3α12x

2
0y0 + 3α21x0y

2
0 + α22y

3
0 = x0,

β11x
3
0 + 3β12x

2
0y0 + 3β21x0y

2
0 + β22y

3
0 = y0.

It is easy to verify that function f0(t) = ϕ1(t)x0+ϕ2(t)y0 is the fixed point of the Hammerstein
integral operator H3 and f0(t) ∈ C>[0, 1] for (x0, y0) ∈ R2

+. This completes the proof. 2

Taking into account potential (4), Lemma 2 and Lemma 7, the following equality holds for
model (1) on the Γ3

N tigm(H) = Nfix
+ (H3) = Nfix

> (C).
Using the last equality and Theorems 3.5–3.8, we obtain Theorems 2.1–2.4, respectively.
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Положительные неподвижные точки кубических
операторов на R2 и меры Гиббса

Юсуп Х. Эшкабилов
Шохрух Д.Нодиров

Каршинский государственный университет
Кучабог, 17, Карши, 180100

Узбекистан

В этой статье мы рассматриваем модель с взаимодействиями ближайших соседей и с мно-
жеством [0, 1] значений спина на дереве Кэли третьего порядка. Трансляционно-инвариантные
меры Гиббса для модели исследованы свойствами положительных неподвижных точек кубиче-
ского оператора в конусе R2

+.

Ключевые слова: дерево Кэли, мера Гиббса, трансляционно-инвариантные меры Гиббса, неподвиж-
ная точка, кубический оператор, интегральный оператор Гаммерштейна.
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