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The problem of two-dimensional stationary flow of two immiscible liquids in a plane channel with rigid

walls is considered. A temperature distribution is specified on one of the walls and another wall is heat-
insulated. The interfacial energy change is taken into account on the common interface. The temperature
in liquids is distributed according to a quadratic law. It agrees with velocities field of the Hiemenz type.
The corresponding conjugate boundary value problem is nonlinear and inverse with respect to pressure
gradients along the channel. The Tau method is used for the solution of the problem . Three different
solutions are obtained. It is established numerically that obtained solutions converge to the solutions of
the slow flow problem with decreasing the Marangoni number. For each of the solutions the characteristic

flow structures are constructed.
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For many liquids the surface tension is well approximated by the linear function. Then energy
equality is simplified and has the form [1]

00 00 )
kQa—; - kla—nl = @0 divp u. (1)
where &8 = —00 /00, o(0) is the surface tension coefficient. In equality (1) k; are coefficients of

thermal conductivity and 6; are temperature of liquids, j = 1,2; 0 = 6; = 6, and u = u; = up
are temperature and velocity vector at the interface I', n is the normal to I' directed to the
second liquid.

The ratio of right-hand side of equation (1) to the terms in left-hand side of equation (1) is
estimated by the parameter E = &60* /u,k; (for the first term it is necessary to assume j = 1 and
for the second term j = 2), u; are dynamic viscosities, 8* is the characteristic temperature on the
interface. Parameter E determines the influence of interphase energy on the motion of liquids
inside the layers. For ordinary liquids at room temperature this parameter is small. For example,
it was obtained in experiments that E ~ 5-107% for the air — ethyl alcohol system at §* = 15°C.
Therefore, the right-hand side of equation (1) is often omitted and we have the equalities of the
heat flux across the interface. However, for low-viscosity liquids and some cryogenic liquids (for
example,liquid COs) the influence of interfacial energy must be taken into account. It is known
that viscosity decreases rapidly with increasing temperature. Calculations of motion of bubbles
in various liquids [2] showed that value E = O(1) is achieved at sufficiently high temperatures.
The maximum values of E are attained near the critical points. So, for water we have E ~ 0.02
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at § = 303.15 K; E~ 0.6 at 6 =573.15 K; E ~ 0.7 at § = 623.15 K (critical point for water is
Oxp = 647.30 K).

In the paper we study a two-dimensional stationary flow of two immiscible liquids with a
common interface at which the total energy condition is satisfied. The influence of dimensionless
parameters on the structures of emerging flows is studied.

1. Problem formulation

To describe a two-layer stationary flow of viscous heat-conducting fluids in layers bounded
by solid walls y = 0, y = h with a common interface y = [ < h we assume the following form of
velocity and temperature fields

uby) = wi()e, uoy) = v5(0), o)
0;(z,y) = a;(y)x* + b;(y),

where 0 < y <l for j =1, 1 <y < h for j = 2; u!, u? are velocity vector components,  is

temperature. Such representation of the velocity field corresponds to the well-known Hiemenz
solution [3]. The substitution of expression (2) into the equations of motion and heat transfer
results in the nonlinear systems of equations for functions w;(y), v;(y), a;(y) and b;(y)

vjwiy +wi = viwjyy + fj, wj + vy =0,
2wja; + vjay = Xjljyy; 3)
vibjy = Xjbjyy + 2X505,
where v; are the kinematic viscosities, p; = p;/v; are the densities, f; are the constants. The
pressures in liquids are distributed as
1 i 2

i T
7pj (SC,y) = VjUjy — é — fJ? + d0j7 dOj = const. (4)
P

The values of f; characterize pressure gradients along the x axis.
Conditions on the rigid walls are
w1(0) =v1(0) =0, a1(0) =aio, b1(0) = bio,
wg(h) = ’Ug(h) = 0, az(h) = a»0, bz(h) = bzo.

The following relations are satisfied on the interface y =1

wi(l) = wa(l), vi(l) =v2(l) =0, ar(l) = az(l), bi(l) = ba(D),
poway (1) — prwiy (1) = —2eea; (1),
kgagy(l) - kzlaly(l) = aeal(l)wl(l),
kgbgy(l) — k’lbly(l) = aebl(l)wl(l)
The first four conditions in (6) follow from the continuity of the velocity and temperature fields

at the interface, and the fifth condition is the dynamic condition for tangential stresses. The
last two conditions were obtained by taking into account relation (1) and the linear temperature

(6)

dependence of the surface tension coefficient. From the condition for normal stresses we obtain
that the interface remains flat. This assumption can be fulfilled, for example, under the action
of sufficiently large capillary pressure [4].
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Taking into account the no-slip conditions on the walls, vertical velocities v;(y) are excluded
from the continuity equations

Y h
v1(y)=—/0 wi(2)dz, 0<y < w(y)z—/ wa(z)dz, 1<y<h (7)
Y

Let us introduce dimensionless functions and parameters

h? a;(y) h y 2
. — . A _ F. = . — Z P. =L
W] (5) MXl Wy (y)’ J(g) a10 J MX% f]a g hv J va
M = %alohB E— &2a10h2
X1 paka

where P; are the Prandt]l numbers, M is the Marangoni number. Parameters M, E can be either
positive or negative. Then we have the following inverse adjoint boundary value problem in
dimensionless variables

M ¢ F,
Wiee = — |W? — ng/ Wi(z)dz| — =5,
Pl 0 Pl
5 ®)
Alfg =M |24, W, — Alg/ Wl(z) dZ] , 0< f <,
0
xM 2 ¢ xFo
WQ&“ = — W2 — ng/ WQ(Z) dz| — -,
P2 1 P2
5 )
Agfg =xM |245W5 — Agg/ WQ(Z) dZ] , Y<E<,
1

Boundary conditions for this problem follow from (5), (6) and (7)
Wi(0) =0, Wa(1)=0, A (0)=1, Ay(1)= % =,
Wi(y) = Wa(y), Ai(7) = A2(7),
Wae(v) = tWie(7) = =241 (v), (10)
Ase () — kAre(y) = EA (7)Wi(7),

v 1
/ Wi(z)dz =0, / Wy (z)dz =0,
0 vy

where v = I/h < 1, p = p1/p2, X = Xx1/X2, k = k1/ka. Integral conditions in (10) allow us to
find unknown constants (pressure gradients along the layers) F;, j = 1,2. Functions b;(y) are
found after solving problem (8)-(10) and they do not affect the velocity field in the layers.
Remark. Suppose that [M| <« 1 and we seck the solution of problem (8)—(10) in the form
W; = Wjo—l—Mle—i—. L = FJQ—I—MFJ-l—f—. L A= A2—|—MA;+. ... Then, zeroth approximation
has the form [5]

A2
o) = A rg (s 2g), Ao~ 140 0sesn,
FO
W§<£)=%(—35%2(%2)5—1—%), AY(E) =Ca( -1 +0, 7<E< T,

- 312 —



Elena N. Lemeshkova Two-dimensional Plane Thermocapillary Flow of Two Immiscible Liquids

1+~C1 -6 v(1—7v)? 3P Z
= RH=—F"F, F=—— —
y—1 v vy =1) (v +p(l —7))

and parameter Z = 1 4+ (' is the solution of the quadratic equation

s

(11)

V(1 —1)°E

T2 k= Z = (K1 =) +78) =0.

Expressions for dimensionless vertical speeds are determined with the use of (7). Simple calcu-
lations show that when E = 0 (no interfacial energy effect) there is unique solution of problem
(8)—(10) for small Marangoni numbers.

2. Numerical method and calculation results

To solve problem (8)—(10) the Tau method is used. This method is a modification of the
Galerkin method [6]. Let us introduce new variables: ¢ =&/yfor j=1land & = (1-&)/(1—7)
for j = 2. Then problem (8)—(10) can be rewritten in the form (primes are omitted)

M 7 2F,
Ll(I/Vl,Fl)EVVlgg—rypi1 [Wf—ng Wl(z)dz] _ ’y]_:)ll =0,
i i (12)
v
Nl(Wl,Al) = AlEE — ’}/2M 241 W71 — A1§ Wl(Z) dZ‘| =0, 0< f <1,
0
(1 oY - 1-(1=v)¢ a1 E
Lo(Wa, Fy) = Waee — % W2 — Woe / Wa(z) dz] - Xpizz =0,
: 2—(1—7)5 (13)
NQ(WQ,AQ) = AQE& — X(]. — ’)/)2M 2A2W2 — Agf / WQ(Z) dZ] = O7 0< 5 < ].,
- 0

Wi(0) =W5(0) =0, Ai1(0) =1, Ax(0)=0, Wi(l)=Ws(1), Ai(1)=As(1), (14)

1 1
/0 Wi(z)dz =0, /0 Wa(z)dz = 0. (16)

An approximate solution of problem (12)—(16) is sought in the following form
Win(€) = > Wi RK(), Ajm(€) =D ATRk(€), (17)
k=1 k=0

where Rp(z) = Pi(2z — 1) are shifted Legendre polynomials, z € [0,1], Px(z) are ordinary
Legendre polynomials [7]. Taken into account orthogonality of the Legendre polynomials Ry (z)
on the interval [0, 1]

1
1 1, k=m,
Ry (2)R(2)dz = Smhim, hpm = , Okm =
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we obtain from integral conditions (16) that W = W9 = 0. Coefficients Wf, A;’? and constants
Fy, F5 are determined from the system of Galerkin approximations

1
| 10w )R @w%fo‘/N’WWAM>m@ﬁ%:o,m:anwnfzj:1@<w)

and transformed boundary conditions (14)—(15)

n n

zn: YwE =0, > (-DfWF=0, Y (-1)FA} =1, ZA’ka
k=1 k=1 k=0
ZW=ZM%ZN=Z%
k=1
iviwgm “ZWlR’ 72214
k=1

1 n
—— Y AERL(1) + = Z AFRI (1) = —E ZA’f Z Wk
v k=0 v k=0 k=0 k=1

(19)

We also taken into account that Rj(1) = 1, Rp(0) = (—1)*. Thus, equations (18), (19) form a
closed system of algebraic nonlinear equations for coefficients Wf, A;? and constants F}, j = 1,2.

Calculations were carried out for parameters of water (j = 1) and water vapor (j = 2)
system on the saturation line at temperature 300°C: p; = 712 kg/m?, py = 46.8 kg/m3, v; =
= 13-107"m?%s, v, = 421077 m?s, x1 = 1.4-10""m?/s, xo = 2.5-1077 m%s, k =
=054 W/m-°C, ky = 0.0719 W/m-°C, && = 1.4-107* N/m-°C, P; = 0.96, P, = 1.69, E = 0.6,
M =16.5, § = 1(a1p = az), h=1-10""m, [ = 0.5- 10" m and n = 15. Three different values
of dimensionless constants Fy, Fy were obtained: {F} = —0.998, F} = —3.4}, {F? = 26.241,
F? = 82.04} and {F} = —68.86, F5 = —352.18} (superscript indicates the solution number).
The obtained values at n = 15 and at n = 16 differ by 1072°, 10712 and 10~7 for F', F? and
F3 respectively. It means good convergence of the Tau method in solving this boundary value
problem. Fig. 1 shows the profiles of dimensionless functions W;(§) and transverse velocities V;(§)
for values F! and F?, respectively. Here functions W (€) and V (£) coincide with functions W;(€)
and V;(§), 7 = 1,2 on their domains of definition. Profiles W (&) and V() qualitatively coincide
for F¥ and F!'. However, the flow is more intense for F* because Jnax, |V (&, F3)| = 0.365,
Jél%}i] |[W (&, F3)| = 6.04, and max |V (¢, F1)| = 0.0032, Iélax W (& FY| = 0.044.

Fig. 2 shows the relatlonshlp between dimensionless functions W; (&) and transverse velocities
V;(€) for F! and dimensionless parameter §. It is seen that with decreasing & the flow intensity
decreases. For F? and F? the situation is similar.

One should note that dimensionless parameters E;, M, P1, P5 affect only the intensity of flows.
For example, for F'' with decreasing number E the flow rate increases and with increasing Prandtl
number P; the flow rate decreases. It was also established that with decreasing Marangoni
number M the obtained solutions F! and F? tend to solutions of the model problem FP! =
= —1.036, F9' = —3.506 and FY? = 654.63, F3? = 2215.12, respectively (see (11)). For
example, at M = 0.001 we obtain |[FP' — F}|~ 107" and |F}? — F7|~107%, j = 1,2.

This research was supported by the Russian Foundation for Basic Research (grant 17-01-
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Fig. 1. Profiles of dimensionless functions W(§) (—) and transverse velocities V(&) (——) for
F! (a) and F? (b)
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Fig. 2. Profiles of dimensionless functions W (¢) and transverse velocities V (€) for F*
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JIByMepHOe mJjIocKoe TeEPpMOKANWJIJISIPHOE TeYeHune JIBYX
HECMeINBAIIIUXCI KUAKOCTE

Enena H. JIememkoBa

NucruryT Beraucanresnbaoro mogenuposanus CO PAH
Axkaznemroponok, 50/44, Kpacunosipck, 660036

Poccus

HUsyuaemea 3adaua 0 08YMEPHOM CMAUUOHAPHOM MEYEHUY 0BYL HECMEWUBAIOWUTCA HCUIKOCTED 6
naockom Kanane. Ha meepdoxr cmenkar xamnan noddeporcusaem 3adarroe pacnpedeserue mMeMnepamy-
pu. Kudkocmu xKonmaxmupyom wepes obuLy0 noSepTHOCMY pasdeaa, Ha KOMOPOUT YHUMDvleaomcs 3a-
mpamo, aHepeuy Ha ee depopmayuro. Temnepamypa 6 otcudkocmaxr pacnpedenserna no K6aOPAMUYLHOMY
3AKOHY, YMO CO2AACYEMCA C noaem ckopocmet muna Xumenya. Mamemamuveckuts anaius maxozo me-
YeHUA NPUBOOUM K B03HUKHOBEHUIO CONPAANCEHHOT KPAEGOT 3G0a"U, KOMOPAA ABAAECTCA HEAUHETUHOT U
06pamHot OMHOCUMEALHO 2paduermos dasaeHuli 600ab KaHnanaa. IIpumenenue ¥ net may-memoda noxa-
3bLBAEM, UMO OHA UMEEM MPU PA3AUNHBIL PEWLEHUA. TUCAEHHO YCMAHOBAEHO, UMO NOAYHEHHDLE PEULEHUS
¢ ymenvuweHuem wucaa Maparzornu cxodamces k peweruam 3a0a4u 0 noA3yuem mevenus. Jas xascdozo
U3 peweruti NOCMPoeHv, TAPAKMEPHDBLE CIMPYKMYDLL MEUEHUSA.

Kamoueswie caosa: eparuya pa3oena, mepmokanusIAPHOCTIL, 00pammas 3adava, may-memod.
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