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In the present paper a locally explicit version of Ehrenpreis’s Fundamental Principle for a system of
homogeneous convolution equations f+p; =0, j=1,...,m, f € ER™), p; € E'(R™), is derived, when
the Fourier Transforms fi;, j = 1,...,m are slowly decreasing entire functions that form a complete
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1. Fundamental principle for homogeneous convolution
equations

Probably, the monograph [1] was the first in the field that illustrated that both, residues
and integral representation formulas in several complex variable, are powerful tools allowing to
provide solutions to seemingly untractable otherwise mathematical problems. In the present
paper weighted integral representation formulas and different than in [1] realization of residues
allow to approach from local point of view the Fundamental principle of convolution equations.

Recall that a pluri-subharmonic function p(z) on C” is called a weight function ([3]) if it is
satisfying the following conditions: i) p(z) > 0, ii) log(1 + ||z||) = O(p(2)), iii) if ||z — || < 1,
then p(¢) < A1p(z) + Az for some constants A; and As.

Given a weight function p(z) we consider the corresponding subspace of vector space of entire
functions A(C™):

Ay ={f€AC"): 3A;, By >0 : |f(2)] < Aferp(z)}.

If (f1,..., fm) are m entire functions on C", then £ denotes the family of m-dimensional affine
subspaces L of C™, such that

Urer D{2€C": fi(2) =0, 1 <i<n}.
Following [3] we recall the following definition

Definition 1.1. The family (f1,..., fm) of m entire functions is slowly decreasing with respect
to L if and only if there exist positive constants €1, C1, K1, Ko such that
1) for each L € L the set

O={zeL: |fi(z)] <eexp(—Cip(2)), 1 <i<m} (1.1)

has relatively compact components,
2) If O as in (1.1) and z,¢ belong to the same component of O, then

p(¢) < K1p(z) + Ks.

*msvidras@ucy.ac.cy
© Siberian Federal University. All rights reserved

— 466 —



Alekos Vidras Locally Explicit Fundamental Principle for Homogeneous Convolution Equations

Given a slowly decreasing family of functions (fi, fa,..., fm) with respect to the family £
and the weight function p(z) one defines for a component G of O the open set

Q¢ = {2 € C": there exists ( € G so that |z — (| < eaexp (—C2p(¢))}, (1.2)

for some positive constants €5, Cs. Such an open set is called good. Keeping the values of the
parameters €1, Cy from Definition 1.1 and the values of the parameters es, Cy from (1.2) fixed,
one obtains the family of open sets Z = {Q2¢}cco. The family 7 is called good family. If both
parameters €; and €5 decrease, while both parameters C'; and Cs increase, then the good family
7’ so produced is called a good refinement of Z. A naturally defined refinement map p: 7/ — 7
corresponds to any open set -, € I’ associated with the component G’ of an open subset O’ of
a certain line (m-plane) L € L, the open set  associated with the unique component G of the
open set O such that G’ C G. Thus, it is natural to consider the following definition ([3]).

Definition 1.2. A good family T is said to be almost parallel if and only if there exists its good
refinement ' such that whenever Qo, Q1 € Z' and Qo N Q1 # 0, then Qo U Q1 C p(Qo) N p(21),
where p is the natural refinement map defined above.

We continue by recalling another necessary definition from ([3]).

Definition 1.3. We say that L is an analytic family of lines (m-planes) if and only if there is good
family T associated to L with the following property: given Q2 € T with the associated line (m-
plane) L € L there exist local analytic coordinates (s,t) on 2 such that QN{(s,t): t =0} =QNL
and QN {(s,t): t = const} = QN Ly for some L € L.

Furthermore, recall that for m < n, an m-tuple of holomorphic functions (f1,..., fm), fi :
C" — C, 1 < i < m, defines a complete intersection in C™ if and only if the complex dimension
of the analytic set of common zeroes Z of the functions f; is equal to n — m, that is,

dim¢ Z = dimc(ﬂlgingﬂ) = dim¢ (ﬂlgigm {Z eC": fl(z) = 0}) =n-—-—m.

The following variation of Fundamental Principle for homogeneous system of convolution equa-
tion is formulated and proved in [3]

Theorem 1.1. Assume that p; € E'(R™), for j = 1,...,m, are slowly decreasing and form a
complete intersection. That is, for p(z) = |Sz| + log(1 + |z|), 2 € C™ there exists an analytic ,
almost parallel family of lines such that fi; for j =1,...,m, are slowly decreasing with respect to

this family in A,(C™). Then, there exists a locally finite family of closed V;, j € J and a partition
of the index set J into finite subsets Jj, together with partial differential operators 0f in z with
analytic coefficients on the regular points of the set V.= {z € C" : [;(z) =0, j =1,...,m}
satisfying: 1) UV C V, 2) each function x — 07 (e™""%), with 2 € V, is a solution to
fxp;=0,5=1,....,m, where f(x) = f(—z), € R", 3) to each solution f € E(R™) of the
system f*uj =0,7=1,...,m, there corresponds a family of Borel measures v;, whose support
is contained in the sets V; and such that the series

=3 / Ar(e~ %) dv; (2) (1.3)

k jGJka

is convergent in the space E(R™).

2. Integral representation formula depending on parameter

For Ry > 0, we define the sequence closed balls with doubling radius property

K; = B(O72lR0) = {.’1? € R ||$|| < QZR()}, leN
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Then {K;}icn is an increasing sequence of compact convex set s satisfying K; C intK;;q and
UK; = R™. Let also {x;}ien be a sequence of elements from D(R™) such that suppx; C K41,
x; = 1 in some neighborhood of K;, [ € N. The set U/ of all continuous functions on C" of the
form
7(2) = sup (0 exp(lIn(2 + I121?) + Hg, ($2))),
leN

where {d;}ien is a sequence of positive constants, is a LAU structure for the set £'(R™) ( [9,10]).

We now turn to the localization of the solution f to the system f*p; =0,j=1,...,m. Our
purpose is to describe f explicitly in intK;, | € N. In order to do that we first test f against
u € D(C"), with suppu C intK; for some [ € N. Using the definition of the characteristic
function y; we get from Plancherel theorem that
foutat= [ Fao-oaed (21)

n

Rn

The starting point is a weighted Koppelman integral representation formula for the holo-

morphic function ﬁf)(%), where § € D(C") so that § = 1 on an open neighborhood of B(0, 1)

and supp C B(0,2). This weighted integral representation formula is constructed following the

approach developed in [2,7]. Using it, we will produce a division formula involving the functions
fj, j=1,2,...,m, [6]. In C" we have the following Heffer functions

k=n
(2) = 1560) = D gik(z O —G) F=1,...,n,
k=1

O (¢ 4tz — )t

gj,k(ZaC) 0 8Ck

and the corresponding Heffer (1, 0)-form
k=n
g](za C) = Z gj,k(za Ode» ] =12,...,m.
k=1

Furthermore, following [6], within the spirit of constructions in [2,7], we introduce three pairs
(Q1,Gh), (Q2,G2), (Qs3,G3) of auxiliary functions defined as follows

Ql(z7c) = (QllanQ:“'ann)(zaC):EX5—>(C”7

. B B PRI G
Ql’t(z7<> - mj:1 |/’(‘j(C)‘ ﬂj(C) ,1=1,2,...,n
1 j=m—1
2o

where D C C" is a bounded domain with C? boundary and \ a complex parameter with suffi-
ciently large positive real part, that is, ’A >> 0. Similarly, we have

Q2(2,¢) = (Q21,Q22,...,Q2,)(2,() : Dx D — C",

Quil=.C1) = QQi(C,Z):2ag§Q,z:l,2,...,n
Go(t) = ¢V,
@+ ¢l?)

where w;(¢) = , 1 € N, N = max(ord(Qys)) +n+ 1, Qjs-being the differential

]
operators describing the action of the residue currents, o; are suitably chosen constants. Finally,
the third pair of auxiliary functions is defined by
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Q3(2,¢) = (Q31,Q32,...,Q3,)(2,¢): Dx D — C",
Quile, (1) = Quilc, 1) = 220m (adc* P
Gs(t) = exp(t—1),

i=1,2,....,n

where p is a C*> function supported in the unit ball, while having mass equal to 1 there. The
function Hp, is the usual support function for compact convex sets K; introduced in the previous
section. These leads us to define the (1, 0)-forms

i=n

i=1
In order to derive the Koppelman integral representation formula with a complex parameter A
we have to consider the C! map

S: DxD — C",
satisfying for every compact K contained in D the estimates a) ||S(z,¢)|| < C¥|lz — (||, b)
(8(2,¢), 2 —¢) = CX||z — ¢||? and the corresponding (1, 0)-form

i

Il
3

Il
—

The positive constants C¥, CX above depend on K. In order to simplify the notation, we put

@](Z,C) = <Q]7Z—C>’ j:17273’
d*G; .

Direct application of the results from [2,7] leads to the following

Proposition 2.1. The function ﬂ(f)@(%), holomorphic in a neighborhood the closed complex ball
Bc(0, R), satisfies the following Koppelman integral representation formula for ¢ € Be (0, R):

ey s e

19 = 109(§;) = e ([ 100(5) P60+ [a00(F)mre0). 22
whenever the value of the complex parameter having large enough positive part R\ >> 0 is fized.
The kernel Py(&, () is the (n,n)-form

k=m
PEC) = Y GP(@1(E,0)Br(E Q) A (D), (2.3)

k=0

G(az)G(a3) B ~
> = (0g2)™ A (9g3)*, k=0,1,...,n
CMQ!O(g!

Bk (fa C)

as+taz=n—k
and kernel Kx(&,() is the (n,n — 1)-form defined by

k=min{m,n—1}

K¢ = S GP@(E ) A Q) A B, (2.4)

k=0

agtastas=n—k—1

GYGE) s A (95)%0 A (Dg2)™ A (9gs)™
aslas! <8,z — (>0t

)

whenever k = 0,1,...,min{m,n — 1}. Furthermore, the right side of (2.2) has holomorphic
extension into the half-plane R\ > —6§, § > 0.
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Proof. The proof of the first claim is straightforward. First, we apply the method from [2,7]
to construct the representation formula (2.2), with summation up to n, where the kernels Py (¢, ¢)
and K (&, ¢) are defined by the relations (2.3) and (2.4) correspondingly, with only difference that
summation is up to n in the first case and up to n — 1 in the second one. Then the observation
that G1(t) is a polynomial of degree m leads to the desired conclusion.

Furthermore, we observe that

Bi(6,0) = 14 < Qu(6, 06— ¢ o1+ LS SO e =

9 I 9 m =5 ﬂ](C) Jst 7
L ISR IO IO oINS e
—1+m; o ug(C))—mj:1 AR mj=1< 15O, (2.5)

115 (PP D0 f1;(¢) Y 916, ¢)dGi =

j=1 i=1

5Cq1 (€a C) =

15 ()P0 () g5(&, €).-

Hence, simplifying the notation, we get the (m, m)-form

m( m, 1) )\ m

(0q1)™ = (=1) S |a* Ao A g,
where || = || .. |fiml, 9 =G AN AGm, A= (/\, ...,A),and 1 =(1,...,1). Now, looking
—_—— ———
m-times m-times

at every term of the kernels Py, K described in (2.3), (2.4) one observes that for every k the
integral of the corresponding terms in (n,n) or (n,n—1) forms can be continued, as function of \,
holomorphically in a neighborhood of A = 0. To be more specific, the extensions of distribution
valued functions

A — ng)Ak/\(éql)k
A — GWBL A (Oq)F

defining, for every value of A, terms in the kernels Py and K are holomorphic in the neighborhood
of A = 0. This follows from Prop. 3.6 in ([5]) when A\; = Ay = --- = \,;,. We claim that the value
of holomorphic extension of the above functions at A = 0 is equal to zero, whenever kK < m — 1.
That is, the only terms that have a nonzero contribution in the first integral of (2.2) at A = 0 are
the term of the kernel Py that corresponds to k = m and k = m — 1. Similarly, the only terms
that have a nonzero contribution in the second integral of (2.2) at A = 0 are the terms of the
kernel K that corresponds to k = m and k = m — 1. Actually, the terms in question are (n,n)
or (n,n — 1) forms, whose coefficients contain factors (or powers of such factors) of the form

)\kH<|:uJL ) )7 H(17|AJ1 |2/\ HI:U‘ |2()\ 1) /\a/ljd7

ler “Jl i€l deJ deJ

where |I|+|I1|=n—k or |I|4+|I1]|=n—k—1, |J|=k and the subsets of indices are mutually disjoint.
The vanishing of the corresponding integrals at A = 0 follows from the application of Prop. 1.5
from ([5]) after the application of Hironaka’s de-singularization theorem on fifa... f, = 0. The
only other interesting cases that remain to be seen are those that correspond to the cases when
k=m —1 or kK =m. This completes the proof of the proposition. O
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3. The division formula

Keeping the notations from previous sections we formulate the following proposition

Proposition 3.1. Assume that fi; € A,(C™), i =1,...,m, p(z) = ||Sz| +log(1l + ||z||) form a
complete intersection and are slowly decreasing with respect to L. Then for £ € C™ the following
equality holds

A(6) = 3 OV < 95-() o 020,000 ) A Agm(E) ABE) > (31

1 M1 Hm

<

where U;(§) is a Fourier transform of distributions with compact supports contained in K; =
= B(0,2'Ry) and By(&,-) is a (n —m,n —m) differential form given by

N
m Y B e (<20 (30 ) (0.6 - ¢ > ) (06,0 0 m €.0)
Bi1+P2=n—m 51-6
where 9(&,¢) =< 26(:7((5)7 E—(C>+1 and
508(6:€) = Ty (00 (3 # (C1)™ A (00108 (€)™

Proof. Let us begin with the discussion of the terms in the forms Py and K of degree k = m
and k = m — 1. When k = m, we have the terms that are residual

G(lm)Bm(éql)m = const | a*A" VA g, (3.2)
Ggm)Am(éql)m = const \"|a[*A" VoA g, (3.3)
1 1

In this case we have forms, whose
1 &=

4(2)0] < (14
+]1z]|) "t exp(—||z]|), because of the slowly decreasing assumption for the entire functions fi;,

7 =1,...,m. In the case k = m — 1, we have

where w = A4,, = <8,z — ¢ >2aotD) T <Sz-(>2

coefficients, near the set of common zeroes, have growth growth estimates

GU" VBpa(0g)" ™ = (n—m+1,n—m+1)-form, (3-4)
Ggm_l)Am—l(éth)mil = (’I’L —m+ 17 n—m+ 1)_f0rm’ (35)

whose support depends on the radius of the ball K; and whose terms contain, as coefficients,
reciprocals of slowly decreasing functions. Thus, since we want to get our division formula to
hold over C™ it is enough to see the convergence of these terms while R — +00. The forms

G(az)G(a?’) = e = e s A (9s)x
=23 (Dg2)™ A (Dgs)°?, -5 Z—(C >)2(a0+1)

042!0(3!

are factors in forms A,,, By, Am_1, Bim_1, when as+a3 = n—m or when ag+as+a3z = n—m—+1.

Thus, these terms require estimates for the behavior of Gg”), GéaS) and (9¢;)*, i = 1,2 and of

their products, when R — +o00. Furthermore the same type of estimate is needed for 50(%).

First, we observe that since u € D(€2), its Fourier transform satisfies for every k € N the estimate
1

la(¢)| < Ckw exp (HKZ(%(O))a e
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On the other hand, the function (Hg, (3(+)) * p) (¢) is convex, since for a compact convex set K
the support function Hy is convex also. Therefore we deduce that

R <O (Hr, (S() *p) (€),§ = C>< (Hi(S()) * p) (§) = (Hk(S()) * p) (€),
whenever £,¢ € C". Hence
|e<a(HKL(%«))*p)((),s—o‘ < R<O(Hie (S()#p)(Q)€=C> < ((Hi (S()#0) (€)= (Hi (3())*0) ()
Thus

‘D?,Ee<3(HKZ(9('))*P)(C)»E*C>| < Ci(z,a)(1 + ||C||)|O‘|e*(HK1,(g('))*p)(o,

where o € N™, ||( =& > 1 and |a] = > a(j) = sum of orders of j-directional derivatives. For
the positive constant Cj(§, ) the following estimate holds

(&, )] < d(a)y)! exp(dy) (1 + [|&[])) e~ (T (SE=0)©)

For the estimate of 50(%), when ¢ € C" is fixed and ¢ € C™ is such that || — (|| > 1, one has
that

0 0(S —k = (Hic, (S())*p) (0)
‘Dc,59(§)| STy Ry a)(1+ICl) e (Hx, Q).
_1 _1
where k£ > 0 and o € N and TI';(, k, @) is a positive constant. By letting 85() - 3[7() A
1

= 1
-+ A 0—/{-), the above estimates imply the relation (3.1) when R — oc.

m

4. Locally explicit version of fundamental principle

Keeping the notation from above, we begin the present section by obtaining localized explicit
solutions to a system of homogeneous convolution equations. Namely, we have the following
proposition

Proposition 4.1. Let JE*Hj =0,7=1,...,m be a homogeneous system of convolution equations
in E(R™), where f € ER™) and p; € E'(R™), so that the entire functions fi1,. .., fm form a
complete intersection in C™. Let also | be any positive integer so that suppp; C Ky = {x € R™ :
|z|| < 2'Ro} for every j = 1,...,m. Then, for every t € intK; = {x € R" : |z|| < 2'Ro} the
solution f(t) is represented by

ft) = - < 5L(), et l/?%e@maoamaxmxo >, (4.1)

EER™
where the form By, (€, () is the restriction of the form By, (€, () to Kj.

Proof. Since x1+1 = 1 on K41 and supp x;, C intK;4+1 we have that (val—H)*ﬂj = f*uj =0
holds on K; = B(0,2!Ry) = B(0,2!*1 Ry — 2! Ry) for every j = 1,...,m. Hence

—_—

(fX;+1)*Nj Z(fX2+1)'/7j =0, j=1,...,m.

Therefore, letting g(&,¢) = g1(§,0) A -+ A gm (&, C), the Plancherel formula becomes
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) [t = / (FPa(-€e)de =

SRl Z U(©) | de+ | (=€) < (0. 0C)ale. O Bona(é: Ve >=

—< 020, [ Fa=OuUQg(E Q) BumilE, Q)i >
M £eRn

Now, recall that @(¢) = [ u(t)e”*<¢*>dt for a test function u € D(intK;). If we assume also
K

that the interior of the set suppu C intK; is not empty and that « = 1, then Fubini’s Theorem

implies that

1 R _
(2m)" /f t=< 3*(@) a(¢) / Ixi(=€)9(&, Q) Bmi(§,Q)d§ > =
GR’IL
= [uwe== (<. [ Fat-9T-00(6.0Bmile s > )i
K £eR
Note that one can use Fubini’s Theorem because the action of the residue current 53 = 5‘i A
K H1

=1 =1 )
00— A --- A O— is independent of e~ *<¢*> because this function does not contribute to the
H2

m
set of common zeroes of the functions fi;, j = 1,...,m. We now apply Lebesgue’ Differentiation
Theorem to deduce that for almost all ¢ € int(suppu) one has that (4.1) holds. This concludes
the proof of the proposition. a

We now formulate the main result of the paper.

Theorem 4.1. Let f * wj =0,7=1,...,m be a homogeneous system of convolution equations
in E(R™), where f € ER™) and p; € E'(R™), so that the entire functions fix,. .., fim are slowly
decreasing with respect to L and form a complete intersection in C™. Then, there exists an
(n,n —m) differential form
EER

whose coefficients are in the space L' (C", T), where T is some element in LAU structure, so that

1 =1 .
—— < 0=(C), e <L W(() >, te R 4.2
G < 0,0 ©) (12)

Proof. For the sequence of compact closed balls

ft) =

K; = {.’L‘ € R Hx|| < QIRO},

where Ry > 0 and [ € N exhausting R™, we describe the LAU structure Y. Let p; = 64’}/[(1’}/1)/\/ 2

be a sequence of positive constants, where the constant 7, depends on K; and the con-

stant o; depends on the solution f that we want to express explicitly. For example v, =

= max{||t||, t € K;} = 2'Ry and A\ is the order of differential operator involved in computa-
_ -1 =1

tion residual term 09— A 9— A --- A 0—. Let 7 be some function in LAU structure that

f1 fho fom
dominates all the functions

sup (e_4"”(lvl)_Non(wl)peHKl (S('))) , p=1,... . N+1.
leEN
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From the preceding proposition we know that for every [ € N there exists a differential (n,n—m)
form ¥;(¢) such that

1 =1 ;
t) = o < 0—((), e "<HY(C) > .
Applying Ascoli’s Theorem, we extract a subsequence of (n,n — m) forms from the sequence
on {¥;} of (n,n —m) forms that converge in the space of differential forms with continuous
coefficients in the space L'(C", 7). ad
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JIokaabHO ABHBINA (pyHIJaMEHTAJILHBIN ITPUHITAT
AJisd OMHOPOJAHBIX YPaBHEHUI B CBEPTKAaX

Anekoc Buapac

Kadempa maremaTuku u craTucTuku
Yuusepcurer Kumpa

POB 20537, Hukocus 1678

Kunp

B nacmosweti cmamove A0KaGADHO ABHAA BEPCUA OCHOBOMOAARGIOUWE20 NPUHUUNG IDeHnpetica OAfL cucme-
MBL OOHOPOOHBIT YPABHEHUT 8 C8EPMKAL f*uj =0,j=1,...,m, f € ER"™), p; € E'(R™), noayuaemca,
Kxoeda npeobpasosarnus DPypve fij, 7 = 1,...,m — medrenno youearoujue 6xodrvie GYHKUUL, KOMOPbIE
obpasyrom noanoe nepeceverue ¢ C".

Knouesvie caosa: GyndamenmarvoHoiti npuryun, Gopmyia deseHus.
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