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1. Fundamental principle for homogeneous convolution
equations

Probably, the monograph [1] was the first in the field that illustrated that both, residues
and integral representation formulas in several complex variable, are powerful tools allowing to
provide solutions to seemingly untractable otherwise mathematical problems. In the present
paper weighted integral representation formulas and different than in [1] realization of residues
allow to approach from local point of view the Fundamental principle of convolution equations.

Recall that a pluri-subharmonic function p(z) on Cn is called a weight function ([3]) if it is
satisfying the following conditions: i) p(z) > 0, ii) log(1 + ||z||) = O(p(z)), iii) if ||z − ζ|| < 1,
then p(ζ) 6 A1p(z) +A2 for some constants A1 and A2.

Given a weight function p(z) we consider the corresponding subspace of vector space of entire
functions A(Cn):

Ap =
{
f ∈ A(Cn) : ∃Af , Bf > 0 : |f(z)| 6 Afe

Bfp(z)
}
.

If (f1, . . . , fm) are m entire functions on Cn, then L denotes the family of m-dimensional affine
subspaces L of Cn, such that

∪L∈L ⊃ {z ∈ Cn : fi(z) = 0, 1 6 i 6 n}.

Following [3] we recall the following definition

Definition 1.1. The family (f1, . . . , fm) of m entire functions is slowly decreasing with respect
to L if and only if there exist positive constants ϵ1, C1,K1,K2 such that
1) for each L ∈ L the set

O = {z ∈ L : |fi(z)| < ϵ1 exp(−C1p(z)), 1 6 i 6 m} (1.1)

has relatively compact components,
2) If O as in (1.1) and z, ζ belong to the same component of O, then

p(ζ) 6 K1p(z) +K2.
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Given a slowly decreasing family of functions (f1, f2, . . . , fm) with respect to the family L
and the weight function p(z) one defines for a component G of O the open set

ΩG = {z ∈ Cn : there exists ζ ∈ G so that |z − ζ| < ϵ2 exp (−C2p(ζ))}, (1.2)

for some positive constants ϵ2, C2. Such an open set is called good. Keeping the values of the
parameters ϵ1, C1 from Definition 1.1 and the values of the parameters ϵ2, C2 from (1.2) fixed,
one obtains the family of open sets I = {ΩG}G⊂O. The family I is called good family. If both
parameters ϵ1 and ϵ2 decrease, while both parameters C1 and C2 increase, then the good family
I ′ so produced is called a good refinement of I. A naturally defined refinement map ρ : I ′ −→ I
corresponds to any open set Ω′

G′ ∈ I ′ associated with the component G′ of an open subset O′ of
a certain line (m-plane) L ∈ L, the open set Ω associated with the unique component G of the
open set O such that G′ ⊂ G. Thus, it is natural to consider the following definition ([3]).

Definition 1.2. A good family I is said to be almost parallel if and only if there exists its good
refinement I ′ such that whenever Ω0,Ω1 ∈ I ′ and Ω0 ∩ Ω1 ̸= ∅, then Ω̄0 ∪ Ω̄1 ⊂ ρ(Ω0) ∩ ρ(Ω1),
where ρ is the natural refinement map defined above.

We continue by recalling another necessary definition from ([3]).

Definition 1.3. We say that L is an analytic family of lines (m-planes) if and only if there is good
family I associated to L with the following property: given Ω ∈ I with the associated line (m-
plane) L ∈ L there exist local analytic coordinates (s, t) on Ω such that Ω∩{(s, t) : t = 0} = Ω∩L
and Ω ∩ {(s, t) : t = const} = Ω ∩ Lt for some Lt ∈ L.

Furthermore, recall that for m 6 n, an m-tuple of holomorphic functions (f1, . . . , fm), fi :
Cn −→ C, 1 6 i 6 m, defines a complete intersection in Cn if and only if the complex dimension
of the analytic set of common zeroes Z of the functions fi is equal to n−m, that is,

dimC Z = dimC(∩16i6mZfi) = dimC
(
∩16i6m {z ∈ Cn : fi(z) = 0}

)
= n−m.

The following variation of Fundamental Principle for homogeneous system of convolution equa-
tion is formulated and proved in [3]

Theorem 1.1. Assume that µj ∈ E ′(Rn), for j = 1, . . . ,m, are slowly decreasing and form a
complete intersection. That is, for p(z) = |ℑz| + log(1 + |z|), z ∈ Cn there exists an analytic ,
almost parallel family of lines such that µ̂j for j = 1, . . . ,m, are slowly decreasing with respect to
this family in Ap(Cn). Then, there exists a locally finite family of closed Vj , j ∈ J and a partition
of the index set J into finite subsets Jk together with partial differential operators ∂z

l in z with
analytic coefficients on the regular points of the set V = {z ∈ Cn : µ̂j(z) = 0, j = 1, . . . ,m}
satisfying: 1) ∪Vk ⊂ V , 2) each function x −→ ∂z

l (e
−ixz), with z ∈ V , is a solution to

f̌ ⋆ µj = 0, j = 1, . . . ,m, where f̌(x) = f(−x), x ∈ Rn, 3) to each solution f ∈ E(Rn) of the
system f̌ ⋆ µj = 0, j = 1, . . . ,m, there corresponds a family of Borel measures νj, whose support
is contained in the sets Vj and such that the series

f(x) =
∑
k

∑
j∈Jk

∫
Vk

∂l(e
−ixz)dνj(z)

 (1.3)

is convergent in the space E(Rn).

2. Integral representation formula depending on parameter
For R0 > 0, we define the sequence closed balls with doubling radius property

Kl = B(0, 2lR0) = {x ∈ Rn : ∥x∥ < 2lR0}, l ∈ N
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Then {Kl}l∈N is an increasing sequence of compact convex set s satisfying Kl ⊂ intKl+1 and
∪Kl = Rn. Let also {χl}l∈N be a sequence of elements from D(Rn) such that suppχl ⊂ Kl+1,
χl ≡ 1 in some neighborhood of Kl, l ∈ N. The set U of all continuous functions on Cn of the
form

τ(z) = sup
l∈N

(
δl exp(l ln(2 + ∥z∥2) +HKl

(ℑz))
)
,

where {δl}l∈N is a sequence of positive constants, is a LAU structure for the set E ′(Rn) ( [9,10]).
We now turn to the localization of the solution f to the system f̌ ∗µj = 0, j = 1, . . . ,m. Our

purpose is to describe f explicitly in intKl, l ∈ N. In order to do that we first test f against
u ∈ D(Cn), with supp u ⊂ intKl for some l ∈ N. Using the definition of the characteristic
function χl we get from Plancherel theorem that∫

Rn

f(t)u(t)dt =

∫
Rn

(f̂χl)(−ξ)û(ξ)dξ. (2.1)

The starting point is a weighted Koppelman integral representation formula for the holo-
morphic function ûθ( (·)R ), where θ ∈ D(Cn) so that θ ≡ 1 on an open neighborhood of B(0, 1)
and supp θ ⊂ B(0, 2). This weighted integral representation formula is constructed following the
approach developed in [2,7]. Using it, we will produce a division formula involving the functions
µ̂j , j = 1, 2, . . . ,m, [6]. In Cn we have the following Heffer functions

µ̂j(z)− µ̂j(ζ) =
k=n∑
k=1

gj,k(z, ζ)(zk − ζk), j = 1, . . . , n,

gj,k(z, ζ) =

∫ 1

0

∂µ̂j

∂ζk
(ζ + t(z − ζ))dt

and the corresponding Heffer (1, 0)-form

gj(z, ζ) =
k=n∑
k=1

gj,k(z, ζ)dζk, j = 1, 2, . . . ,m.

Furthermore, following [6], within the spirit of constructions in [2, 7], we introduce three pairs
(Q1, G1), (Q2, G2), (Q3, G3) of auxiliary functions defined as follows

Q1(z, ζ) = (Q11, Q12, . . . , Q1n)(z, ζ) : D ×D −→ Cn,

Q1i(z, ζ) =
1

m

j=m∑
j=1

|µ̂j(ζ)|2λ
gj,i(z, ζ)

µ̂j(ζ)
, i = 1, 2, . . . , n

G1(t) =
1

m!

j=m−1∏
j=0

(mt− j),

where D ⊂ Cn is a bounded domain with C2 boundary and λ a complex parameter with suffi-
ciently large positive real part, that is, ℜλ >> 0. Similarly, we have

Q2(z, ζ) = (Q21, Q22, . . . , Q2n)(z, ζ) : D ×D −→ Cn,

Q2i(z, ζ, l) = Q2i(ζ, l) = 2
∂ω(ζ)

∂ζi
, i = 1, 2, . . . , n

G2(t) = tN ,

where ωl(ζ) =
(2 + ∥ζ∥2)l

σl
, l ∈ N, N = max(ord(QJ,s)) + n + 1, QJ,s-being the differential

operators describing the action of the residue currents, σl are suitably chosen constants. Finally,
the third pair of auxiliary functions is defined by
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Q3(z, ζ) = (Q31, Q32, . . . , Q3n)(z, ζ) : D ×D −→ Cn,

Q3i(z, ζ, l) = Q3i(ζ, l) = 2
∂(HKl

(ℑ ∗ ρ)(ζ))
∂ζi

, i = 1, 2, . . . , n

G3(t) = exp(t− 1),

where ρ is a C∞ function supported in the unit ball, while having mass equal to 1 there. The
function HKl

is the usual support function for compact convex sets Kl introduced in the previous
section. These leads us to define the (1, 0)-forms

qj(z, ζ) =

i=n∑
i=1

Qji(z, ζ)dζi, j = 1, 2, 3.

In order to derive the Koppelman integral representation formula with a complex parameter λ
we have to consider the C1 map

S : D ×D −→ Cn,

satisfying for every compact K contained in D the estimates a) ∥S(z, ζ)∥ 6 CK
1 ∥z − ζ∥, b)

⟨S(z, ζ), z − ζ⟩ > CK
2 ∥z − ζ∥2 and the corresponding (1, 0)-form

s(z, ζ) =
i=n∑
i=1

Si(z, ζ)dζi.

The positive constants CK
1 , CK

2 above depend on K. In order to simplify the notation, we put

Φj(z, ζ) = < Qj , z − ζ >, j = 1, 2, 3,

Gα
j (t) =

dαGj

dtα
|t=Φj(z,ζ), j = 1, 2, 3.

Direct application of the results from [2,7] leads to the following

Proposition 2.1. The function û(ξ)θ( ξ
R ), holomorphic in a neighborhood the closed complex ball

BC(0, R), satisfies the following Koppelman integral representation formula for ξ ∈ BC(0, R):

û(ξ) = û(ξ)θ
( ξ

R

)
=

1

(2πi)n

(∫
û(ζ)θ

( ζ

R

)
Pλ(ξ, ζ) +

∫
û(ζ)∂̄θ

( ζ

R

)
Kλ(ξ, ζ)

)
, (2.2)

whenever the value of the complex parameter having large enough positive part ℜλ >> 0 is fixed.
The kernel Pλ(ξ, ζ) is the (n, n)-form

Pλ(ξ, ζ) =
k=m∑
k=0

G
(k)
1 (Φ1(ξ, ζ))Bk(ξ, ζ) ∧ (∂̄q1)

k, (2.3)

Bk(ξ, ζ) =
∑

α2+α3=n−k

G
(α2)
2 G

(α3)
3

α2!α3!
(∂̄q2)

α2 ∧ (∂̄q3)
α3 , k = 0, 1, . . . , n

and kernel Kλ(ξ, ζ) is the (n, n− 1)-form defined by

Kλ(ξ, ζ) =

k=min{m,n−1}∑
k=0

G
(k)
1 (Φ1(ξ, ζ))Ak(ξ, ζ) ∧ (∂̄q1)

k, (2.4)

Ak(ξ, ζ) =
∑

α0+α2+α3=n−k−1

G
(α2)
2 G

(α3)
3

α2!α3!

s ∧ (∂̄s)α0 ∧ (∂̄q2)
α2 ∧ (∂̄q3)

α3

< S, z − ζ >2(α0+1)
,

whenever k = 0, 1, . . . ,min{m,n − 1}. Furthermore, the right side of (2.2) has holomorphic
extension into the half-plane ℜλ > −δ, δ > 0.
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Proof. The proof of the first claim is straightforward. First, we apply the method from [2,7]
to construct the representation formula (2.2), with summation up to n, where the kernels Pλ(ξ, ζ)
and Kλ(ξ, ζ) are defined by the relations (2.3) and (2.4) correspondingly, with only difference that
summation is up to n in the first case and up to n− 1 in the second one. Then the observation
that G1(t) is a polynomial of degree m leads to the desired conclusion.

Furthermore, we observe that

Φ1(ξ, ζ) = 1+ < Q1(ξ, ζ), ξ − ζ >= 1 +
1

m

j=m∑
j=1

i=n∑
i=1

|µ̂j(ζ)|2λ

µ̂j(ζ)
gj,i(z, ζ)(ξi − ζi) =

= 1 +
1

m

j=m∑
j=1

|µ̂j(ζ)|2λ

µ̂j(ζ)
(µ̂j(ξ)− µ̂j(ζ)) =

1

m

j=m∑
j=1

|µ̂j(ζ)|2λ

µ̂j(ζ)
µ̂j(ξ)−

1

m

j=m∑
j=1

(m− |µ̂j(ζ)|2λ). (2.5)

Also, elementary computations imply that

∂̄ζq1(ξ, ζ) =
λ

m

j=m∑
j=1

|µ̂j(ζ)|2(λ−1)∂̄ζ ¯̂µj(ζ)
i=n∑
i=1

gi,j(ξ, ζ)dζi =

=
λ

m

j=m∑
j=1

|µ̂j(ζ)|2(λ−1)∂̄ζ ¯̂µj(ζ)gj(ξ, ζ).

Hence, simplifying the notation, we get the (m,m)-form

(∂̄q1)
m = (−1)

m(m−1)
2

λmm!

m
|µ̂|2(λ−1)∂̄ ¯̂µ ∧ g,

where |µ̂| = |µ̂1| . . . |µ̂m|, g = g1 ∧ · · · ∧ gm, λ = (λ, . . . , λ)︸ ︷︷ ︸
m-times

, and 1 = (1, . . . , 1)︸ ︷︷ ︸
m-times

. Now, looking

at every term of the kernels Pλ, Kλ described in (2.3), (2.4) one observes that for every k the
integral of the corresponding terms in (n, n) or (n, n−1) forms can be continued, as function of λ,
holomorphically in a neighborhood of λ = 0. To be more specific, the extensions of distribution
valued functions

λ −→ G
(k)
1 Ak ∧ (∂̄q1)

k

λ −→ G
(k)
1 Bk ∧ (∂̄q1)

k

defining, for every value of λ, terms in the kernels Pλ and Kλ are holomorphic in the neighborhood
of λ = 0. This follows from Prop. 3.6 in ([5]) when λ1 = λ2 = · · · = λm. We claim that the value
of holomorphic extension of the above functions at λ = 0 is equal to zero, whenever k < m− 1.
That is, the only terms that have a nonzero contribution in the first integral of (2.2) at λ = 0 are
the term of the kernel Pλ that corresponds to k = m and k = m − 1. Similarly, the only terms
that have a nonzero contribution in the second integral of (2.2) at λ = 0 are the terms of the
kernel Kλ that corresponds to k = m and k = m− 1. Actually, the terms in question are (n, n)
or (n, n− 1) forms, whose coefficients contain factors (or powers of such factors) of the form

λk
∏
l∈I

(
|µ̂jl(ζ)|2λ

µ̂jl(ζ)

)
,

∏
i∈I1

(1− |µ̂ji(ζ)|2λ),
∏
d∈J

|µ̂jd(ζ)|2(λ−1)
∧
d∈J

∂̄µ̂jd
,

where |I|+|I1|=n−k or |I|+|I1|=n−k−1, |J |=k and the subsets of indices are mutually disjoint.
The vanishing of the corresponding integrals at λ = 0 follows from the application of Prop. 1.5
from ([5]) after the application of Hironaka’s de-singularization theorem on f1f2 . . . fm = 0. The
only other interesting cases that remain to be seen are those that correspond to the cases when
k = m− 1 or k = m. This completes the proof of the proposition. 2
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3. The division formula
Keeping the notations from previous sections we formulate the following proposition

Proposition 3.1. Assume that µ̂i ∈ Ap(Cn), i = 1, . . . ,m, p(z) = ∥ℑz∥ + log(1 + ∥z∥) form a
complete intersection and are slowly decreasing with respect to L. Then for ξ ∈ Cn the following
equality holds

û(ξ) =

j=m∑
j=1

µ̂j(ξ)Uj(ξ)+ < ∂̄
1

µ̂1
(·) . . . ∂̄ 1

µ̂m
(·), û(·)g1(ξ, ·) ∧ · · · ∧ gm(ξ, ·) ∧Bl(ξ, ·) >, (3.1)

where Uj(ξ) is a Fourier transform of distributions with compact supports contained in Kl =

= B(0, 2lR0) and Bl(ξ, ·) is a (n−m,n−m) differential form given by

m!
∑

β1+β2=n−m

(N
β2

)
β1!e

exp
(
< 2∂ (HKl

ℑ(ξ) ∗ ρ) (ζ), ξ − ζ >
)(
ϱ(ξ, ζ)

)N−β2
ϕβ1,β2(ξ, ζ),

where ϱ(ξ, ζ) =< 2
∂ωl(ζ)

ωl(ζ)
, ξ − ζ > +1 and

ϕβ1,β2(ξ, ζ) =
1

(2πi)n−m

(
∂∂̄(HKl

(ℑξ) ∗ ρ(ζ))
)β1 ∧

(
∂∂̄ log(ωl(ζ))

)β2
.

Proof. Let us begin with the discussion of the terms in the forms Pλ and Kλ of degree k = m
and k = m− 1. When k = m, we have the terms that are residual

G
(m)
1 Bm(∂̄q1)

m = const.λm|µ̂|2(λ−1)∂µ̂ ∧ g, (3.2)

G
(m)
1 Am(∂̄q1)

m = const.λm|µ̂|2(λ−1)∂µ̂ ∧ gϖ, (3.3)

where ϖ = Am =
1

< S, z − ζ >2(α0+1)
=

1

< S, z − ζ >2
. In this case we have forms, whose

coefficients, near the set of common zeroes, have growth growth estimates
∣∣∣ 1
µ̂
(z)∂µ̂

∣∣∣ 6 (1+

+∥z∥)−1 exp(−∥z∥), because of the slowly decreasing assumption for the entire functions µ̂j ,
j = 1, . . . ,m. In the case k = m− 1, we have

G
(m−1)
1 Bm−1(∂̄q1)

m−1 = (n−m+ 1, n−m+ 1)-form, (3.4)

G
(m−1)
1 Am−1(∂̄q1)

m−1 = (n−m+ 1, n−m+ 1)-form, (3.5)

whose support depends on the radius of the ball Kl and whose terms contain, as coefficients,
reciprocals of slowly decreasing functions. Thus, since we want to get our division formula to
hold over Cn it is enough to see the convergence of these terms while R −→ +∞. The forms

G
(α2)
2 G

(α3)
3

α2!α3!
, (∂̄q2)

α2 ∧ (∂̄q3)
α3 ,

s ∧ (∂̄s)α0

< S, z − ζ >2(α0+1)

are factors in forms Am, Bm, Am−1, Bm−1, when α2+α3 = n−m or when α0+α2+α3 = n−m+1.
Thus, these terms require estimates for the behavior of G(α2)

2 , G
(α3)
3 and (∂̄qi)

αi , i = 1, 2 and of
their products, when R −→ +∞. Furthermore the same type of estimate is needed for ∂̄θ( ζ

R ).
First, we observe that since u ∈ D(Ω), its Fourier transform satisfies for every k ∈ N the estimate

|û(ζ)| 6 Ck
1

(1 + ∥ζ∥)k
exp

(
HKl

(ℑ(ζ))
)
, ζ ∈ Cn.

– 471 –



Alekos Vidras Locally Explicit Fundamental Principle for Homogeneous Convolution Equations

On the other hand, the function (HKl
(ℑ(·)) ∗ ρ) (ζ) is convex, since for a compact convex set K

the support function HK is convex also. Therefore we deduce that

ℜ < ∂ (HKl
(ℑ(·)) ∗ ρ) (ζ), ξ − ζ >6 (HK(ℑ(·)) ∗ ρ) (ξ)− (HK(ℑ(·)) ∗ ρ) (ζ),

whenever ξ, ζ ∈ Cn. Hence

|e<∂(HKl
(ℑ(·))∗ρ)(ζ),ξ−ζ>| 6 eℜ<∂(HKl

(ℑ(·))∗ρ)(ζ),ξ−ζ> 6 e(HKl
(ℑ(·))∗ρ)(ξ)−(HKl

(ℑ(·))∗ρ)(ζ).

Thus

|Dα
ζ,ζ̄e

<∂(HKl
(ℑ(·))∗ρ)(ζ),ξ−ζ>| 6 Cl(z, α)(1 + ∥ζ∥)|α|e−(HKl

(ℑ(·))∗ρ)(ζ),

where α ∈ Nn, ∥ζ − ξ∥ > 1 and |α| =
∑

α(j) = sum of orders of j-directional derivatives. For
the positive constant Cl(ξ, α) the following estimate holds

|Cl(ξ, α)| 6 d(α)γ
|α|
l exp(4γl)(1 + ∥ξ∥)|α|e−(HKl

(ℑ(·))∗ρ)(ζ),

For the estimate of ∂̄θ
(
ζ
R

)
, when ξ ∈ Cn is fixed and ζ ∈ Cn is such that ∥ξ − ζ∥ > 1, one has

that

|Dα
ζ,ζ̄θ

( ζ

R

)
| 6 Γl(ξ, k, α)(1 + ∥ζ∥)−ke−(HKl

(ℑ(·))∗ρ)(ζ),

where k > 0 and α ∈ Nn and Γl(ξ, k, α) is a positive constant. By letting ∂̄
1

µ̂
(·) = ∂̄

1

µ̂1
(·) ∧ . . .

· · · ∧ ∂̄
1

µ̂m
(·), the above estimates imply the relation (3.1) when R −→ ∞.

4. Locally explicit version of fundamental principle
Keeping the notation from above, we begin the present section by obtaining localized explicit

solutions to a system of homogeneous convolution equations. Namely, we have the following
proposition

Proposition 4.1. Let f̌ ∗µj = 0, j = 1, . . . ,m be a homogeneous system of convolution equations
in E(Rn), where f ∈ E(Rn) and µj ∈ E ′(Rn), so that the entire functions µ̂1, . . . , µ̂m form a
complete intersection in Cn. Let also l be any positive integer so that suppµj ⊂ Kl = {x ∈ Rn :
∥x∥ 6 2lR0} for every j = 1, . . . ,m. Then, for every t ∈ intKl = {x ∈ Rn : ∥x∥ < 2lR0} the
solution f(t) is represented by

f(t) =
1

(2π)n
< ∂̄

1

µ
(ζ), e−i<t,ζ>

 ∫
ξ∈Rn

f̂χl(−ξ)g(ξ, ζ)Bm,l(ξ, ζ)dλ(ξ)

 >, (4.1)

where the form Bm,l(ξ, ζ) is the restriction of the form Bm(ξ, ζ) to Kl.

Proof. Since χl+1 ≡ 1 on Kl+1 and suppχl1 ⊂ intKl+1 we have that ˇ(fχl+1)∗µj = f̌ ∗µj = 0

holds on Kl = B(0, 2lR0) = B(0, 2l+1R0 − 2lR0) for every j = 1, . . . ,m. Hence

̂̌(fχl+1) ∗ µj =
̂̌(fχl+1) · µ̂j = 0, j = 1, . . . ,m.

Therefore, letting g(ξ, ζ) = g1(ξ, ζ) ∧ · · · ∧ gm(ξ, ζ), the Plancherel formula becomes
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(2π)n
∫
Rn

f(t)u(t)dt =

∫
Rn

(̂fχl)(−ξ)û(ξ)dξ =

=

∫
Rn

(̂fχl)(−ξ)

j=m∑
j=1

µ̂j(ξ)Uj(ξ)

 dξ +

∫
Rn

(̂fχl)(−ξ) < ∂̄
1

µ
(ζ), û(ζ)g(ξ, ζ)Bm,l(ξ, ζ)dξ >=

=< ∂̄
1

µ
(ζ),

∫
ξ∈Rn

f̂χl(−ξ)û(ζ)g(ξ, ζ)Bm,l(ξ, ζ)dξ > .

Now, recall that û(ζ) =
∫
Kl

u(t)e−i<ζ,t>dt for a test function u ∈ D(intKl). If we assume also

that the interior of the set supp u ⊂ intKl is not empty and that u ≡ 1, then Fubini’s Theorem
implies that

(2π)n
∫
Kl

f(t)u(t)dt =< ∂̄
1

µ
(ζ), û(ζ)

∫
ξ∈Rn

f̂χl(−ξ)g(ξ, ζ)Bm,l(ξ, ζ)dξ >=

=

∫
Kl

u(t)e−i<ζ,t>
(
< ∂̄

1

µ
(ζ),

∫
ξ∈Rn

f̂χl(−ξ)f̂χl(−ξ)g(ξ, ζ)Bm,l(ξ, ζ)dξ >
)
dt.

Note that one can use Fubini’s Theorem because the action of the residue current ∂̄
1

µ
= ∂̄

1

µ1
∧

∂̄
1

µ2
∧ · · · ∧ ∂̄

1

µm
is independent of e−i<ζ,t>, because this function does not contribute to the

set of common zeroes of the functions µ̂j , j = 1, . . . ,m. We now apply Lebesgue’ Differentiation
Theorem to deduce that for almost all t ∈ int(supp u) one has that (4.1) holds. This concludes
the proof of the proposition. 2

We now formulate the main result of the paper.

Theorem 4.1. Let f̌ ∗ µj = 0, j = 1, . . . ,m be a homogeneous system of convolution equations
in E(Rn), where f ∈ E(Rn) and µj ∈ E ′(Rn), so that the entire functions µ̂1, . . . , µ̂m are slowly
decreasing with respect to L and form a complete intersection in Cn. Then, there exists an
(n, n−m) differential form

Ψ(ζ) =

∫
ξ∈Rn

f̂χl(−ξ)ĝ(ξ, ζ)Bl(ξ, ζ)dξ,

whose coefficients are in the space L1(Cn, τ), where τ is some element in LAU structure, so that

f(t) =
1

(2π)n
< ∂̄

1

µ
(ζ), e−i<t,ζ>Ψ(ζ) >, t ∈ Rn. (4.2)

Proof. For the sequence of compact closed balls

Kl = {x ∈ Rn : ∥x∥ < 2lR0} ,

where R0 > 0 and l ∈ N exhausting Rn, we describe the LAU structure U . Let ρl = e4γl(lγl)
Nσ2

l

be a sequence of positive constants, where the constant γl depends on Kl and the con-
stant σl depends on the solution f that we want to express explicitly. For example γl =
= max{∥t∥, t ∈ Kl} = 2lR0 and N is the order of differential operator involved in computa-

tion residual term ∂̄
1

µ1
∧ ∂̄

1

µ2
∧ · · · ∧ ∂̄

1

µm
. Let τ be some function in LAU structure that

dominates all the functions

sup
l∈N

(
e−4γl(lγl)

−Nσ−2
l (ωl)

peHKl
(ℑ(·))

)
, p = 1, . . . ,N + 1.
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From the preceding proposition we know that for every l ∈ N there exists a differential (n, n−m)
form Ψl(ζ) such that

f(t) =
1

(2π)n
< ∂̄

1

µ
(ζ), e−i<t,ζ>Ψl(ζ) > .

Applying Ascoli’s Theorem, we extract a subsequence of (n, n − m) forms from the sequence
on {Ψl} of (n, n − m) forms that converge in the space of differential forms with continuous
coefficients in the space L1(Cn, τ). 2

References
[1] L.A.Aizenberg, A.P.Yuzhakov Integral Representations in Multidimensional Complex Anal-

ysis, Transl. AMS 58, 1980.

[2] M.Andersson, M.Passare, A shortcut to weighted representation formulas for holomorphic
functions. Ark. Mat., 26(1988), no. 1, 1–12.

[3] C.A.Berenstein, B.A.Taylor, Interpolation problems in Cn with applications to harmonic
analysis, J. Analyse Math., 38(1980), 188–254.

[4] C.A.Berenstein, R.Gay, Complex Analysis and Special Topics in Harmonic Analysis,
Springer-Verlag, 1991.

[5] C.A.Berenstein, R.Gay, A.Vidras, A.Yger, Residue currents and Bézout identities, Progress
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Локально явный фундаментальный принцип
для однородных уравнений в свертках

Алекос Видрас
Кафедра математики и статистики

Университет Кипра
POB 20537, Никосия 1678

Кипр

В настоящей статье локально явная версия основополагающего принципа Эренпрейса для систе-
мы однородных уравнений в свертках f̌ ∗µj = 0, j = 1, . . . ,m, f ∈ E(Rn), µj ∈ E ′(Rn), получается,
когда преобразования Фурье µ̂j , j = 1, . . . ,m — медленно убывающие входные функции, которые
образуют полное пересечение в Cn.

Ключевые слова: фундаментальный принцип, формула деления.
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