удк 517.9 Fine-analytic Functions in \mathbb{C}^n

Azimbai Sadullaev* Department of Mathematics National university of Uzbekistan University, 4, Tashkent, 100174 Uzbekistan

Received 07.09.2018, received in revised form 09.11.2018, accepted 13.04.2019

In this paper we study class of fine-analytic functions in the multidimensional space \mathbb{C}^n . The definition of fine-analytic functions in the multidimensional case differs somewhat from the well-known definition of fine-analytic functions on the plane. We give a relationship between classical notion of fine-analyticity and fine-analyticity in \mathbb{C}^n .

Keywords: Gonchar class, finite order functions, rational approximation, fine-analytic functions, pluripolar sets.

DOI: 10.17516/1997-1397-2019-12-4-444-448.

1. Introduction and preliminaries

In [17] (see also [16]), we established the following connection between Gonchar class functions with fine-analytic functions in complex space \mathbb{C}^n :

Theorem 1.1 (A. Sadullaev, Z. Ibragimov). Let $K \subset \mathbb{C}^n$ is a nonpluripolar set and $f \in C(K)$ is a continuous function on it. If f belong to the Gonchar class R_K of finite order, i.e., there exist a sequence of rational functions

$$r_m(z) = \frac{p_m(z)}{q_m(z)}, \ \deg r_m \leqslant m, \ m = 1, 2, \dots,$$

such that

$$||r_m - f||_K^{1/m} \leq \frac{1}{m^{1/s}}, \ m = 1, 2, \dots, \ s < \infty,$$

then f fine-analytically continues to the whole space \mathbb{C}^n . That is, there is a fine-analytic function \tilde{f} on \mathbb{C}^n , such that $\tilde{f}|_K \equiv f$.

The definition of fine-analytic, more specifically (W2) fine-analytic functions (see Definition 3) in the multidimensional case differs somewhat from the well-known definition of fine-analytic functions on the plane. In this paper we give comparisons of these definitions in the one-dimensional case, we give examples and indicate the difficulties in determining fine-analytic functions in \mathbb{C}^n by the standard way.

We first recall the definition of fine-analytic functions. They are determined by means of fine(thin) topology. A fine topology in \mathbb{C}^n is the weakest topology in which all plurisub-harmonic (psh) functions are continuous. A fine topology is generated by sets of the form $\{u(z) < \alpha\}, \{u(z) > \alpha\}, u \in psh(\mathbb{C}^n)$. Fine neighborhood of a point a is an open set

^{*}sadullaev@mail.ru

[©] Siberian Federal University. All rights reserved

 $V \subset \mathbb{C}^n, a \in V$, in the fine topology for which the complement $W = \mathbb{C}^n \setminus V$ is thin at the point a, i.e. there exists a ball B = B(a, r) and a plurisubharmonic in B function $u \in psh(B)$: $\lim_{z \to a, z \in W} u(z) < u(a)$. A closed fine neighborhood of a point is a compact of the form $\overline{B}(a, r) \setminus G$, where r > 0, $G \subset B(a, r)$ is an open, thin set at the point a. In the general case, in a literature, a fine neighborhood is any set $V \subset \mathbb{C}^n$, $a \in V$, for which $\mathbb{C}^n \setminus V$ is thin at the point a (see, for example, [2]).

Definition 1. A function f(z) is called fine-analytic in a planar domain $D \in \mathbb{C}$ if

- 1) it is defined almost everywhere with respect to the capacity in D i.e., outside of some polar set $E \subset D$ it admits a finite value;
- 2) for each point $a \in D \setminus E$ there is a closed fine neighborhood F of a such that $f|_F \in R(F)$, or, equivalently, the restriction $f|_F$ is uniformly approximated by rational functions on F.

The notion of fine-analyticity was introduced and used by B. Fuglede [8–10] for a class of functions that have the Mergelyan property in fine neighborhoods of a point. If a function f(z) is analytic in a neighborhood of a point a, then f has the Mergelyan property in arbitrary compact $K \ni a$, i.e f is uniformly approximated on K by rational functions. Fine analyticity of f in the point a means uniformly approximation by rational functions only on some fine neighborhood $K \ni a$. In work of A. Edigarian and J. Wiegerinck [3, 4], A. Edigarian, S. El Marzguioui and J. Wiegerinck [5], S. El Marzguioui and J. Wiegerinck [14], J. Wiegerinck [18], T. Edlund [6], T. Edlund and B. Jöricke [7] fine-analytic functions were studied for their applications in pluripotential theory, more precisely, in the description of pluripolar hulls, in the establishment of pluripolar hulls of graphs $\Gamma = \{w = f(z)\}$. On pluripolar hulls of analytic sets and graphs $\Gamma = \{w = f(z)\}$ see also the papers of N. Levenberg, G. Martin and E. Poletsky [12], N. Levenberg and E. Poletsky [13].

In [15] the author constructed a function $f \in O(U) \cap C^{\infty}(\overline{U})$, where U is disk, such that the pluripolar hull $\widehat{\Gamma}_f = \Gamma_f$. It is clear that if f(z) holomorphically extended to some point $z^0 \in \partial U$, then the point $(z^0, f(z^0)) \in \widehat{\Gamma}_f$. It is natural to expect the opposite, that if $(z^0, f(z^0)) \in \widehat{\Gamma}_f$, then f(z) will be holomorphic at the point z^0 . But this assumption was refuted by A.Edigarian and J. Wiegerinck [4], who constructed a function f, that is holomorphic only inside the unit disk, for which $\widehat{\Gamma}_f \neq \Gamma_f$. J. Siciak, studying this example of Edigarian and Wiegerinck, established that the function f is analytically "pseudo-continued" through boundary points ∂U and the pluripolar hull $\widehat{\Gamma}_f$ always contains a graph of the pseudo-continued function; however, the condition of pseudo-continuity is not necessary for $\widehat{\Gamma}_f \neq \Gamma_f$. In [7] T. Edlund and B. Jöricke showed that a fine-analytic continuation is well suited for describing the pluripolar hull of the graphs.

Unfortunately, the Definition 1 has one drawback, that the elementary functions, such as

$$f(z) = \begin{cases} \exp\frac{1}{z}, & \text{for } z \neq 0\\ 0, & \text{for } z = 0 \end{cases}$$
(1)

is not fine-analytical, although outside the point z = 0 it is represented as

$$f(z) = 1 + \frac{1}{z} + \frac{1}{2!z} + \dots$$

and belong to the Gonchar class R. In connection with this example, we will extend the class of finely analytic functions by slightly weakening the condition.

Definition 2. A function f(z) is called (W1)fine-analytic in a domain $D \in \mathbb{C}$ if

- 1) it is defined almost everywhere with respect to the capacity in D i.e., outside of some polar set $E \subset D$ it admits a finite value;
- 2) for each point $a \in D \setminus E$ there is a closed fine neighborhood F of a, such that there exists a sequence of rational functions $r_m(z)$, m = 1, 2, 3..., with poles outside $F : r_m(z^0) \to f(z^0)$ as $m \to \infty \forall z^0 \in F$. Moreover, $r_m(z)$ converges uniformly to f(z) inside of the set $F \setminus \{a\}$, in the sense that for any compact $F' \subset K \setminus \{a\}$, $||r_m - f||_{F'} \to 0$ as $m \to \infty$.

As mentioned in the work of Bedford–Taylor [1], in contrast to the planar case, in the multidimensional space \mathbb{C}^n , n > 1, the notion of thin set (i.e., a set, that is thin in any of its point) does not coincide with the concept of a pluripolar set. For these and for the complexity of the structures of R(F) in the multidimensional space \mathbb{C}^n we should point out that in \mathbb{C}^n , n > 1, we could not give definition of fine-analytic functions as in the Definition 1. For example, even the rational function

$$r(z_1, z_2) = \begin{cases} z_1/z_2 & \text{if } (z_1, z_2) \neq (0, 0), \\ 0 & \text{if } (z_1, z_2) = (0, 0) \end{cases}$$
(2)

is not fine-analytic in the sense of Definition 1, since the pluripolar set $\{z_2 = 0\}$ is not thin at the point $(0,0) \in \mathbb{C}^2$. It is convenient for us to define fine-analytic functions in \mathbb{C}^n as follows.

Definition 3. A function f(z) is called (W2) fine-analytic in a domain $D \in \mathbb{C}^n$ if there is an increasing sequence of close sets $F_j \subset F_{j+1} \subset D$, j = 1, 2, ..., such that:

- 1) the condenser capacity $C(B \setminus F_j, B) \to 0$ as $j \to \infty$ for each ball $B \subset \subset D$. It follows, that the set $D \setminus \bigcup_j F_j$ is pluripolar, but the convers is not true;
- 2) f admits a finite value everywhere in $\bigcup F_j$;
- 3) For each ball $B \subset D$ and for each number j, the restriction $f|_{\bar{B} \cap F_j}$ can be uniformly approximated by rational functions on $\bar{B} \cap F_j$, i.e. $f|_{\bar{B} \cap F_j} \in R(F)$, j = 1, 2, ...

We note that the function

$$f(z) = \begin{cases} \exp\frac{1}{z} & \text{for } z \neq 0, \\ 0 & \text{for } z = 0 \end{cases}$$

given in (1), which is not fine-analytic in the sense of Definition 1, is (W1) and (W2) fine-analytic on the plane \mathbb{C} : at the point a = 0 we can put $F = \{|z| \leq 1\}$, and the sequences of rational functions we construct in the following way. We set

$$F_m = \{ |z| \le 1 \} \setminus \left\{ 0 < |z| < \frac{1}{m}, \ -\frac{\pi}{2} - \frac{1}{m} < \arg z < \frac{\pi}{2} + \frac{1}{m} \right\}.$$

Then $f \in R(F_m)$ and there exists a rational function $r_m(z) : ||r_m - f||_{F_m} < \frac{1}{m}$. It is easy to see that the sequence $\{r_m(z), m = 1, 2, ...\}$ satisfies the conditions of Definitions 2 and 3.

2. Relationship between definitions 1-3 in \mathbb{C}

Let a function f(z) is fine-analytic in a domain $D \subset \mathbb{C}$ in the sense of Definition 1, i.e. it admits a finite value outside of some polar set $E \subset D$ and for each point $a \in D \setminus E$ there is a closed thin neighborhood $F \ni a : f|_F \in R(F)$. Then $D \setminus E$ is finely open set, in which the function f(z) is fine-analytic in the sense of B. Fuglede [8] (see, also [5, 10]). It is clear that from Defition 1 follows Definition 2, Def $1 \Rightarrow$ Def 2. As an example of the function (1) shows, the converse is not true. We prove the following theorem. **Theorem 2.1.** From Defition 3 follows Definition 2, Def $3 \Rightarrow Def 2$.

Proof. Let f(z) be (W2)fine-analytic in D, i.e. there is an increasing sequence of closed sets $F_j \subset F_{j+1} \subset D, \ j = 1, 2, \ldots$, such that, the condenser capacity $C(B \setminus F_j, B) \to 0$ as $j \to \infty$ for each ball $B \subset C D$ and the restriction $f|_{\bar{B} \cap F_j} \in R(F), \ j = 1, 2, \ldots$.

We take $a \in \bigcup_{j} F_{j}$, assuming without loss of generality, $a \in F_{1}$. By assumption of Definition 3

there exists a sequence of rational functions $r_j(z) : ||r_j - f||_{F_j} < \frac{1}{j}$. We can assume that $f(a) = r_j(a) = 0$. Then for each $j \in \mathbb{N}$ there exists a ball $B_j = B(a, \varepsilon_j) \subset \mathbb{C} D$: $||r_j||_{B_j} \leq \frac{1}{j}$, $\varepsilon_j > 0$. We can assume, that $\varepsilon_1 > \varepsilon_2 > \ldots$, and $\varepsilon_j \to 0$ as $j \to \infty$.

Now we use the following Wiener criterion (see [2, 11]): an open set $E \subset \mathbb{C}$ is thin in a point $z^0 \in \partial E$ if and only if

$$\int_0^1 \frac{C(\rho)}{\rho} d\rho < \infty,$$

where $C(\rho)$ is the capasity of $E \cap B(z^0, \rho)$.

Fix a ball $B = B(a, \varepsilon) \subset C$, $\varepsilon > \varepsilon_1$. Since $C(B \setminus F_m) \to 0$ as $m \to \infty$, then there exists an increasing sequence of natural numbers m_j : $C(B \setminus F_{m_j}) < \varepsilon_{j+1}$. We put $K_j = \bar{B}_j \bigcap F_{m_j}$ and $K = \bigcup_{j=1}^{\infty} K_j$. Then K is compact and $a \in K$. For any $\varepsilon_{j+1} \leq \rho < \varepsilon_j$ we have $C(\rho) = C(B(z^0, \rho) \setminus K) \leq C(B \setminus F_{m_j}) < \varepsilon_{j+1} \leq \rho$. It follows, that

$$\int_0^1 \frac{C(\rho)}{\rho} d\rho \leqslant 1$$

and by Wiener criterion $B \setminus K$ is thin at the point $a \in K$.

From $r_j(a) = f(a) = 0$ it follows that $r_j(a) \to f(a)$. In addition, if a compact $F' \subset K \setminus \{a\}$, then $F' \subset F_{j^0}$ for some j^0 . Therefore, $||r_j - f||_{F'} \to 0$ as $j \to \infty$. Theorem is proved. **Problem.** We do not know if Defition 3 will follows from Defition 1 or 2.

This work was received during my visit to ICTP (International Centre for Theoretical Physics), 17.08-17.09.18. I would like to thank the head of the ICTP for invitation and for creating an excellent condition of stay.

References

- E.Bedford, B.A.Taylor, Fine Topology, Šilov Boundary and (dd^c)ⁿ, Journal of Func. Analysis, 72(1987), no. 2, 225–251.
- [2] M.Brelot, On Topologies and Boundaries in Potential Theory, Lecture Notes in Math., Vol. 175, Springer-Verlage, Berlin, 1971.
- [3] A.Edigarian, J.Wiegerinck, The pluripolar hull of the graph of a holomorphic function with polar singularities, *Indiana Univ. Math. J.*, 52(2003), 1663–1680.
- [4] A.Edigarian, J.Wiegerinck, Graphs that are not complete pluripolar, Proc. Amer. Math. Soc., 131(2003), 2459–2465.
- [5] A.Edigarian, S. El Marzguioui, J.Wiegerinck, The image of a finely holomorphic map is pluripolar, Ann. Polon. Math., 97(2010), 137–149.

- [6] T.Edlund, Complete pluripolar curves and graphs, Ann. Polon. Math., 84(2004), 75–86.
- [7] T.Edlund, B. Joricke, The pluripolar hull of a graph and fine analytic continuation, Ark. Mat., 44(2006), 39–60.
- [8] B.Fuglede, Finely harmonic mappings and finely holomorphic functions, Ann. Acad. Sci. Fennicæ, 2(1976), 113–127.
- B.Fuglede, Sur les functions finement holomorphes, Ann. Inst. Fourier (Grenoble), 31(1981), no. 4, 57–88.
- [10] B.Fuglede, Finely holomorphic functions. A survey, Rev. Roumaine Math. Pures Appl., 33(1988), 283–295.
- [11] N.S.Landkof, Foundations of Modern Potential theory, Springer-Verlage, 1972.
- [12] N.Levenberg, G.Martin, E.A.Poletsky, Analytic disks and pluripolar sets, Indiana Univ. Math. J., 41(1992), 515–532.
- [13] N.Levenberg, E.A.Poletsky, Pluripolar hulls, Michigan Math. J., 46(1999), 151–162.
- [14] S. El Marzguioui, J.Wiegerinck, Continuity properties of finely plurisubharmonic functions, Indiana Univ Math J., 59(2010), no. 5, 1793–1800.
- [15] A.S.Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Russian Math. Surveys, 36(1981), no. 4, 61–119.
- [16] A.S.Sadullaev, Z.S.Ibragimov, The class R and finely analytic functions, Sbornik: Mathematics, 209(2018), no. 8, 1234–1247.
- [17] A.S.Sadullaev, Z.S.Ibragimov, Class R of Gonchar in Cⁿ, Springer Proceedings in Mathematics: Statistics, Algebra, Complex Analysis and Pluripotential Theory, 2 USUZCAMP, Urgench, Uzbekistan, August 8–12, 2017, 191–205.
- [18] J.Wiegerinck, Pluri fine potential theory, Ann. Polon. Math., 106(2012), 275–292.

Тонко-аналитические функции в \mathbb{C}^n

Азимбай Садуллаев Department of Mathematics

Национальный университет Узбекистана Университетская, 4, Ташкент, 100174 Узбекистан

В работе исследуются тонко-аналитические функции в многомерном комплексном пространстве \mathbb{C}^n . Определение тонко-аналитических функций в многомерном случае n > 1 несколько отличается от плоского случая n = 1. Мы сравниваем эти определения, в примерах показываем существенные их различия и необходимость использования именно предлагаемого в работе определения при n > 1.

Ключевые слова: класс Гончара, функции конечного порядка, рациональная аппроксимация, тонкоаналитические функции, плюриполярные множества.