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Introduction

In paper [1] the sums Sn(ξ(n)) =
n∑

t=1
ξt of finite sequences ξ(n) = (ξt)t∈In , In = {1, 2, . . . , n}

with Rademacher, lattice and real random variables were investigated. For Rademacher random
variables ξt ∈ {−1, 1}t∈In the relationship between the finite-dimensional probability distribu-
tion of these sequences and the values of mixed moments was shown. Based on this study we
obtained expressions for distribution of sums. In the same paper there were introduced and
exploited sequences with averaged links ξ̂(n) = (ξ̂t)t∈In , In = {1, 2, . . . , n}, based on the distri-
bution of the sum of random variables of the original sequence Sn(ξ(n)) (Shortly: sequences with
averaged links or sal). For these sequences

P(ξ̂1, ξ̂2, . . . , ξ̂n) =
P(Sn(ξ(n)) = 2k − n)

Ck
n

, ∀(ξ̂1, ξ̂2, . . . , ξ̂n) such that
n∑

t=1

ξ̂t = 2k − n.

From the properties of such sequences we note that all random variables of a sequence are equally
distributed and the joint probabilities of any sets of these random variables are invariant with
respect to the replacement of random variables. That is

P(ξ̂i1 = x1, ξ̂i2 = x2, . . . , ξ̂im = xm) = P(ξ̂j1 = x1, ξ̂j2 = x2, . . . , ξ̂jm = xm)

is valid for any sets (i1, i2, . . . , im), (j1, j2, . . . , jm) ∈ In, for any 1 6 m 6 n and for any sets
(x1, x2, . . . , xm), where xi ∈ {−1, 1}.

All sequences for which the invariance property holds are defined as a class of sequences with
invariant links. Further on, these concepts and results are extended to the case of sequences of
lattice and real random variables. In particular, for absolutely continuous random variables in [1],
an expression was obtained for a finite-dimensional distribution of random variables with averaged
links, constructed from the distribution of sums of the original sequence. But, in contrast to the
case of Rademacher and lattice random variables, the general form of distribution of sums of
such random variables was not found. In this paper, we find the general form of distribution of
a sum of a finite number of absolutely continuous random variables and consider some examples
of modeling sequences with averaged links (with invariant links).
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Distribution of sums of random variables
We consider the problem of finding the general form of distribution of a sum of a finite number

of centered absolutely continuous random variables having as their sum an absolutely continuous
random variable with a nontrivial distribution.

This problem is similar to the problems that were solved in [2,3]. Therefore, we use the results
of these works. In particular, in [2] it is shown (Theorem 3) that for a sequence of Rademacher
random variables γ = (γt)t∈N , where γt ∈ {−1, 1} satisfying the conditions:

1.
1

n

n∑
t=1

Mγt →
n→∞

0,

2. there exists a weak limit S1/2(γ) sequences with nondegenerate distribution

S1/2(γ(n)) =
1√
n

n∑
t=1

γt ⇒
n→∞

S1/2(γ),

the limiting random variable S1/2(γ) has the following distribution density:

µ(x) =
1√
2π

e−
x2

2

∞∑
m=0

v̈m(γ) · hm(x). (1)

We use this result to solve the stated problem. First, similarly to [3], we approximate the
random variables of the original sequence ξt by lattice random variables πt,s. For this we divide

the set of real numbers R as follows: ∆xs(k) =
(2k − s− 1√

s
,
2k − s+ 1√

s

]
for k = 1, . . . , s − 1,

∆xs(0) =
(
−∞,−s− 1√

s

]
, ∆xs(s) =

(s− 1√
s

,∞
)
. Set

P
(
πt,s =

2k − s√
s

)
= P(ξt ∈ ∆xn(k)) = Pξt(∆xs(k)), k = 0, 1, . . . , s.

We also approximate the sum S(ξ(n)) =
n∑

t=1
ξt, of random variables of the investigated se-

quence with sums S(πs) =
n∑

t=1
πt,s of lattice random variables πt,s. For this we divide the

set of real numbers R as follows: ∆xsn(k) =
(2k − ns− 1√

ns
,
2k − ns+ 1√

ns

]
for k = 1, . . . , ns− 1,

∆xsn(0) =
(
−∞,−ns− 1√

ns

]
, ∆xns(ns) =

(ns− 1√
ns

,∞
)
. In this case we set

P
(
S(πs) =

2k − ns√
ns

)
= P(S(ξ(n)) ∈ ∆xns(k)) = PS(ξ(n))(∆xns(k)), k = 0, 1, . . . , ns.

For πs we show in [4] (see Theorem 2.4) existence of a finite sequence with averaged links,
which has the same distribution of sums. In its turn, the same article shows existence of a finite
sequence with averaged links of Rademacher type γ̂(sn) such that

π̂t,s =
1√
s

s−1∑
i=0

γ̂t+i·n. (2)

For this sequence we have

FS(π(n))(x) = FS(γ̂(sn))(x) ∀x ∈ R, where S(γ̂(sn)) =
1√
s

sn∑
t=1

γ̂t.
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Passing to the limit as s → ∞, we get

FS(ξ(n))(x) = FS(γ̂)(x) ∀x ∈ R, where S(γ̂)
w
== lim

s→∞

1√
s

sn∑
t=1

γ̂t = lim
s→∞

√
n√
ns

sn∑
t=1

γ̂t. (3)

Comparing the limiting random variables in (1) and (3), we see that S(ξ(n)) = S(γ̂) =
=

√
nS1/2(γ̂) and we can formulate a statement regarding the density S(ξ(n)):

Theorem 1. Let a sequence of centered absolutely continuous random variables ξ(n) = (ξt)t∈In

be given on a measurable space (R(n),B(n)), the sum of which Sn =
n∑

i=1

ξt is a non-degenerate

absolutely continuous random variable with a density distribution µ(x). Then the distribution
density of the sums of these random variables is as follows:

µ(x) =
1√
2nπ

e−
x2

2n

∞∑
m=0

v̈m(γ̂) · hm
( x√

n

)
, (4)

where v̈m(γ̂) are mixed moments of sequence γ̂ = (γ̂t)t∈N .

The proof follows from the above.

Corollary 1. Let a sequence of centered absolutely continuous random variables ξ(n) = (ξt)t∈In

be given on a measurable space (R(n),B(n)), the sum of which Sn =
n∑

i=1

ξt is a non-degenerate

absolutely continuous random variable with a density distribution µ(x). Then there exists a finite
sequence with averaged links ξ̂(n) = (ξ̂t)t∈In defined on the same measurable space such that its
joint distribution function satisfies the following relation:

Fξ̂(n)
(x0

1, . . . , x
0
n) =

1√
(2π)n

∫ x0
1

−∞
· · ·

∫ x0
n

−∞
e
− 1

2

n∑
t=1

x2
t

∞∑
m=0

v̈m(γ̂) · hm
( x√

n

)
dx1 · ·dxn, (5)

where x =
n∑

t=1
xt.

Proof. It suffices to substitute in (6) expression (4) as µ(x). 2

Construction and modeling of sequences with invariant
links. (Examples)

We use Theorem 3.3 from [1] to construct and model a sequence with averaged links based
on the sum of random variables of the original sequence. Recall that in this theorem we give an
expression for the n-dimensional distribution function of a sequence with averaged links ξ̂(n) =

(ξ̂t)t∈In constructed from the sums of the original sequence of centered absolutely continuous

random variables ξ(n) = (ξt)t∈In , with the sum of the original random variables Sn =
n∑

i=1

ξt

are the essence of a non-degenerate absolutely continuous random variable with a distribution

density µ(x), where x =
n∑

t=1
xt. Then the expression for n-dimensional distribution function,

satisfies the following relation:

Fξ̂(n)
(x0

1, . . . , x
0
n) =

1√
(2π)n

∫ x0
1

−∞
· · ·

∫ x0
n

−∞
e
− 1

2

n∑
t=1

x2
t µ(x)

φn(x)
dx1 · · · dxn =

=

√
2πn√
(2π)n

∫ x0
1

−∞
· · ·

∫ x0
n

−∞
e
− 1

2

(
n∑

t=1
x2
t− x2

n

)
µ(x)dx1 · · · dxn,

(6)
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where x =
n∑

t=1
xt, φn(x) =

1√
2πn

e−
x2

2n .

Note that for ξ̂(n) the following expression is true:

FSn(ξ̂)
(x) = FSn(ξ)(x) ∀x ∈ R. (7)

Let us consider some examples of constructing a sequence with invariant links by the distri-
bution of the sum of these random variables.

Example 1. Let ξ(n) = (ξt)t∈In ∈ R(n). Let the sum of these random variables have

a probability distribution density µ(x) =
1√
2πn

e−
x2

2n , that is, it is a random variable with a

normal distribution with parameters MSn = 0, DSn = n. Then the n-dimensional distribution
density of a sequence with averaged links is

pξ(n)
(x1, . . . , xn) =

√
2nπ√
(2π)n

e
− 1

2

(
n∑

t=1
x2
t− x2

n

)
µ(x) =

√
2nπ√
(2π)n

e
− 1

2

(
n∑

t=1
x2
t− x2

n

)
1√
2πn

e−
x2

2n =

=
1√
(2π)n

e
− 1

2

n∑
t=1

x2
t
=

n∏
t=1

1√
2π

e−
x2
t
2 =

n∏
t=1

φ(xt),

where φ(xt) is the density of standard normal distribution. In this case, the sequence of random
variables with invariant links will be the sequence of independent normallly distributed random
variables and the simulation of random variables of such a sequence is reduced to simulation the
required number of standardly distributed random variables, which does not cause any additional
difficulties.

Example 2. Let a sequence be given ξ(2) = (ξt)t∈I2 ∈ R(2), and let the sum of these random

variables have a uniform distribution with a density µ(x) =
1

2
I{x∈(−1, 1)}. Here I is the indicator

function of the set {x ∈ (−1, 1)} Then the two-dimensional distribution density of a sequence
with averaged links will be

pξ1,ξ2(x1, x2) =

√
4π√

(2π)2
e
− 1

2

(
x2
1+x2

2−
(x1+x2)2

2

)
1

2
I{x∈(−1, 1)} =

1

2
√
π
e−

1
4 (x1−x2)

2

I{x∈(−1, 1)}.

From here the distribution of random variables of the sequence can be found from the relation

pξ1(x) = pξ2(x) = p(x) =
1

2
√
π

∫
(−∞,∞)

x+x2∈(−1,1)

e−
1
4 (x2−x)2dx2

=
1

2
√
π

1−x∫
−1−x

e−
1
4 (x2−x)2dx2 =

∣∣∣
u=

x2−x√
2

=

=
1√
2π

1−2x√
2∫

−1−2x√
2

e−
1
2u

2

du = FN0,1

(1− 2x√
2

)
− FN0,1

(
−1 + 2x√

2

)
.

Here FN0,1(x) is the value of the distribution function of a normal random variable ξ with
parameters Mξ = 0, Dξ = 1.

– 631 –



Sergey V.Chebotarev On Distribution of Sums of Random Variables with Invariant . . .

Both random variables have the same distribution, but they are interdependent. To calculate
the marginal density of the distributions ξ1, ξ2, we can use the MatLab package, or rather its
package of symbolic calculations:

1 syms x y
2 i n t ( exp ( - ( x - y )^2/4) , x , - 1 - y , 1 - y )
3 ans = - p i ^(1/2)*( e r f ( y - 1/2) - e r f ( y + 1/2))

As a result, we get

p(y) = − 1

2
√
π
·
√
π · (erf(y − 1/2)− erf(y + 1/2)) =

1

2

(
erf

(1− 2y

2

)
− erf

(
−1 + 2y

2

))
.

Taking into account that

erf(x) =
2√
π

∫ x

0

e−t2dt and erf
( x√

2

)
= 2FN0,1

(x)− 1,

we have a similar expression.
Let us check, using symbolic calculations in MatLab, the value of mathematical expectation

of the obtained random variables: Mξ = 0?

1 i n t ( ( y*( e r f ( y + 1/2) - e r f ( y - 1/2 ) ) ) , y , - i n f , i n f )
2 ans = 0

We also calculate the variance Dξ :

1 i n t ( ( y^2*( e r f ( y + 1/2) - e r f ( y - 1/2 ) ) ) , y , - i n f , i n f )
2 ans = 7/6

As a result, we get

Dξ =
1

2

∫ ∞

−∞
y2 · (erf(y + 1/2)− erf(y − 1/2))dy =

1

2
· 7
6
=

7

12
.

Consider the relationship between these random variables, namely, we calculate the covariance
of these random variables: Declare that A = {(x1, x2)|(x1 + x2) ∈ (−1, 1)}

v2(x1, x2) = cov(x1, x2) = Mx1 · x2 =
1

2
√
π

∞∞∫∫
−∞−∞

x1x2e
− 1

4 (x1−x2)
2

IAdx1dx2 =

=
1

2
√
π

∫ ∞

−∞
x1dx1

∫ ∞

−∞
x2e

− 1
4 (x1−x2)

2

IAdx2 =

=
1

2
√
π

∫ ∞

−∞
x1dx1

∫ ∞

−∞
(x2 − x1)e

− 1
4 (x1−x2)

2

IAdx2+

+
1

2
√
π

∫ ∞

−∞
x1dx1

∫ ∞

−∞
x1e

− 1
4 (x1−x2)

2

IAdx2. (8)

Consider these two integrals separately:
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1.
1

2
√
π

∫ ∞

−∞
x1dx1

∫ ∞

−∞
x1e

− 1
4 (x1−x2)

2

IAdx2 =
1

2
√
π

∫ ∞

−∞
x2
1dx1

∫ ∞

−∞
e−

1
4 (x1−x2)

2

IAdx2 =

=

∫ ∞

−∞
x2
1p(x1)dx1 = Dx1.

2.
1

2
√
π

∞∫
−∞

x1dx1

∞∫
−∞

(x2−x1)e
− 1

4 (x1−x2)
2

IAdx2 =
∣∣∣
u=

x2−x1√
2

=
1√
2π

∞∫
−∞

x1dx1

1−2x1√
2∫

−1−2x1√
2

ue−
1
2u

2

du.

Taking into account that

1√
2π

1−2x1√
2∫

−1−2x1√
2

ue−
1
2u

2

du =
1√
2π

(
e−

(1+2x1)2

4 − e−
(1−2x1)2

4

)
,

we get

1√
2π

∞∫
−∞

x1dx1

1−2x1√
2∫

−1−2x1√
2

ue−
1
2u

2

du =
1√
2π

∞∫
−∞

x1

(
e−

(1+2x1)2

4 −e−
(1−2x1)2

4

)
dx1 = −

√
π√
2π

= − 1√
2
.

As a result, we have

v2(x1, x2) = cov(x1, x2) = − 1√
2
+

7

12
≈ −0.1238.

Consider the process of modeling a sequence of random variables with invariant links from
this example.

We shall proceed from

p(x) = FN0,1

(1− 2x√
2

)
− FN0,1

(−1− 2x√
2

)
and use the inverse function method to generate random values.

First, we obtain the values of the distribution density and the distribution function of random
variables:

1 dx=0.001 ;
2 x= -20:dx : 2 0 ;
3 % d i s t r i b u t i o n dens i ty c a l c u l a t i o n
4 p=(normcdf ((1 -2*x )/ sq r t ( 2 ) , 0 , 1 ) - normcdf ( ( -1 -2*x )/ sq r t ( 2 ) , 0 , 1 ) ) ;
5 % ca l c u l a t i o n o f the d i s t r i b u t i o n func t i on va lue s
6 F(1)=p(1)*dx ;
7 f o r k=2:1 : l ength (x )
8 F(k)=F(k -1)+p(k)*dx ;
9 end ;

10 % value check F(\ i n f t y )=1 ?
11 F( length (x ) )

Performing the above calculations in MatLab, we obtain the values of the distribution density
and distribution functions of random variables.

Further on, using the method of the inverse function and the obtained values of the distribu-
tion function, we generate the values of the 1st random variable (Fig. 1).
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Fig. 1. Distribution density ξ1, ξ2

1 %We generate n independent random numbers with the d i s t r i b u t i o n
2 % func t i on F(x ) us ing method o f the i nv e r s e func t i on
3 n=20;
4 g=rand (2 , n ) ;
5 f o r i =1:n
6 k=1;
7 whi le F(k)< g (1 , i )
8 k=k+1;
9 end ;

10 s l v1 ( i )=x (k ) ;
11 end ;

As a result of these calculations, we obtain n samples with the generated value of the first
random variable.

The value of the second random variable, taking into account the dependence of their values,
is formed using the conditional distribution density of the second random variable, taking into
account the obtained value of the first random variable in each specific sample.

1 p2=ze ro s (n , l ength (x ) ) ;
2 % we obta in n cond i t i o na l d i s t r i b u t i o n d e n s i t i e s o f the 2nd random va r i ab l e
3 f o r i =1:n
4 f o r k=1: l ength (x )
5 p2 ( i , k)=exp ( - ( s l v 1 ( i ) - x ( k ))^2/4)* Ind ( s l v1 ( i ) , x ( k ) )/(2* s q r t ( p i ) ) ;
6 end ;
7 p2 ( i , : )= p2 ( i , : ) / ( sum(p2 ( i , : ) ) * dx ) ;
8 end ;
9 % Calcu la t i on o f the d i s t r i b u t i o n func t i on va lue s f o r the 2nd random

10 % va r i ab l e us ing c ond i t i o na l d e n s i t i e s
11 f o r i =1:n
12 F2( i ,1)=p2 ( i , 1 )* dx ;
13 f o r k=2:1 : l ength (x )
14 F2( i , k)=F2( i , k -1)+p2 ( i , k)*dx ;
15 end ;
16 end ;
17 %Generation o f 2nd random va r i ab l e va lue s by the i nv e r s e func t i on method
18 f o r i =1:n
19 k=1;
20 whi le F2( i , k)< g (2 , i )
21 k=k+1;
22 end ;
23 s l v2 ( i )=x (k ) ;
24 end ;
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Examples of conditional distribution densities ξ2 are shown in Fig. 2.

Fig. 2. Conditional distribution density ξ2 in 1-st and 2-nd samples

Verification of the obtained results using the Kolmogorov criterion showed the consistency of
the modeled data with theoretical distributions:

1 cd f =[x' F' ] ;
2 [H,P,KSSTAT,CV] = k s t e s t ( s lv1 , cdf , 0 . 01 )
3 H = 0
4 P = 0 .0179
5 KSSTAT = 0 .3326
6 CV = 0 .3524

1 [H,P,KSSTAT,CV] = k s t e s t ( s lv2 , cdf , 0 . 01 )
2 H = 0
3 P = 0 .1991
4 KSSTAT = 0 .2317
5 CV = 0 .3524
6

7 sm=s lv1+s l v2 ;
8 y=un i f c d f (x , - 1 , 1 ) ;
9 cd f =[x' y ' ] ;

10 [H,P,KSSTAT,CV] = k s t e s t (sm , cdf , 0 . 01 )
11 H = 0
12 P = 0 .4014
13 KSSTAT = 0 .1920
14 CV = 0 .3524

Simulation results: the numbers of samples are shown in the columns, and the values of
random variables in the lines (Tab. 1).

– 635 –



Sergey V.Chebotarev On Distribution of Sums of Random Variables with Invariant . . .

Table 1.

N 1 2 3 4 5 6 7
ξ1 0.6860 –0.8730 0.2590 –0.4500 1.3150 –0.7690 1.3130
ξ2 0.1920 1.4570 –0.9850 0.3390 –0.3440 1.6200 –0.8460
ξ1 + ξ2 0.8780 0.5840 –0.7260 –0.1110 0.9710 0.8510 0.4670

N 8 9 10 11 12 13 14
ξ1 0.6450 –0.1510 0.6230 0.3070 0.7900 0.3560 0.5000
ξ2 –1.1310 0.9340 0.3230 –1.1960 0.1310 0.2410 –0.4810
ξ1 + ξ2 –0.4860 0.7830 0.9460 –0.8890 0.9210 0.5970 0.0190

N 15 16 17 18 19 20
ξ1 0.3070 0.4150 –0.4540 –0.9930 0.3900 1.2580
ξ2 –0.8380 –1.3040 –0.4750 1.2400 –0.5670 –1.9750
ξ1 + ξ2 –0.5310 –0.8890 –0.9290 0.2470 –0.1770 –0.7170

Above, in the process of calculations, we used the function Ind(x, y), the indicator function
of the set |x+ y| < 1.

1 f unc t i on Ixy = Ind ( x , y )
2 i f abs ( x+y)<1 Ixy=1; e l s e Ixy=0;
3 end
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О распределении сумм случайных величин
с инвариантными связями и их моделировании

Сергей В. Чеботарев
Алтайский государственный педагогический университет

Молодежная, 55, Барнаул, 656015
Россия

В работе получен общий вид распределения суммы конечного числа абсолютно непрерывных слу-
чайные величины, рассмотрены примеры формирования и моделирования последовательностей с
усредненными связями (с инвариантными связями) исходя из распределения суммы этих случай-
ных величин.

Ключевые слова: последовательности случайных величин, сумма конечного числа случайных ве-
личин, сумма зависимых случайных величин, распределение сумм абсолютно непрерывных слу-
чайных величин.
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