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1. Introduction and preliminaries

Since the pioneer works summarized in [6], several studies have dealt with the nonparametric

functional estimation. This research field is motivated by the fact that several data collected in
practice, are given in the form of curves. Moreover, the progress of the digital computing tools
allows the treatment of such observations. Different kernel type estimators have been studied in
the literature, see for example [6]. Then, inspired by the local linear nonparametric method, [1]
have introduced a more general and flexible method than the kernel one. It is the so called local
modelling approach. They obtain a rate of the pointwise almost-complete convergence for their
estimator of the regression function.
But, as pointed out in [4] “the uniform consistency results are indispensable tools for the study
of more sophisticated models in which multi-stage procedures are involved". Under uniform
convergence, one can make prediction even if the data are not well observed. We also can
solve some problems such as data-driven bandwidth choice (see [2]), or bootstrapping (see [5]).
Uniform convergence of other local linear nonparametric estimators has been investigated in
some papers as [3] and [8]. In this work, our principal aim is to establish the uniform almost
complete convergence of the local linear estimator of a generalized regression function (which
includes the estimator introduced in [1]) and to focus on a tool of prediction (a conditional
quantile estimator). More precisely, Section 2 is devoted to introduce the generalized regression
function estimator and to state its pointwise convergence. Section 3 contains the principal results
of this work which consist to establish the rate of the uniform almost convergence of the last
estimator and to focus on the particular case of the conditional distribution function estimation
from which we deduce a rate of the uniform consistency of a conditional quantile estimator. In
Section 4 using a real data set, the prediction obtained from this last estimator is compared to
those of two other known estimators. Finally, the detailed proofs of some needed lemmas are
evoked in the Appendix.
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2. The estimation and the pointwise almost-complete
convergence

2.1. The model

Let us consider n pairs of random variables (X;,Y;);=1, , independent and identically dis-
tributed as the pair (X,Y’) which is valued in F x R, where (F,d) is a semi-metric space. Our
goal is to estimate the generalized regression function, defined for all z in F, by

mtp(gj) = E(SD(Y”X = I)?’

where ¢ is a known real-valued borel function.

It is clear that m, generalizes the classical regression function (set ¢(t) = t) as well as the
conditional distribution function (set for any y € R, p(t) = 1)_ 4 (1))

Following [1] who proved the pointwise almost complete convergence of the classical regression
function estimator, the local linear estimate of m,, is obtained as the solution for a of the following
minimization problem

n

min (@(Y;) —a—bﬁ(X“x))2 K(h_ld(th))a
(a,b)eR? =

where 3(.,.) is a known operator from F x F into R such that, Vo € F, 8(x, z) = 0, the function
K is a kernel and h := h,, is a sequence of strictly positive real numbers which plays a smoothing
parameter role.

This approach assumes that a + b3(.,z) is a good approximation of m(.) around z. As
B(z,x) =0, a will be a suitable estimate for m,(z).

By a simple calculus, one’s can derive the following explicit estimator

. Zz_f ﬁ(vz)é()m (0 - O) ,

0

where
Wi () = B(Xi, ) (B(Xi, ) — B(X;,2)) K(h™'d(X;, ) K (h~d(X;, z)).

As for I € {0,1}, we have

> W) (V) =Y {(B(Xi,x) - B(X;,2)) (B(Xi,2)¢! (V) — B(X;, )@ (Y7)) x

i,j=1 1<j

X K(h’ld(Xi,x))K(h’ld(Xj,x)},

if the denominator of the estimator m(x) is zero, it is the same for its numerator. Moreover,
under assumptions (H1) and (H3)—(HT7), we get E(Wia(z)) > 0 (see the proof of Lemma 4.4
in [1]).

Notice that the expression of M, allows fast computational issue and that the choices of
and d will be crucial.

2.2. The pointwise almost-complete convergence

Let x be a fixed point in F, for any positive real h, B(x,h) := {y € F/ d(z,y) < h} denotes
a closed ball in F of center x and radius h. We also define @,(ry,72) := P(r; < d(X,z) < rq2),
where r; and 75 are two real numbers.

We investigate the asymptotic behaviour of the local linear estimator m,, under the following
assumptions.
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(H1) For any h > 0, &,(h) :== D,(0,h) > 0.

(H2) my, € {f: F = R, d(xlirlr)lﬁof(z’) = f(z)}.

mey € : — > T e Sy x)— f(2')| < Cpd’(z,x where C, 1S a positive
(H27) 2 {f "r Rv Elb Ovv ! fa| f( ) f( /)| C db( 9 /)}7 h C i b iti
constant depending on z.

(H3) The function §(.,.) is such that: 30 < My < My, Vz' € F,

Mld(xvx,) < |ﬂ($,1}/)| < Mgd(l',x/).

(H4) The kernel K is a positive and differentiable function on its support [0, 1].

(H5) The bandwidth h satisfies: lim, ., h = 0, and lim, ngi’(lh) =0.

(H6) There exists an integer ng, such that
Vn > VG]-'l/lsl’)(hh)d(QK())>C>0
n > ng, Vv B o a(2h, h) o (2"K (2

and

=0 2Uf1}' u
héwmm%ww&ww-<é@mﬁ<,ma«ﬂ,

where dPx is the distribution of X.
(H7) Ym > 2: 2 — E(|p(Y)|™/X = x) is a continuous operator.

Remark that our hypotheses are very similar to the assumed conditions in [1].
Let us state the pointwise almost-complete convergence (a.co.) of m(z), along with a rate.

Theorem 1. Assume that assumptions (H1), (H3)-(H7) are satisfied.
(i) Under the additional hypothesis (H2), we have

T?Lw(x) - m@(x) = 0Oa.co.(1)-

(i) If in addition (H2’) is satisfied, we get

) Inn
m@(x) — mw(x) = O(hb) + Oq.co. <\/;(h)> .

Notice that the proof of this theorem is based on a standard decomposition given for all
x € F, by

i () — m(z) = —— [(m1(x) — Ema(2)) — (m(x) — By (2))] — T mo@) = 1)
mo(z) mo(z)

()

where, for [ = 0,1
1

Wij ()¢ (Y;).
n(n — 1) EWia(z) ;

my(z) =

The study of each term of this decomposition can be carried out exactly as done in the proof
of Theorem 4.1 and Theorem 4.2 in [1] with replacing Y by ¢(Y'), so for the sake of avoiding
repetitions, we omit the proof.

Now, we will focus on the uniform consistency.
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3. The uniform almost-complete convergence

3.1. The estimator m,

We will establish the uniform almost-complete convergence of M, on some subset Sy of F
which can be covered by a finite number of balls. This number has to be related to the radius of
these balls (see hypothesis (U5)).

To this goal, let us recall the following definition.

Definition 1. Let S be a subset of a semi-metric space F, and let € > 0 be given. A finite
set of points x1,xa,...,xn in F is called an e-net for S if S C Uivzl B(xg,e). The quantity
Ys(e) = In(N:(S)), where No(S) is the minimal number of open balls in F of radius € which is
necessary to cover S, is called Kolmogorov’s e-entropy of the set S.

It is known that the entropy of a set measures its complexity. We refer to [7] and [4] for more
details on this topic.

We suppose that z1,...,2y, (s-) is an rp-net for Sy where for all k € {1,...,N,, (SF)},
zp € Sy and (ry,) is a sequence of positive real numbers.

In this study, we need the following assumptions.

(Ul) There exist a differentiable function @ and strictly positive constants C,C; and Cj such
that
Ve € Sg,Vh > 0; 0 < C1P(h) < Py(h) < C2P(h) < o0

and
Ino > 0,VYn < no, ' (n) < C,
where @’ denotes the first derivative of ¢ with ¢(0) = 0.

(U2) The generalized regression function m,, satisfies:
3C > 0,3b > 0,Va € Sz, 2’ € B(xz, h), |my(x) — my(a')] < cd(z, ).

(U3) The function S(.,.) satisfies (H3) uniformly on z and the following Lipschitz’s condition
AC > 0,Vzy € Sg,x0 € Sy, € F,|B(x,21) — Bz, 22)| < Cd(21, x2).

(U4) The kernel K fulfills (H4) and is Lipschitzian on [0, 1].

(U5) lim h =0, and for r,, = O (1“7"), the function g, satisfies for n large enough:

n— oo

)

(Inn)? Inn nd(h)
nqv)(h) <w5}‘(<n> <

Inn

and
n

gexp{u s, ()1 <o

for some 8 > 1.

(U6) The bandwidth h satisfies: Ing € N, 3C > 0, such that
Vn > ng,Vr € S 1/1¢(zhh)d(zzK(2))>C>0
05 F @x(h) o T ) dz

and

h/B(r,h) gl e)dPe) =o </B(x,h) b (u’x)dPX(u)>

uniformly on z.
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(U7) 3C > 0 such that Ym > 2 : E(Jo(Y)|™/X = z) < dm(z) < C < 0o with d,,(.) continuous
on Sr.

Roughly speaking, these hypotheses are uniform version of the assumed conditions in the point-
wise case and have already been used in the literature. We refer to [8] for conditions (U1), (U3),
(U4) and (U6) and to [4] for assumptions (U2), (U5) and (UT).

The claimed result is as follows.

Theorem 2. Under assumptions (U1)-(U7), we have

Sup [F(z) — mo(2)] = O(RY) + O sy ()
zE,SP}- ® ® a.co. n@(h)

We can readily deduce the uniform consistency of the estimator studied in [1] for which, to
the best of our knowledge, only the pointwise convergence is available.

This result shows that, contrary to the finite case, the rate of convergence obtained may differ
from that of the pointwise consistency, it is function of the entropy of the subset on which the
uniform convergence states.

It is easy to see that the proof of Theorem 2 is a direct consequence of the decomposition (1)
and of the following lemmas for which the proofs are relegated to the Appendix.

Lemma 1. Assume that hypotheses (U1), (U2) and (U4) hold, then:

sup [mp(a) — s (x) = O(H).

Lemma 2. Under assumptions of Theorem 1, we obtain that:

-F = Oa,co. =N
wseuS;; |1 (2) m1(z)| ()

Lemma 3. If assumptions (U1),(U3)-(U6) are satisfied, we get:

wsr (InTn)

sup |mo(x) —1 :Oa.co.

and

;P <$1€n5ff mo(z) < 2) < 00.

3.2. A conditional quantile estimator

Let F,(y) = P(Y < y|X = z) be the conditional distribution function of ¥ given X = x
where y is real and z is a fixed object in F. To estimate it, we treat this function as a particular
case of m,, with ¢(t) = 1j_ ,(t) for y € R. Thus, we estimate F'*(y) by

Fe(y) = D=1 Wi (@) 1y, <yy
Y Sr o Wyla)

2)

where

Wij(x) = B(Xi, @) (B(Xi,2) — B(X;, 2)) K (b~ (X, 2)) K (h ™ d(X;, ).
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The conditional quantile of order « (o € (0,1)) is to(x) = inf{y € R, F*(y) > a}. So, we deduce
from F'* a natural conditional quantile estimator as,

to(z) = inf{y € R, F*(y) > a}. (3)

Notice that t; /5(z) is the so called conditional median.

To investigate the asymptotic convergence of Fe (y), we introduce the following conditions.

(U2)’ There exist 6 > 0, C > 0 and b > 0, such that for any x € Sz,2’ € B(z,h) and y €
[to(2) — 8, to(x) + 0], we have

[P (y) = F*(y)| < Od"(z,').

(U5) lim h =0, and for r, = O (l%"), the function g, satisfies for n large enough:

(Inn)? Inn n®(h)
nd(h) < ¥ss (n) < Tan

b

and

> exp {1 = s, () } < o

n
n=1
for some 8 > 1 and & > 0.
The following result concerns the uniform almost complete convergence of F “(y).
Theorem 3. Under assumptions (Ul1), (U2)’, (U3), (U4), (U5)’ and (U6), we have
—~ Inn
sup sup [E2(y) = F*(y)] = O(h*) + Oaco. | \| 2777 | -
2ESFE YElta(2)—,ta(2)+0] n®(h)

To prove this theorem we make use of the decomposition given, for all x and y, by

~

F() = () = s (B~ BB ) () = BF5 )] - 7B mala) 1), (4

1
Wi (2) 1y s d is defined in (1). Now, it suffici
D= D EWn () z%:j () 11y j<yy and mo(x) is defined in (1). Now, it sufficies

to apply Lemma 3 together with the following lemmas.

where ﬁf\”,(y) =

Lemma 4. Assume that hypotheses (U1), (U2)’ and (U4) hold, then

sip s |FR(y) - B )| = ("),
2ESF yE€ta(x)—0,ta(x)+7]

Lemma 5. Under assumptions of Theorem 3, we obtain that

wS}- (lnTn)

sup sup nd(h)

TESF ye[toc (.’,K)—(S,ta (37)""6}

‘ ~

Fii(y) = EF{ ()| = Ouco

The same arguments as in the proof of Lemma 2.8 (resp. Lemma 2.9) in [8] permit us to
derive the conclusion of Lemma 4 (resp. Lemma 5).

To obtain the uniform consistency of the conditional quantile estimator, we introduce the
following conditions used for example in [§].
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(U8) Ve > 0, 3¢ > 0 such that for any function g, from Sz into [to(z) — J,to(x) + ] we have

sup |ta(z) — gu(z)| = € implies sup |F®(to(z)) — F¥(ga(x))| = &.
zESF reSF

(U9) 3j > 1, Vo € Sr, F* is j-times continuously differentiable on ]t (z) — 9, ta(z) + §] with
respect to y and satisfies F*!)(t,(x)) =0 if 0 <1 < j, F*W(ty(x)) > C > 0 and F*U) is
uniformly continuous on [t () =6, to(2) + 8] where F*() stands for the [th-order derivative
of F'* .

A known method can be applied to derive the following result from Theorem 3, see for example
the proof of Corollary 3.1 in [8].

Corollary 1. Under the hypotheses of Theorem 3 and if (U8)and (U9) are satisfied, we obtain

p [faw) — ta(a)] = O + Opo. [ 22052)
e <o \\[ " ra(n)

4. A real data application

In this section, we use a real data set to illustrate the efficacy of the studied method through
our conditional median estimator t; /2. More precisely, we compare this last estimator to two
other conditional median estimators: the first is based on the kernel method (denoted KM)
and is studied in [6] and the second is based on the local linear method (denoted LLM) and is
introduced in [§].

For this purpose, we use the spectrometric data set which can be found at http ://lib.stat.
cmu.edu/datasets/tecator. These data consist of 215 pairs (X¢,Y4);=1, 215. For each 4, the
spectrometric curve X; is the spectra of a finely chopped meat and Y; is the the corresponding
fat content obtained by an analytical chemical process. Our goal is to predict the fat content
in a piece of meat from its spectrometric curve. For this, we estimate the median ¢, /5 (z) of the
conditional distribution by #; 2().

We split these real data into a learning sample containing the first 160 units used to build
the estimator and a test sample containing the last 55 units used to predict the fat content and
to make a comparison.

The KM (resp. the LLM) estimator is computed with the same parameters as at Subsec-
tion 12.4 in [6] (resp. at section 4 in [8]). For the computation of the estimator #; s2(x), we
use the quadratic kernel K (z) = 3(1 — 2%)1j1j(2), the bandwith h is chosen by a 2-fold cross-
validation method, the semi-metric d is based on the derivative described in [6] (see routines
"semimetric.deriv" in the website http://www.lsp.ups-tlse.fr/staph/npfda) and g = d.

To illustrate the performance of our estimator, we first plot the true values (provided in the
test sample) against the predicted ones by means of the three estimators (one in each graph).
This is displayed in Fig. 1. Secondly, to be more precise we evaluate their empirical Mean Square
Errors (MSE), defined by

A )
MSE = — (Yi _ Y) :
55 ;

where Yi (resp. Y;) is the true (resp. the estimated) value.
The obtained results are

MSE(?UQ):?).QQ, MSE(LLM)=3.8 and MSE(KM)=4.8.
This shows that the estimator tAl /2 performs well and that the local linear method seems to

improve the quality of the prediction even for functional data.
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10 20 30 40 10 20 30 40 10 20 30 40

Fig. 1. From left to right: the estimator tAl /2, the KM estimator and the LLM estimator for the
spectrometric data

5. Appendix

In what follows, let C' be some strictly positive generic constant and for any x € F, and for
alli=1,...,n:
Ki(x) = K(h™'d(X,,2)) and Bi(x) = B(X,,2).

To treat the uniform convergence of 7, () , we need to make use of Lemma 4.1 introduced in 8]
and stated here as follows.

Lemma 6. Under assumptions (Ul1),(U3),(U4) and (U6), we obtain that:
i) ¥(p,1) e N* x N, sup,cg, E (Kf(x)|ﬂi(x)|) < Chld(h).
i) infyes, E (Ki(2)Bi(x)) > Ch2®(h).
Proof of Lemma 1. We have

Emy(z) = 7E(WL(9€))E(W12(33)‘PZ(Y2))7
and Emq(z) can also be written as
Em(x) = B (B(m ()| X5)) = mﬁi (Wiz(2) E(¢(Y2) | X2)) -

So, we get under assumption (U4)

1
mey(x)— Emi(z)| = —————| E (Wia(2)(my(x) — my (X < su my(z)— my(z)].
me(2) 1(2)] |E(W12(x))\| (Wia(z)(m(2) = my (X)) WEB(I;’LJ o (@)= my(2")]
We need to take into account hypothesis (U2) to obtain

sup |my(z) — Emy(z)| = O(hb).
zESF O

Proof of Lemma 2. We use again the following decomposition given in [1]. Namely

mi(z) = Q(x) [S2,1(x)S40(x) — S3,1(2)S3,0(x)],
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where, for p=2,3,4,and [ =0, 1,

Spi(x) =

1 = Ki(2)8 2 (2)¢! (Y))
n®,(h) Z hp—2

and
n2h2d5320(h)

@) = n(n — D)E (Wia(z))’

By following the same steps as in [1], and using lemma 6 instead of lemma A.1 in [1], we
obtain under the assumptions (U1)-(U4) and (U6),

Q(z) = 0(1), E(Spa(x)) = 0O(1),

uniformly on x, for p=2,3,4,1=0,1,

sup |E(Ss,1(2)) E(S4,0(2)) = E(S2,1(2)S10(2))] = O ( : > ;

rESF

and

sup |E(S3,1(ZE))E(S3,0($))E(S3,1(I)53,0(95))|O( ! )

rESF

Inn
which is, in view of hypothesis (U5), equals to O ( %) .

We need to check that for p=2,3,4 and [ =0, 1,

Vs, (1)
S, — E(Sp,l =0 ——~ns
mselg;| ;DJ(I) ( b, (I))| a.co. ’I’L@(h)
To satisfy this aim, let us set
@) =arg  min d(z,ay),

je{1,2,....N,,, (S7)}

and consider the following decomposition

sup |Sp,i(2) — ESp(w)] < sup |Sp(@) = Spa(jea))| +
TESF TESF

=+ sup }Sp,l(xj(x)) - ESPJ(xj(l‘))| +
TESFE

+ suSp }ESpyl(wj(x)) — ESp,l(x)| = Ff’l + sz’l + F:f’l.
TESF

Let’s, now, study each term F,f’l for k =1,2,3.

Study of the terms F”' and FP'.
First, let us analyze the term FP''. Since K is supported in [0,1] and according to (U1), we
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can write for all p=2,3,4

< supZ\K (@8 @) (V) Ly (1)~

hp 2¢ QJGS]:

— Ki(2(2) 82 (@) (V) 1B(a, ) 1) (X2)
C n

<

l p—2 p—2
< ’I’th_Zép(h) zSellsI; Zle(fE)lB(:c,h) (Xz)|§0 (Y;,)‘ ﬂ7 (CE) - ﬁl (x](z))]-B(xJ(l),h) (Xz) —+
W ISEUS;; Zﬂ (%)) LB, (0 ) (X' (VO [ Ki (€)1 (2 (Xi) — Ki(@2))|
= Ff’ll + Ff’z.
Analysis of the term FP/.
According to assumption (U3), we get
1B(a,n) (Xi) |Bi(@) = Bi(j(2)) 1B, (0y.h) (Xi) | <
< C’"nlB(nh)ﬂB(fcj(xwh) (X:) + ChlB(x,hmB(xm),h) (Xi)
and
1p(an) (Xi) 87 (2) = 87 (€5(2)) 1B (2, 0y ) (Xi) | <
2
< Crnblpa, .m0 Bw) (Xi) + O g 0 A B o (K6)-
By grouping the cases p = 3 and p = 4, we found
g0 (Xi) |BY72(2) = B2 (2(0)) 1B, 0y o) (Xi) | <
-3 —2
< Crnh? 1,000 N By (Xi) + CRP 15 o i (X0).
which gives the following inequality
Cr
Pl n
Fi < T (h ;élgz ! (Y, T)1B(zh) (O B(a().h) (Xi) +
sup Z ' (i N g VBl (Xo): (5)

xESf

Analysis of the term FF3.
Using the following inequality

<

Lp(a;(),n) (Xi) | Ki (@)1 B(a,h) (Xi) = Ki(252)) 1 gy U Bmy (Xi)
< 1B(a,h) O Blaj o) (X [ Ki () = Ki(2;(2))] + Kiz; (@)1 5, o) nyBam (Xi)
and by hypotheses (U3) and (U4), we obtain
1B (50 LB gy ) (K0) [ K (2) Loy (Xi) = Ki(wj0) | <

2
< O 3 e e o (X0) + K)o (K1)
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which leads to

Fp7 sup Z I (Y, DILB(w,h)B ;.0 (Xi) +

acE]-‘ll

nh@

sup Z \SD )| K x](ﬂc))]‘B(;c,h)ﬂB(;cj(w>,}L)(Xi)'

we]:zl

This last inequality combined with (5) allow us to write

Cr
FPlo< " )1 X;
1 whd(h) wsglll; & (YD) 1B (o) nB () h) (Xi) +

+ Sellp Zhﬁ J(m)) B(wj(z)7h)ﬁm(Xi) +
® ]:2 1
" Tseug; Z (Y, N gy B ) (Xi)-

Taking into account hypothesis (U4), we find

Cr
p,l n
F7 < S Zha(n) ;EUSP; Z 16 (YD) 1B (en)UB (a0 ) (Xi)-

' Cr ‘(pl(& )|
A n 7
h®(h) ISESPF B(@h)uB(®;(), h)( 2

The assumption (U7) implies that

C/’,.Tn
ElZm < —n 6
| 1 | hmdj(h)m,1 ( )
so, by applying corollary A.8 in [6], with a2 = h;?h)’
1 — rp,lnn
— Zi=FEZ,+0 - .
n; i 1+ Ua.co. ( nh@(h))

Applying (6) again (for m = 1), one gets

ol _ ATn rplnn
FP'=0( h)+0‘”0' ( nh@(h)) .

Combining this with assumption (U5) and the second part of the assumption (U1), we obtain

Ps, (22)
Fp,l — ITRFAn )
1 Oa.co. nd(h) "
Second, since
Fp’ <FE ( sup ’sz Sp,l(xj(m))’) J
z€ESF
we deduce that
Vs, (122)
Fp’l — Uga.co s
57 = Oaco. nd(h) )
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Study of the term FZ'.
For all n > 0, we have that

Inn
P(FQP’I>T] ws}—(n)>:

nd(h)

1/)5}- (ln )
(je{l,..mafi(sf)} [Soalrsn) = BlSpalrsal > my =65~ ) <

N

N, (SF) P( |Spi((z)) — E(Spa(@j2)))| > o)

max
Je{l,...;Nr, (S7)}

Let us set for p = 2, 3,4 that

T i) @) () = B30 B a5 (1)

Ay =
Using the binomial Theorem, Lemma 6 and hypothesis (U1), (U2) and (U7), gives for p = 2, 3,4,
E|A,;" =0 (27" (h)).

Therefore, we can apply a Bernstein- type inequality as done in the corollary A-8 in [6], to obtain

Inn
) o (22))

D,

Thus, by choosing 3 such that Cn? = 3, we get

Vsr (lnTn)

P FPl >y 0

< CN,, (SF)' 5.

Then, hypothesis (U5) allows us to write

g (hM)
FPJ = O4.co F n
2" = oo |\ 7g) ®)
Finally, the result of Lemma 2 follows from the relations (7), (9) and (8). a

Proof of Lemma 3. The first part of the claimed results can be directly deduced from the
proof of Lemma 2 by taking, for all 4, p(Y;) = 1. For the second part, It comes straightforward
that

1 1 1
inf mg(z) < = = 3z € SF such that 1 — mp(z) > = = sup |1 —mo(z)| > =
rESF 2 2 zESF 2

1
= ZP(IlenSmeo x) < 2) < 00.

References

[1] J.Barrientos-Marin, F.Ferraty, P.Vieu, Locally modelled regression and functional data,
J.ournal of Nonparametric Statistics, 22(2010), 617-632.

-390 -



Sara Leulmi, Fatiha Messaci A Class of Local Linear Estimators with Functional Data

[2] K.Benhenni, F.Ferraty, M.Rachdi, P.Vieu, Local smoothing regression with functional data,
Computational Statistics, 22(2007), no. 3, 353-369.

[3] J.Demongeot, A.Laksaci, F.Madani, M.Rachdi, Functional data analysis: conditional den-
sity estimation and its application, Statistics, 47(2013), no. 1, 26-44.

[4] F.Ferraty, A.Laksaci, A.Tadj, P.Vieu, Rate of uniform consistency for nonparametric esti-
mates with functional variables. Journal of Statistical planning and inference, 140(2010),
335-352.

[5] F.Ferraty, I.Van Keilegom, P.Vieu, On the validity of the bootstrap in nonparametric
functional regression, Scandinavian Journal of Statistics, 37(2008), no. 2, 286-306.

[6] F.Ferraty, P.Vieu, Nonparametric functional data analysis. Theory and Practice. Springer
Series in Statistics, New York, 2006.

[7] A.N.Kolmogorov, V.M.Tikhomirov, e-entropy and "-capacity", Uspekhi Matematicheskikh
Nauk, 14(1959), 3-86 (in Russian).

[8] F.Messaci, N.Nemouchi, I.Ouassou, M.Rachdi, Local polynomial modelling of the condi-
tional quantile for functional data, Statistics Methods and Applications, 24(2015), no. 4,
597-622.

Kiacc jiokaJbHBIX JIJUHENHBIX OIEHOK C (PYHKIIMOHAJIbHBIMU
JAHHBIMU

Capa Jleynmn

daruxa Meccaun

DakyIbTEeT MATEMATHKA

Yuusepcurer 6parbeB MenTypu

nopora Aita-351b-Besi, KoncranTun, 25017
Axup

Bsedem A0KAADHYNO AUHETHYIO HENAPAMEMPUUECKYIO OUEHKY OAA 0600UWeHHOT GYHKUUU De2peccul, CKa-
AAPHOT NEPEMEHHOT, OMKAUKG OAA 3G0GHHOT CAYHATHOT BEAUNUHDL, NPUHUMANOUWET 3HAYEHUA 68 NOAY-
mempuueckom npocmparcmee. Mo, ycmarasausaem ckopocms pagHoMeEPHOT CO2AACOBAHHOCTU OAA TPed-
AA2AEMBIT OUEHOK. 3amem, 0CHOBBIBAACH HA PEAALHOM HabOpe OGHHBLT, Mbl NPOUAMOCTIPUPYeM IPPer-
MUBHOCTND KOHKDEMHO020 USYUEHHO020 OUEHULUKA NO CPAGHEHUI C OPY2UMU USEECTNHBIMU OUEHULUKAMU.

Karouesvie ca06a: n0kaAbHO MOOEAUPYEMAR PE2PECCUA, HENAPAMEMPUHECKAA OUEHKA, CKOPOCMb CTOOU-
MOCTU, PABHOMEPHAA NOUMU NOAHAA CTOOUMOCTD.
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