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1. Introduction and preliminaries
Since the pioneer works summarized in [6], several studies have dealt with the nonparametric

functional estimation. This research field is motivated by the fact that several data collected in
practice, are given in the form of curves. Moreover, the progress of the digital computing tools
allows the treatment of such observations. Different kernel type estimators have been studied in
the literature, see for example [6]. Then, inspired by the local linear nonparametric method, [1]
have introduced a more general and flexible method than the kernel one. It is the so called local
modelling approach. They obtain a rate of the pointwise almost-complete convergence for their
estimator of the regression function.
But, as pointed out in [4] “the uniform consistency results are indispensable tools for the study
of more sophisticated models in which multi-stage procedures are involved". Under uniform
convergence, one can make prediction even if the data are not well observed. We also can
solve some problems such as data-driven bandwidth choice (see [2]), or bootstrapping (see [5]).
Uniform convergence of other local linear nonparametric estimators has been investigated in
some papers as [3] and [8]. In this work, our principal aim is to establish the uniform almost
complete convergence of the local linear estimator of a generalized regression function (which
includes the estimator introduced in [1]) and to focus on a tool of prediction (a conditional
quantile estimator). More precisely, Section 2 is devoted to introduce the generalized regression
function estimator and to state its pointwise convergence. Section 3 contains the principal results
of this work which consist to establish the rate of the uniform almost convergence of the last
estimator and to focus on the particular case of the conditional distribution function estimation
from which we deduce a rate of the uniform consistency of a conditional quantile estimator. In
Section 4 using a real data set, the prediction obtained from this last estimator is compared to
those of two other known estimators. Finally, the detailed proofs of some needed lemmas are
evoked in the Appendix.
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2. The estimation and the pointwise almost-complete
convergence

2.1. The model
Let us consider n pairs of random variables (Xi, Yi)i=1,...,n independent and identically dis-

tributed as the pair (X,Y ) which is valued in F × R, where (F , d) is a semi-metric space. Our
goal is to estimate the generalized regression function, defined for all x in F , by

mφ(x) = E(φ(Y )|X = x), ,

where φ is a known real-valued borel function.
It is clear that mφ generalizes the classical regression function (set φ(t) = t) as well as the

conditional distribution function (set for any y ∈ R, φ(t) = 1]−∞,y](t)).
Following [1] who proved the pointwise almost complete convergence of the classical regression

function estimator, the local linear estimate ofmφ is obtained as the solution for a of the following
minimization problem

min
(a,b)∈R2

n∑
i=1

(φ(Yi)− a− bβ(Xi, x))
2
K(h−1d(Xi, x)),

where β(., .) is a known operator from F ×F into R such that, ∀x ∈ F , β(x, x) = 0, the function
K is a kernel and h := hn is a sequence of strictly positive real numbers which plays a smoothing
parameter role.

This approach assumes that a + bβ(., x) is a good approximation of mφ(.) around x. As
β(x, x) = 0, a will be a suitable estimate for mφ(x).

By a simple calculus, one’s can derive the following explicit estimator

m̂φ(x) =

∑n
i,j=1Wij(x)φ(Yj)∑n

i,j=1Wij(x)

(
0

0
:= 0

)
,

where
Wij(x) = β(Xi, x) (β(Xi, x)− β(Xj , x))K(h−1d(Xi, x))K(h−1d(Xj , x)).

As for l ∈ {0, 1}, we have
n∑

i,j=1

Wij(x)φ
l(Yj) =

∑
i<j

{
(β(Xi, x)− β(Xj , x))

(
β(Xi, x)φ

l(Yj)− β(Xj , x)φ
l(Yi)

)
×

×K(h−1d(Xi, x))K(h−1d(Xj , x)
}
,

if the denominator of the estimator m̂φ(x) is zero, it is the same for its numerator. Moreover,
under assumptions (H1) and (H3)–(H7), we get E(W12(x)) > 0 (see the proof of Lemma 4.4
in [1]).

Notice that the expression of m̂φ allows fast computational issue and that the choices of β
and d will be crucial.

2.2. The pointwise almost-complete convergence
Let x be a fixed point in F , for any positive real h, B(x, h) := {y ∈ F/ d(x, y) 6 h} denotes

a closed ball in F of center x and radius h. We also define Φx(r1, r2) := P (r1 6 d(X,x) 6 r2),
where r1 and r2 are two real numbers.

We investigate the asymptotic behaviour of the local linear estimator m̂φ, under the following
assumptions.
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(H1) For any h > 0, Φx(h) := Φx(0, h) > 0.

(H2) mφ ∈ {f : F → R, lim
d(x,x′)→0

f(x′) = f(x)}.

(H2’) mφ ∈ {f : F → R, ∃b > 0, ∀x′ ∈ F ; | f(x) − f(x′)| 6 Cxd
b(x, x′)}, where Cx is a positive

constant depending on x.

(H3) The function β(., .) is such that: ∃0 < M1 < M2, ∀x′ ∈ F ,

M1d(x, x
′) 6 |β(x, x′)| 6M2d(x, x

′).

(H4) The kernel K is a positive and differentiable function on its support [0, 1].

(H5) The bandwidth h satisfies: limn→∞ h = 0, and limn→∞
lnn

nΦx(h)
= 0.

(H6) There exists an integer n0, such that

∀n > n0, ∀x ∈ F , 1

Φx(h))

∫ 1

0

Φx(zh, h)
d

dz

(
z2K(z)

)
> C > 0

and

h

∫
B(x,h)

β(u, x)dPX(u) = o

(∫
B(x,h)

β2(u, x)dPX(u)

)
,

where dPX is the distribution of X.

(H7) ∀m > 2 : x→ E(|φ(Y )|m/X = x) is a continuous operator.

Remark that our hypotheses are very similar to the assumed conditions in [1].
Let us state the pointwise almost-complete convergence (a.co.) of m̂φ(x), along with a rate.

Theorem 1. Assume that assumptions (H1), (H3)–(H7) are satisfied.
(i) Under the additional hypothesis (H2), we have

m̂φ(x)−mφ(x) = oa.co.(1).

(ii) If in addition (H2’) is satisfied, we get

m̂φ(x)−mφ(x) = O(hb) +Oa.co.

(√
lnn

nΦx(h)

)
.

Notice that the proof of this theorem is based on a standard decomposition given for all
x ∈ F , by

m̂φ(x)−mφ(x) =
1

m0(x)
[(m1(x)− Em1(x))− (mφ(x)− Em1(x))]−

mφ(x)(m0(x)− 1)

m0(x)
, (1)

where, for l = 0, 1

ml(x) =
1

n(n− 1)EW12(x)

∑
i ̸=j

Wij(x)φ
l(Yj).

The study of each term of this decomposition can be carried out exactly as done in the proof
of Theorem 4.1 and Theorem 4.2 in [1] with replacing Y by φ(Y ), so for the sake of avoiding
repetitions, we omit the proof.

Now, we will focus on the uniform consistency.
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3. The uniform almost-complete convergence

3.1. The estimator m̂φ

We will establish the uniform almost-complete convergence of m̂φ on some subset SF of F
which can be covered by a finite number of balls. This number has to be related to the radius of
these balls (see hypothesis (U5)).

To this goal, let us recall the following definition.

Definition 1. Let S be a subset of a semi-metric space F , and let ε > 0 be given. A finite
set of points x1, x2, . . . , xN in F is called an ε-net for S if S ⊂

∪N
k=1B(xk, ε). The quantity

ψS(ε) = ln(Nε(S)), where Nε(S) is the minimal number of open balls in F of radius ε which is
necessary to cover S, is called Kolmogorov’s ε-entropy of the set S.

It is known that the entropy of a set measures its complexity. We refer to [7] and [4] for more
details on this topic.

We suppose that x1, . . . , xNrn (SF ) is an rn-net for SF where for all k ∈ {1, . . . , Nrn(SF )},
xk ∈ SF and (rn) is a sequence of positive real numbers.

In this study, we need the following assumptions.

(U1) There exist a differentiable function Φ and strictly positive constants C,C1 and C2 such
that

∀x ∈ SF ,∀h > 0; 0 < C1Φ(h) 6 Φx(h) 6 C2Φ(h) <∞
and

∃η0 > 0,∀η < η0, Φ
′(η) < C,

where Φ′ denotes the first derivative of Φ with Φ(0) = 0.

(U2) The generalized regression function mφ satisfies:

∃C > 0, ∃b > 0,∀x ∈ SF , x
′ ∈ B(x, h), |mφ(x)−mφ(x

′)| 6 Cdb(x, x′).

(U3) The function β(., .) satisfies (H3) uniformly on x and the following Lipschitz’s condition

∃C > 0, ∀x1 ∈ SF , x2 ∈ SF , x ∈ F , |β(x, x1)− β(x, x2)| 6 Cd(x1, x2).

(U4) The kernel K fulfills (H4) and is Lipschitzian on [0, 1].

(U5) lim
n→∞

h = 0, and for rn = O
(
lnn
n

)
, the function ψSF satisfies for n large enough:

(lnn)2

nΦ(h)
< ψSF (

(
lnn

n

)
<
nΦ(h)

lnn
,

and
∞∑
n=1

exp{(1− β)ψSF

(
lnn

n

)
} <∞,

for some β > 1.

(U6) The bandwidth h satisfies: ∃n0 ∈ N, ∃C > 0, such that

∀n > n0, ∀x ∈ SF ,
1

Φx(h)

∫ 1

0

Φx(zh, h)
d

dz

(
z2K(z)

)
> C > 0

and

h

∫
B(x,h)

β(u, x)dPX(u) = o

(∫
B(x,h)

β2(u, x)dPX(u)

)
uniformly on x.
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(U7) ∃C > 0 such that ∀m > 2 : E(|φ(Y )|m/X = x) < δm(x) < C < ∞ with δm(.) continuous
on SF .

Roughly speaking, these hypotheses are uniform version of the assumed conditions in the point-
wise case and have already been used in the literature. We refer to [8] for conditions (U1), (U3),
(U4) and (U6) and to [4] for assumptions (U2), (U5) and (U7).

The claimed result is as follows.

Theorem 2. Under assumptions (U1)–(U7), we have

sup
x∈SF

|m̂φ(x)−mφ(x)| = O(hb) +Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)

 .

We can readily deduce the uniform consistency of the estimator studied in [1] for which, to
the best of our knowledge, only the pointwise convergence is available.

This result shows that, contrary to the finite case, the rate of convergence obtained may differ
from that of the pointwise consistency, it is function of the entropy of the subset on which the
uniform convergence states.

It is easy to see that the proof of Theorem 2 is a direct consequence of the decomposition (1)
and of the following lemmas for which the proofs are relegated to the Appendix.

Lemma 1. Assume that hypotheses (U1), (U2) and (U4) hold, then:

sup
x∈SF

|mφ(x)− Em1(x)| = O(hb).

Lemma 2. Under assumptions of Theorem 1, we obtain that:

sup
x∈SF

|m1(x)− Em1(x)| = Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)

 .

Lemma 3. If assumptions (U1),(U3)–(U6) are satisfied, we get:

sup
x∈SF

|m0(x)− 1| = Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)


and

∞∑
n=1

P

(
inf
x∈SF

m0(x) <
1

2

)
<∞.

3.2. A conditional quantile estimator
Let Fx(y) = P (Y 6 y|X = x) be the conditional distribution function of Y given X = x

where y is real and x is a fixed object in F . To estimate it, we treat this function as a particular
case of mφ with φ(t) = 1]−∞,y](t) for y ∈ R. Thus, we estimate F x(y) by

F̂ x(y) =

∑n
i,j=1Wij(x)1{Yj6y}∑n

i,j=1Wij(x)
, (2)

where
Wij(x) = β(Xi, x) (β(Xi, x)− β(Xj , x))K(h−1d(Xi, x))K(h−1d(Xj , x)).
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The conditional quantile of order α (α ∈ (0, 1)) is tα(x) = inf{y ∈ R, F x(y) > α}. So, we deduce
from F̂ x a natural conditional quantile estimator as,

t̂α(x) = inf{y ∈ R, F̂ x(y) > α}. (3)

Notice that t1/2(x) is the so called conditional median.
To investigate the asymptotic convergence of F̂ x(y), we introduce the following conditions.

(U2)’ There exist δ > 0, C > 0 and b > 0, such that for any x ∈ SF , x
′ ∈ B(x, h) and y ∈

[tα(x)− δ, tα(x) + δ], we have

|F x
′
(y)− F x(y)| 6 Cdb(x, x′).

(U5)’ lim
n→∞

h = 0, and for rn = O
(
lnn
n

)
, the function ψSF satisfies for n large enough:

(lnn)2

nΦ(h)
< ψSF

(
lnn

n

)
<
nΦ(h)

lnn
,

and
∞∑
n=1

n(ξ+1/2) exp

{
(1− β)ψSF

(
lnn

n

)}
<∞,

for some β > 1 and ξ > 0.

The following result concerns the uniform almost complete convergence of F̂ x(y).

Theorem 3. Under assumptions (U1), (U2)’, (U3), (U4), (U5)’ and (U6), we have

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

|F̂ x(y)− F x(y)| = O(hb) +Oa.co.

(√
lnn

nΦ(h)

)
.

To prove this theorem we make use of the decomposition given, for all x and y, by

F̂ x(y)− F x(y) =
1

m0(x)

[(
F̂ xN (y)− EF̂ xN (y)

)(
F x(y)− EF̂ xN (y)

)]
− F x(y)

m0(x)
(m0(x)− 1), (4)

where F̂ xN (y) =
1

n(n− 1)EW12(x)

∑
i ̸=j

Wij(x)1{Y j6y} andm0(x) is defined in (1). Now, it sufficies

to apply Lemma 3 together with the following lemmas.

Lemma 4. Assume that hypotheses (U1), (U2)’ and (U4) hold, then

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F x(y)− EF̂ xN (y)
∣∣∣ = O(hb).

Lemma 5. Under assumptions of Theorem 3, we obtain that

sup
x∈SF

sup
y∈[tα(x)−δ,tα(x)+δ]

∣∣∣F̂ xN (y)− EF̂ xN (y)
∣∣∣ = Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)

 .

The same arguments as in the proof of Lemma 2.8 (resp. Lemma 2.9) in [8] permit us to
derive the conclusion of Lemma 4 (resp. Lemma 5).

To obtain the uniform consistency of the conditional quantile estimator, we introduce the
following conditions used for example in [8].

– 384 –



Sara Leulmi, Fatiha Messaci A Class of Local Linear Estimators with Functional Data

(U8) ∀ϵ > 0, ∃ξ > 0 such that for any function gα from SF into [tα(x)− δ, tα(x) + δ] we have

sup
x∈SF

|tα(x)− gα(x)| > ϵ implies sup
x∈SF

|F x(tα(x))− F x(gα(x))| > ξ.

(U9) ∃j > 1, ∀x ∈ SF , F x is j-times continuously differentiable on ]tα(x) − δ, tα(x) + δ[ with
respect to y and satisfies F x(l)(tα(x)) = 0 if 0 6 l < j, F x(j)(tα(x)) > C > 0 and F x(j) is
uniformly continuous on [tα(x)−δ, tα(x)+δ] where F x(l) stands for the lth-order derivative
of F x .

A known method can be applied to derive the following result from Theorem 3, see for example
the proof of Corollary 3.1 in [8].

Corollary 1. Under the hypotheses of Theorem 3 and if (U8)and (U9) are satisfied, we obtain

sup
x∈SF

∣∣t̂α(x)− tα(x)
∣∣ = O(hb) +Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)

 .

4. A real data application
In this section, we use a real data set to illustrate the efficacy of the studied method through

our conditional median estimator t̂1/2. More precisely, we compare this last estimator to two
other conditional median estimators: the first is based on the kernel method (denoted KM)
and is studied in [6] and the second is based on the local linear method (denoted LLM) and is
introduced in [8].

For this purpose, we use the spectrometric data set which can be found at http ://lib.stat.
cmu.edu/datasets/tecator. These data consist of 215 pairs (Xi, Y i)i=1,...,215. For each i, the
spectrometric curve Xi is the spectra of a finely chopped meat and Yi is the the corresponding
fat content obtained by an analytical chemical process. Our goal is to predict the fat content
in a piece of meat from its spectrometric curve. For this, we estimate the median t1/2(x) of the
conditional distribution by t̂1/2(x).

We split these real data into a learning sample containing the first 160 units used to build
the estimator and a test sample containing the last 55 units used to predict the fat content and
to make a comparison.

The KM (resp. the LLM) estimator is computed with the same parameters as at Subsec-
tion 12.4 in [6] (resp. at section 4 in [8]). For the computation of the estimator t̂1/2(x), we
use the quadratic kernel K(x) = 3

2 (1 − x2)1[0,1](x), the bandwith h is chosen by a 2-fold cross-
validation method, the semi-metric d is based on the derivative described in [6] (see routines
"semimetric.deriv" in the website http://www.lsp.ups-tlse.fr/staph/npfda) and β = d.

To illustrate the performance of our estimator, we first plot the true values (provided in the
test sample) against the predicted ones by means of the three estimators (one in each graph).
This is displayed in Fig. 1. Secondly, to be more precise we evaluate their empirical Mean Square
Errors (MSE), defined by

MSE :=
1

55

55∑
i=1

(
Ŷi − Yi

)2
,

where Y i (resp. Ŷi) is the true (resp. the estimated) value.
The obtained results are

MSE(t̂1/2)=3.22, MSE(LLM)=3.8 and MSE(KM)=4.8.

This shows that the estimator t̂1/2 performs well and that the local linear method seems to
improve the quality of the prediction even for functional data.

– 385 –



Sara Leulmi, Fatiha Messaci A Class of Local Linear Estimators with Functional Data

Fig. 1. From left to right: the estimator t̂1/2, the KM estimator and the LLM estimator for the
spectrometric data

5. Appendix
In what follows, let C be some strictly positive generic constant and for any x ∈ F , and for

all i = 1, . . . , n:
Ki(x) := K(h−1d(Xi, x)) and βi(x) := β(Xi, x).

To treat the uniform convergence of m̂φ(x) , we need to make use of Lemma 4.1 introduced in [8]
and stated here as follows.

Lemma 6. Under assumptions (U1),(U3),(U4) and (U6), we obtain that:

i) ∀(p, l) ∈ N⋆ × N, supx∈SF
E
(
Kp

1 (x)|βl1(x)|
)
6 ChlΦ(h).

ii) infx∈SF E
(
K1(x)β

2
1(x)

)
> Ch2Φ(h).

Proof of Lemma 1. We have

Eml(x) =
1

E(W12(x))
E(W12(x)φ

l(Y2)),

and Em1(x) can also be written as

Em1(x) = E (E(m1(x)|X2)) =
1

E(W12(x))
E (W12(x)E(φ(Y2)|X2)) .

So, we get under assumption (U4)

|mφ(x)− Em1(x)| =
1

|E(W12(x))|
| E (W12(x)(mφ(x)−mφ(X2)))| 6 sup

x′∈B(x,h)

|mφ(x)−mφ(x
′)| .

We need to take into account hypothesis (U2) to obtain

sup
x∈SF

|mφ(x)− Em1(x)| = O(hb).
2

Proof of Lemma 2. We use again the following decomposition given in [1]. Namely

m1(x) = Q(x) [S2,1(x)S4,0(x)− S3,1(x)S3,0(x)] ,
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where, for p = 2, 3, 4, and l = 0, 1,

Sp,l(x) =
1

nΦx(h)

n∑
i=1

Ki(x)β
p−2
i (x)φl(Yi)

hp−2

and

Q(x) =
n2h2Φ2

x(h)

n(n− 1)E (W12(x))
.

By following the same steps as in [1], and using lemma 6 instead of lemma A.1 in [1], we
obtain under the assumptions (U1)–(U4) and (U6),

Q(x) = O(1), E(Sp,l(x)) = O(1),

uniformly on x, for p = 2, 3, 4 , l = 0, 1,

sup
x∈SF

|E(S2,1(x))E(S4,0(x))− E(S2,1(x)S4,0(x))| = O

(
1

nΦ(h)

)
,

and

sup
x∈SF

|E(S3,1(x))E(S3,0(x))− E(S3,1(x)S3,0(x))| = O

(
1

nΦ(h)

)
,

which is, in view of hypothesis (U5), equals to O

(√
ψSF (

lnn
n )

nΦ(h)

)
.

We need to check that for p = 2, 3, 4 and l = 0, 1,

sup
x∈SF

|Sp,l(x)− E(Sp, l(x))| = Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)

 .

To satisfy this aim, let us set

j(x) = arg min
j∈{1,2,...,Nrn (SF )}

d(x, xj),

and consider the following decomposition

sup
x∈SF

|Sp,l(x)− ESp,l(x)| 6 sup
x∈SF

∣∣Sp,l(x)− Sp,l(xj(x))
∣∣+

+ sup
x∈SF

∣∣Sp,l(xj(x))− ESp,l(xj(x))
∣∣+

+ sup
x∈SF

∣∣ESp,l(xj(x))− ESp,l(x)
∣∣ := F p,l1 + F p,l2 + F p,l3 .

Let’s, now, study each term F p,lk for k = 1, 2, 3.

Study of the terms F p,l1 and F p,l3 .
First, let us analyze the term F p,l1 . Since K is supported in [0, 1] and according to (U1), we
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can write for all p = 2, 3, 4

F p,l1 6 C

nhp−2Φ(h)
sup
x∈SF

n∑
i=1

∣∣∣Ki(x)β
p−2
i (x)φl(Yi)1B(x,h)(Xi)−

−Ki(xj(x))β
p−2
i (xj(x))φ

l(Yi)1B(xj(x),h)(Xi)
∣∣∣ 6

6 C

nhp−2Φ(h)
sup
x∈SF

n∑
i=1

Ki(x)1B(x,h)(Xi)|φl(Yi)|
∣∣∣βp−2
i (x)− βp−2

i (xj(x))1B(xj(x),h)(Xi)
∣∣∣+

+
C

nhp−2Φ(h)
sup
x∈SF

n∑
i=1

βp−2
i (xj(x))1B(xj(x),h)(Xi)|φl(Yi)|

∣∣Ki(x)1B(x,h)(Xi)−Ki(xj(x))
∣∣

:= F p,l1.1 + F p,l1.2.

Analysis of the term F p,l1.1.
According to assumption (U3), we get

1B(x,h)(Xi)
∣∣∣βi(x)− βi(xj(x))1B(xj(x),h)(Xi)

∣∣∣ 6
6 Crn1B(x,h)

∩
B(xj(x),h)(Xi) + Ch1

B(x,h)
∩
B(xj(x),h)

(Xi)

and

1B(x,h)(Xi)
∣∣∣β2
i (x)− β2

i (xj(x))1B(xj(x),h)(Xi)
∣∣∣ 6

6 Crnh1B(xj(x),h)
∩
B(x,h)(Xi) + Ch21

B(x,h)
∩
B(xj(x),h)

(Xi).

By grouping the cases p = 3 and p = 4, we found

1B(x,h)(Xi)
∣∣∣βp−2
i (x)− βp−2

i (xj(x))1B(xj(x),h)(Xi)
∣∣∣ 6

6 Crnh
p−31B(xj(x),h)

∩
B(x,h)(Xi) + Chp−21

B(x,h)
∩
B(xj(x),h)

(Xi).

which gives the following inequality

FP,l1.1 6 Crn
nhΦ(h)

sup
x∈SF

n∑
i=1

|φl(Yi)|Ki(x)1B(x,h)
∩
B(xj(x),h)(Xi)+

+
C

nΦ(h)
sup
x∈SF

n∑
i=1

|φl(Yi)|Ki(x)1B(x,h)
∩
B(xj(x),h)

(Xi). (5)

Analysis of the term F p,l1.2.
Using the following inequality

1B(xj(x),h)(Xi)
∣∣∣Ki(x)1B(x,h)(Xi)−Ki(xj(x))1B(x,h)

∪
B(x,h)

(Xi)
∣∣∣ 6

6 1B(x,h)
∩
B(xj(x),h)(Xi)|Ki(x)−Ki(xj(x))|+Ki(xj(x))1B(xj(x),h)∩B(x,h)

(Xi)

and by hypotheses (U3) and (U4), we obtain

|βp−2
i (xj(x))|1B(xj(x),h)(Xi)

∣∣Ki(x)1B(x,h)(Xi)−Ki(xj(x)
)
| 6

6 Chp−2
[rn
h
1B(x,h)∩B(xj(x),h)(Xi) +Ki(xj(x))1B(xj(x),h)∩B(x,h)

(Xi)
]
,
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which leads to

F p,l1.2 6 Crn
nhΦ(h)

sup
x∈SF

n∑
i=1

|φl(Yi)|1B(x,h)∩B(xj(x),h)(Xi)+

+
C

nΦ(h)
sup
x∈SF

n∑
i=1

|φl(Yi)|Ki(xj(x))1B(x,h)∩B(xj(x),h)
(Xi).

This last inequality combined with (5) allow us to write

F p,l1 6 Crn
nhΦ(h)

sup
x∈SF

n∑
i=1

|φl(Yi)|1B(x,h)∩B(xj(x),h)(Xi) +

+
C

nΦ(h)
sup
x∈SF

n∑
i=1

|φl(Yi)|Ki(xj(x))1B(xj(x),h)∩B(x,h)
(Xi) +

+
C

nΦ(h)
sup
x∈SF

n∑
i=1

|φl(Yi)|Ki(x)1B(x,h)∩B(xj(x),h)
(Xi).

Taking into account hypothesis (U4), we find

F p,l1 6 Crn
nhΦ(h)

sup
x∈SF

n∑
i=1

|φl(Yi)|1B(x,h)∪B(xj(x),h)(Xi).

Let

Zi =
Crn|φl(Yi)|
hΦ(h)

sup
x∈SF

1B(x,h)∪B(xj(x),h)(Xi).

The assumption (U7) implies that

E|Zm1 | 6 Crmn
hmΦ(h)m−1

, (6)

so, by applying corollary A.8 in [6], with a2n =
rn

hΦ(h)
,

1

n

n∑
i=1

Zi = EZ1 +Oa.co.

(√
rn lnn

nhΦ(h)

)
.

Applying (6) again (for m = 1), one gets

F p,l1 = O(
rn
h
) +Oa.co.

(√
rn lnn

nhΦ(h)

)
.

Combining this with assumption (U5) and the second part of the assumption (U1), we obtain

F p,l1 = Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)

 . (7)

Second, since

F p,l3 6 E

(
sup
x∈SF

∣∣Sp,l(x)− Sp,l(xj(x))
∣∣) ,

we deduce that

F p,l3 = Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)

 . (8)
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Study of the term F p,l2 .
For all η > 0, we have that

P

(
F p,l2 > η

√
ψSF

(
lnn
n

)
nΦ(h)

)
=

= P

(
max

j∈{1,...,Nrn (SF )}

∣∣Sp,l(xj(x))− E(Sp,l(xj(x)))
∣∣ > η

√
ψSF

(
lnn
n

)
nΦ(h)

)
6

6 Nrn(SF ) max
j∈{1,...,Nrn (SF )}

P

(∣∣Sp,l(xj(x))− E(Sp,l(xj(x)))
∣∣ > η

√
ψSF

(
lnn
n

)
nΦ(h)

)
.

Let us set for p = 2, 3, 4 that

∆p,i =
1

hp−2Φx(h)

[
Ki(xj(x))β

p−2
i (xj(x))φ

l(Yi)− E(Ki(xj(x))β
p−2
i (xj(x))φ

l(Yi))
]
.

Using the binomial Theorem, Lemma 6 and hypothesis (U1), (U2) and (U7), gives for p = 2, 3, 4,

E |∆p,i|m = O
(
Φ−m+1(h)

)
.

Therefore, we can apply a Bernstein- type inequality as done in the corollary A-8 in [6], to obtain

P

 1

n

∣∣∣∣∣
n∑
i=1

∆p,i

∣∣∣∣∣ > η

√
ψSF

(
lnn
n

)
nΦ(h)

 6 2 exp

(
−Cη2ψSF

(
lnn

n

))
.

Thus, by choosing β such that Cη2 = β, we get

P

F p,l2 > η

√
ψSF

(
lnn
n

)
nΦ(h)

 6 CNrn(SF )
1−β .

Then, hypothesis (U5) allows us to write

F p,l2 = Oa.co.

√ψSF

(
lnn
n

)
nΦ(h)

 . (9)

Finally, the result of Lemma 2 follows from the relations (7), (9) and (8). 2

Proof of Lemma 3. The first part of the claimed results can be directly deduced from the
proof of Lemma 2 by taking, for all i, φ(Yi) = 1. For the second part, It comes straightforward
that

inf
x∈SF

m0(x) <
1

2
⇒ ∃x ∈ SF such that 1−m0(x) >

1

2
⇒ sup

x∈SF

|1−m0(x)| >
1

2

⇒
∞∑
n=0

P

(
inf
x∈SF

m0(x) <
1

2

)
<∞.

2
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Класс локальных линейных оценок с функциональными
данными

Сара Леулми
Фатиха Мессачи
Факультет математики

Университет братьев Ментури
дорога Айн-эль-Бея, Константин, 25017

Алжир

Введем локальную линейную непараметрическую оценку для обобщенной функции регрессии ска-
лярной переменной отклика для заданной случайной величины, принимающей значения в полу-
метрическом пространстве. Мы устанавливаем скорость равномерной согласованности для пред-
лагаемых оценок. Затем, основываясь на реальном наборе данных, мы проиллюстрируем эффек-
тивность конкретного изученного оценщика по сравнению с другими известными оценщиками.

Ключевые слова: локально моделируемая регрессия, непараметрическая оценка, скорость сходи-
мости, равномерная почти полная сходимость.
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