Journal of Siberian Federal University. Mathematics & Physics 2019, 12(3), 331-341

VK 511.52
An Elementary Algorithm for Solving a Diophantine
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We propose an elementary algorithm for solving a diophantine equation
(p(x,y) + a1z + biy) (p(x, y) + a2z + bay) — dp(x,y) —azz —bsy —c =0 (*)

of degree four, where p(x,y) denotes an irreducible quadratic form of positive discriminant and (a1, b1) #
(a2,b2). The last condition guarantees that the equation (x) can be solved using the well known Runge’s
method, but we prefer to avoid the use of any power series that leads to upper bounds for solutions useless
for a computer implementation.
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Introduction

As is well known, there is a wide class of diophantine equations in two unknowns

f(x,y) =0, (1>

for which there exists an effective solving method (that gives some explicit upper bounds for
solutions), so-called Runge’s method [7]. An exposition of the standard version of Runge’s method
can be found in the well known books [2| and [9] (also see Theorem of Runge below).

However, the practical implementation of Runge’s method is absent in modern computer
algebra systems, with the exception of some special cases (see, for example, [6,10]). The original
version of Runge’s method based on Puiseux expansions of the corresponding algebraic function
y = U(x) leads to "bad" (too large) estimates for the solutions which makes difficult a computer
implementation of this method. As it seems, the practical algorithms for solving diophantine
equations (1) with Runge’s condition must be founded on some other ideas.

Let us recall the main result underlying Runge’s method. We will suppose that the polynomial

m n

Flo,y) =" aya'y’ € Zlx,y] (2)

i=0 j=0

with m = deg, f(v,y) and n = deg, f(x,y) is irreducible over Q. Denote by L the line defined
on R? by the equation z/m + y/n =1 and by S the set of all (i, ) such that a;; # 0. In 1887
Carl Runge proved the following theorem (see [7] and, for useful comments, [1,11]).
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Theorem of Runge. Suppose that the equation (1) has infinitely many solutions over Z. Then
each of the following conditions holds:

(a) there are no points of S lying above the line L,
(b) the L-leading part
fr(z,y) = Z aijxiyj
(4,7)€ESNL
is (up to a constant factor) a power of an irreducible over Q polynomial p(xz,y) € Z[z,y], and
(c) all the Puiseux expansions of y = V(x) at x = oo are pairwise conjugate.

We say that a polynomial f(z,y) satisfies Runge’s condition, if at least one of the conditions
(a), (b) or (c) does not hold. Theorem of Runge can be reformulated in the following equivalent
form: if f(z,y) satisfies Runge’s condition, then the equation (1) has a finite set of solutions
over Z. In addition, the proof is constructive and leads to some explicit estimates for the size
of integer solutions (see [8,11] for detailed information; as we noted above, these estimates are
useless for a computer implementation even in the case of small m and n).

Rewrite the polynomial (2) as

f(:c,y) = fd(Qj?y) + f<d($7:l/)7

where d = deg f(x,y) and fq(x,y) denotes the leading homogeneous part of f(x,y). The most
known, but simplified version of Theorem of Runge is the following (see, for example, [2]).

Corollary. If fi(x,y) can be decomposed into a product of non-constant relatively prime poly-
nomials in Zlx,y], then the equation (1) has a finite set of solutions over Z.

Proof. Clearly, d > max{m,n}. The condition on f;(z,y) implies that either (a) or (b) is
not satisfied. O

Assuming the condition of Corollary satisfied, for the case d = 3 a practical (really working)
algorithm for solving the equation (1) was proposed in the paper [5]. This algorithm is based
on the elementary version of Runge’s method for cubic diophantine equations firstly announced
in [3]. In the next case d = 4 we also have a simple and elementary solving method which can
be used instead of the classical Runge’s method (see [4]).

In our paper we consider a family of diophantine equations of the form

p(z,y)?* + f<s(z,y) =0, (3)

where p(z,y) € Z[x,y] is an irreducible quadratic form and f<s(z,y) € Z[x,y] is a polynomial
of degree at most three. Here we have d = m = n = 4 and each of the conditions (a), (b) (see
Theorem of Runge) holds. Nevertheless, for some subfamily of such equations, Runge’s method
works (in other words, for the equation (3) the condition (c) may be violated sometimes). For
comparison, going to apply Runge’s method in the case d = 3, we can ignore the condition (c)
for the following reason: if (¢) is violated, then either (a) or (b) is violated necessarily.

The article is organized as follows. In Section 1 we give a sufficient condition which provides
that the equation (3) has only a finite set of solutions over Z (Theorem 1). Also we explain
(including some examples) how one can verify the proposed condition in practice. In Section 2
we propose a practical algorithm for solving the equation (3) when our condition is satisfied.
The advised algorithm is based on Theorem 2 and admits an optimization due to an additional
parameter (so-called the control parameter).

1. Main theoretical result

Let
p(z,y) = Az® + Bay + Cy? € Z[z,y]
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be a quadratic form on two variables. Suppose that p(x,y) is irreducible over Q and consider
the diophantine equation )

p(x,y)" + f<s(z,y) =0 (4)
where f<s(x,y) € Z[z, y] is a polynomial of degree at most three. We suppose that the polynomial
in the left hand side of (4) is also irreducible over Q. Denote

A = B? - 4AC.

Clearly, in the case A < 0 the algebraic curve defined by the equation (4) is bounded and this
equation can be solved over Z by full search in the predetermined limits. Below we will assume
A > 0. The irreducibility of p(z,y) means that A is not a perfect square.

In the following theorem we give a sufficient condition which provides the finiteness of the set
of all solutions of the equation (4) over Z.

Theorem 1. If the equation (4) admits the form
(p(z,y) + a17 + bry) (p(x, y) + azz + bay) — dp(x,y) — azz — bgy —c =0, (5)
where (a1,b1) # (az,bs), then the set of its solutions over Z is finite.

Proof. Let a be one of the roots of the quadratic equation p(1,y) = 0 and y = ¥(z) be the
corresponding branch of the algebraic function defined by the equation (5). It is well known that
y = ¥(x) can be represented as a Puiseux series (in particular, as a Laurent series) at x = oo,
namely

y=Y(z) =azx+ Pz +o(zf), z— oo,

where 8 # 0 and € < 1. Substituting y = ax + y; in the equation (5), we obtain
Az?y? + (the summands of the form va'y!) = 0,

where i <2, i+ j <4 and (i,5) # (2,2). For y; = 82° + o(z°) in the case € > 0 we arrive at the
following contradiction: the equality

AB?2*T2€ 4 (the summands of the form 372" ™7) 4+ o(2?T2¢) = 0

is impossible for all sufficiently large values of 2. Thus, we have € < 0. Consider two cases.
(I) The case e = 0. We have

p(z,y) = B(B +2Ca)x + o(x), a;x+ by = (a; +bia)x +0(1), z— oo,
where y = U(x). Since « is irrational and (a1,b1) # (az,b2), the numbers
vi=B(B+2Ca)+a;+bia (i=1,2)
cannot be simultaneously equal to zero. Suppose v; # 0. Then

lim dp(x,y) + asr +bsy +c  dB(B+2Ca)+ az + bsa
v=oo p(x,y) +a1x + by 7 '

Therefore, for large x, we get an additional equation
p(x,y) + azr + boy = w,

where w is some integer from a small neighborhood of the limit (6).
(IT) The case € < 0. We have y = ax + o(1) at © — oo. Then

p(z,y) = o(x), aiz+by= (a;+bia)r+o(l), x— oo.

We can assume that a; + by # 0. Hence
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lim dp(z,y) + azr + b3y +c  az + bsa
z=oo  p(x,y) + a1x + by ar+bia’

Thus, for large x, we obtain an additional equation
p(z,y) + azz + bay = w,

where w is some integer from a small neighborhood of the limit (7).

As a result, in both cases (I) and (II) we reduced the diophantine equation (5) to a system
of two algebraic equations. It is easy to see that such system has only a finite set of solutions.
This completes the proof. O

Remark 1. Using the special variable z given by (10) and excluding the variable y, we reduce
the equation (5) to the equation

22(A12% + (B(by — bg) — 2C (a1 — az))zz + C2?) + Fea(z,2) = 0, (8)
where F¢g(x, 2) € Z[z, 2] is a polynomial of degree at most three. We have
A1 = A(bl — 62)2 — B(a1 — ag)(bl — bg) + C(CLl — a2)2.

Since (a1, b1) # (ag, bs), we conclude that A; # 0. One can prove that any equation of the type
(8) has only a finite set of solutions (z,z) € Z? (for detailed information see [4]). This gives
another elementary proof of Theorem 1.

How to verify whether the equation (4) can be transformed to the form (5)7 Let
f<s(@,y) = f3(@,y) + falz,y) + ..,

where f3(x,y) and fo(x,y) are the cubic and quadratic forms, respectively. Clearly, the necessary
condition is that f3(x,y) is divisible by p(z,y). Suppose this condition is satisfied. Then

Lz, y) +la(z,y) = U(z,y),
where I(z,y) = f3(z,y)/p(x,y) is the known linear form and
Li(z,y) =ax+by (i=1,2)
are unknowns linear forms. Further on, we use the quadratic form fs(z,y). We have
fa(@,y) = Lz, y) (U, y) — L(z,y)) — dp(z, y).
This is a quadratic equation with respect to the unknown linear form I (x,y). Its discriminant

D(z,y) = l(z,y)* — 4(fa(z,y) + dp(z, y))

must be a square of a linear form over Q (in fact, over Z). Hence, the discriminant of the
quadratic form D(z,y) must be equal to zero. This gives a quadratic equation with respect to
the unknown coefficient d and we need only to solve it over Z.

Example 1. Transform the equation
(22 —zy —y?)? —22° + 222y + 2%z + 2y — 3y —y =0
to the form (5). Here we have

plz,y) =2 —ay —y*,  fy(z,y) = —22° +22%y + 2%z, fa(w,y) = 2y — 3y,
f3 xr,y
l(z,y) = 1220

= —2z,
p(z,y)
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D(z,y) = (4 — 4d)2® + (4d — )y + (12 + 4d)y>.
Consequently, for the coefficient d we obtain the equation
(4d — 4)* — 4(4 — 4d)(12 + 4d) = 0,

which implies d = 1 or d = —11/5. Taking d = 1, we get D(z,y) = (4y)?. Finally, the required
form is
(p(z,y) — 2 +2y)(p(z,y) — 2 — 2y) — p(z,y) —y =0.

Example 2. Show that the equation
(y* —22%)? =3y° —w —y =0

cannot be transformed to the form (5). Indeed, taking p(z,y) = y? — 222, we obtain
D(z,y) = 8dx* + (12 — 4d)y°.

Hence, d = 0 or d = 3, but in both cases D(z,y) is not a square of linear form over Q.

Now we discuss the question on finding the coefficient 5. Using a computer algebra system,
one can show that 3 is equal to one of the numbers

. —Ba; + 2Ab; + (—QC’ai + Bbi)Oz

B = A (i=1,2).

Suppose that 8 = 82 # 0. Then

Y2 = Bo(B 4+ 2Ca) + as + bya = 0,
v1 = Bo(B+2Ca) + a1 + bia = (a1 — ag) + (by — ba)a # 0.

In particular, 82(B + 2Ca) = —as — baav and we conclude that the limit (6) is equal to

o (a3 — dag) + (b3 — dbg)OL
Wa = (a1 —az) + (by — b2 )

For any ¢ = 1, 2, it is not difficult to see that the equality 5; = 0 is equivalent to the equality
(ai,b;) = (0,0). In the case f2 = 0 the expression in the right hand side of (9) reduces to the

most simple expression
as + bsa

a1 +b10t'

2. Solving algorithm and its optimization

In this section we propose a simple practical algorithm for solving the equation (5) and give
several illustrative examples.

Our main problem is the following: give explicitly a condition on the solution (z,y) € R? of
the equation (5), which provides that the values of the expression

p(x,y) + agx + by

turn out to be near the limit (9).
We can use the fact that the curve defined by (5) admits a convenient parametrization (of
course, nonrational because this curve is always elliptic). We introduce the parameter

z =p(z,y) + a1z + byy. (10)

- 335 —



Nikolai N. Osipov, Maria I. Medvedeva An elementary algorithm for solving a diophantine. ..

After substitution z — a;z — b1y instead of p(x,y) in (5), we obtain the linear (with respect to x
and y) equation
wy(2)r +we(2)y+22—dz—c=0

with the coefficients
wy(z) = (b —b1)z +dby — b3, wy(z) = (a2 —a1)z +das — as.

Hence one can express y in terms of x and substitute it in the equation (10). Thus, we obtain
a quadratic equation with respect to = which can be solved (actually, we get the equation (8)
rewritten in the corresponding form). After all, we get a parametrization for the equation (5) of
the type

r=Xi(z), y="Y(2),

where the expressions Xy (z) and Yy (z) have the form

_ 1e(2) | wa(z) | p(2) _omy(z) _wy(2) [ p(z)
X:I:(Z) 26(2) + 2 5(2)27 Y:l:(z) - +

26(2) 2\ &(2)*

Here £(2), p(2), nz(2), and n,(z) are the polynomials with integers coefficients, but we do not
demonstrate their explicit expressions because they are quite unwieldy. We only remark that
degn,(z) < 3, degny(z) < 3 and

£(2) = A122 + Bz +C1, plz) =0z 4.,
where the constant A; # 0 is given in Remark 1. Furthermore, we have
w = p(z,y) + a2z + boy = 2 + (a2 — a1)z + (b2 — by)y = Wi (z2),

where

nw(z)  w | p2)

Welo) = =5 ¥ 2\ (22

with degn,(z) < 2 and the constant
w = wy(2)(az — a1) —wy(2)(ba — b1) = az(by — b1) — bz(az — a1) + d(azb1 — a1bs).
Note also that the discriminant of the quadratic polynomial £(z) is
Ay = BY —4A,C; = W?A.

Firstly, we consider the special case w = 0. In this case we can find the rational coefficients
dy, do and ¢y # 0 such that the equation (5) can be rewritten as

(p(2,y) + a1z + b1y + d1)(p(2, y) + a2z + bay + d2) = c1. (11)
Namely, if a1 # as then we can put

day — day —
gy =479, 02T ddy e

a2 — ay a1 — az

(and similarly in the case by # bs). It is clear how we can solve the equation (11). For instance,
assuming a; # ag, we rewrite it in the form
(daz — az)z + c(az — ay)

= . 12
v (a2 —a1)z + dag — as (12)
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Then we find all the pairs (2, w) € Z? which satisfy (12) (they form some finite set). Finally, for
all such pairs (z,w), we solve over Z the systems of the form

p(z,y) tarx + by =2, p(w,y)+ax+by=w

by eliminating p(z,y) and obtaining a linear equation with respect to x and y.
Further, we will assume that w # 0. Let us consider two illustrative examples.

Example 3. Solve the equation
(v —22%) = 2% — 2 —y =0,
which can be transformed to the form (5):
(y? — 2% — 22)(y* — 222 + 22) — 2(y* — 22%) — 2 —y = 0.

Here we can take z = y% — 222 — 2z and w = y? — 222 + 22. Then we have

w=Wi(2)

B 1222 — 172+ 4 224 — 622+ 3241
T 1622 — 402+ 23 1\ (1622 — 40z + 23)2°

It is easy to see that

lim Wy (z) = 3:F\/§.

Z—00 4

One can show that if 2 < —2 or z > 2 then the inequalities
0< W+(Z) <1

hold. Also, we have the inequalities
1<W_(z)<2

when z < —16 or z > 4. Any solution (x,y) can be written as (X4 (z), Yy (z)) where

Xi(2) = —423 + 1322 — 10z + 1 224 —622+32+1
T 622 — 402 + 23 (1622 — 40z + 23)2°
—2224+82—5 224 — 6224+ 3241
Y- = 4z — 5 .
) =gz .y T 82 )\/(1622 — 40z + 23)2

Taking z € {—1,0,1}, we find all solutions of the form (X (z),Y;(z)), namely
(0,0) = (X, (0), Y1 (0), (0,—1) = (X (1), Y+ (1)).
All solutions of the form (X_(z),Y_(z)) can be found if we take z € {—15,—14,...,2,3}:
(4,-5) = (X_(=15),Y_(=15)), (0,~1) = (X_(1),Y_(1)).

Thus, the set of all solutions is {(0,0), (0,—1), (4, —5)}.

Example 4. Consider the equation
(y* —22%)(y? =222 +2) +y —c=0 (13)
with the integer parameter ¢ > 1. Here we have

z=y?—222 w=y? -2+,
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(c—2)z 224+ 23 — 4e2? — 22+ 2¢2
= :l:
”:I:(Z) 22_2 (22—2)2 )

-2 4z 224 + 23 — 42?2 — 22+ 2¢2
X:I:(Z) = ZQ —9 + (22 — 2)2 )

Ya(2) = 222 — 2¢ Z\/2z4+z3—4cz2—22+2c2

22 (22 — 2)2

In particular,

lim Wi(z) = £v2.

Z—00

One can prove that if

—4c+9 —+/8c2 —72c+145 2¢— 5+ 82 —20c + 17
4 ’ 2

21 (c) =

then the inequalities
—2<W_(2) < -1

hold and, similarly, if

—2¢+3—+v8c2 —12c+1 4c— 7+ /8c? — 56¢c + 113
2 ’ 4

2 € 1(c) =

then the inequalities
1<Wi(z) <2

hold. Thus, if the integer solutions (x,y) = (X4 (2),Y1(2)) exist then z € I (c) holds. Relying
on this claim, we can suggest an obvious algorithm for solving the equation (13).

Furthermore, investigating the expressions X1 (z) and Yi(z) when 2z € IL(c), we obtain the
following upper bound for the solutions (z,y):

max {|z[, [y|} < Mic, (14)

where M; > 0 is an absolute constant (for instance, we can take M; = 10). We remark that the
estimate (14) can be achieved (up to an absolute constant factor) for infinitely many values of
the parameter c. Indeed, let (z;,y;) be the pairs of positive integers satisfying

y?—2x? =-1

(as is well known from the theory of Pell’s equations, there are infinitely many such pairs). Then
for ¢ = y; — x; + 1 the equation (13) has the solution (z,y) = (z;,y;) for which

max {Ja, |y} ~ (2 + V2)e.

Before returning to the general case, let us consider Example 4 from the point of view of the
effectiveness of used solving algorithm. Obviously, the proposed algorithm require O(c) tests for
the integer values of the expressions X1 (z) and Y4 (z) when the integer variable z runs through
the intervals I1(c). Moreover, we can exploit directly the estimate (14) for solving the equation
(13) by full search in the prescribed bounds. Fortunately, we can elaborate a more efficient
solving algorithm. Rewrite Wi (2) as

Wz = e va ¢1+ 22(;(‘12)2) + (22_2;;.
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Then we have

We(z) T V3 < (| €2, v

(c—2)|2] P de-2) | (c-2)?
<oy V2 amog e

z—4(c—2) (c—2)?
22 _2) (=27

where in the last inequality we used that
[WV1+t—1] <]t (15)

for all t > —1. Hence, if |2| > m for some m > /2 then

W) va < T s W”"‘ L =P o).

(m? ~ 2]
It is easy to see that Q(y/c) ~ v/c at ¢ = oco. Thus, we can conclude that the inequality
2] > Ve
implies the estimate
w] = [W(2)] < Mav/e
with an absolute constant My > 0 that is close to 1. Therefore, it is sufficient only O(y/c) such

tests for the expressions X4 (z), Y. (z) and the similar expressions X4 (w), Y (w) which can be
obtained by replacing (a1, b1) ¢ (az,b2) and z <> w in X4 (2), Yi(z). In our case we have

~ 3 _ — 4 _ 2 _ 2
Ko(w) = 2w® —2cw — 1 n 1 [8w! —16cw? + (4c — 8)w +8¢* + 1’
2(w? —2) 2 (w? —2)?

~ dw? —w—4c | w [S8w* — 16cw? + (4e — 8)w + 8c2 + 1
Yi(w)= ———5—— 3 ( .

2(w? — 2) w? — 2)2

As a result, we propose the following faster solving algorithm for the equation (13):

(a) find the integer values of X1 (z), Yy (2) for all integers z satisfying |z| < /¢, and

(b) find the integer values of X4 (w), Ya (w) for all integers w with |w| < May/c.
For example, using this algorithm, we can solve the equation (13) for 1 < ¢ < 10° (see Tab. 1
which contains some statistical information on the quantity of solutions).

Table 1. The number of solutions of the equation (13) when 1 < ¢ < 10°

#(z,y) | #c
0 95957
1 3823
2 199
3 14
1 5
5 0
6 1

In the general case, we can proceed analogously. Let mg = wv/A and
wy = lim Wy (z).
Z—00

Note that {w1} = {w,} where the numbers w, are given by (9).
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Theorem 2. Suppose m > |mg|. If

m ‘ B1
or + — <

2 —
> Imol
2| Ay

2| A,

z+ﬂ
24,4

24,

then the estimates |Wy(z) —w| < Q(m) hold. Here

|Q1|m+|Q2|+|m0| |Q3|m+|Q4| |Q5]m + | Q|

= 16
Qm) m2 —m3 2| Aq] m2 —m3 (m2 m3)? (16)
with the coefficients Q1, ..., Q¢ expressed in terms of the coefficients of the equation (5).
Proof. We will use the variable
= 2A1Z + Bl
instead of z. In terms of I we have the constraints |I| > m or |I| < 2|mg| —m. Also we have
12— m%

Then W4 (z) can be rewritten as

k112+k2l+k3 l4+k4l3+k512 + kel + kr
Wi(z) = D) 3 3p)
12 —m3 2|A1\ —m3)
with some coefficients k1, ..., k7. In particular, we have
mo
=k + .
+ 1 24,

Then we obtain

We(2) — w kol 4 ks +kimd | mg ot hal® + ksl + kel + b7
- T 12 — m 2| A4 | (12 —m2)2 =

i+ Q2 | mo Qsl+ Qs Qsl+Qs
= Taa W eome Ty !

This representation (together with the inequality (15)) implies the estimate

(Qulll] +1Q2] | Jmo| []Qsllll +1Qa] | |@s]IL] + Qs

Wi(z) —wsl| <
Wele) —wsl S Tra™ T\ 2 —md T (@ —md)?

Now we can finish in the same way as in the proof of Theorem 1.1 from [5]. O

In practice, the solving algorithm based on Theorem 2 can be optimized in the same way as
in the paper [5]: the control parameter m must be chosen so that the value of the corresponding
cost-function P(m) + Q(m) is minimal, where

2(m — [mo))
Pim)={ 24l
2|A1]

, if m < 2my],

if m > 2\m0|

and Q(m) is defined by (16). We demonstrated already one of examples of such optimization
(namely, for the equation (13)). In the general case, the optimal value of m can be found using
any standard numerical method.
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DJIeMEeHTAaPHBIN AJITOPUTM JIJIsT pelneHus JuodaHToOBa
YPaBHEHHsI YeTBEPTOil cTeneHu ¢ ycjaoBueM PyHre

Huxkoanaii H. Ocunos
Mapusa . MeasesieBa

WMucTUTYyT KOCMUYECKUX U WH(MPOPMAIMOHHBIX TEXHOJIOTUM
Cubupckuii dhesiepabHbIil YHUBEPCUTET

Csobopuntii, 79, Kpacuosipck, 660041

Poccusa

IIpedaraeaemcs snemeHMapHbLll aA20PUMM PEWEHUA OUOPAHMOBA YPABHEHUS
(p(z,y) + a1z + bry) (p(x, y) + a2z + bay) — dp(z,y) — azx — b3y —c =0 (%)

cmenenu wemupe, 2de p(x,y) 0603HaUaALM HENPUBOIUMYIO KEAIPAMUNHYIO GOPMY NOAOHCUMENDHOZ0 JUC-
rkpumunarma u (a1, b1) # (az,b2). IHocaednee yeaosue zaparmupyem, wmo ypasnerue (*) moorcem Goimo
DEWEHO C NOMOWDBIO TOPOULO U3BECTHO20 Memoda Pynee, odnako mbvl npednovumaem He UCTOAL30BATND
PA3N0ACEHUA 6 PAJDL, KOMOPHLE NPUBOOAM K BEPTHUM 2PAHUUAM OAA PeuLeHutl, HECNOAE3HBIM ONA KOM-
nLIOMEPHOT PEAAU3AUUL.

Karoueswie caosa: duofanmosn, YypasHerus, IMeMeHmapHas eepcus memoda Pynee.
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