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The problem of two-dimensional stationary flow of two immiscible liquids in a plane channel with rigid
walls is considered. A temperature distribution is specified on one of the walls and another wall is heat-
insulated. The interfacial energy change is taken into account on the common interface. The temperature
in liquids is distributed according to a quadratic law. It agrees with velocities field of the Hiemenz type.
The corresponding conjugate boundary value problem is nonlinear and inverse with respect to pressure
gradients along the channel. The Tau method is used for the solution of the problem . Three different
solutions are obtained. It is established numerically that obtained solutions converge to the solutions of
the slow flow problem with decreasing the Marangoni number. For each of the solutions the characteristic
flow structures are constructed.
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For many liquids the surface tension is well approximated by the linear function. Then energy
equality is simplified and has the form [1]

k2
∂θ2
∂n

− k1
∂θ1
∂n

= æθ divΓ u. (1)

where æ = −∂σ/∂θ, σ(θ) is the surface tension coefficient. In equality (1) kj are coefficients of
thermal conductivity and θj are temperature of liquids, j = 1, 2; θ = θ1 = θ1 and u = u1 = u2

are temperature and velocity vector at the interface Γ, n is the normal to Γ directed to the
second liquid.

The ratio of right-hand side of equation (1) to the terms in left-hand side of equation (1) is
estimated by the parameter E = æθ∗/µjkj (for the first term it is necessary to assume j = 1 and
for the second term j = 2), µj are dynamic viscosities, θ∗ is the characteristic temperature on the
interface. Parameter E determines the influence of interphase energy on the motion of liquids
inside the layers. For ordinary liquids at room temperature this parameter is small. For example,
it was obtained in experiments that E ∼ 5 · 10−4 for the air – ethyl alcohol system at θ∗ = 15◦C.
Therefore, the right-hand side of equation (1) is often omitted and we have the equalities of the
heat flux across the interface. However, for low-viscosity liquids and some cryogenic liquids (for
example,liquid CO2) the influence of interfacial energy must be taken into account. It is known
that viscosity decreases rapidly with increasing temperature. Calculations of motion of bubbles
in various liquids [2] showed that value E = O(1) is achieved at sufficiently high temperatures.
The maximum values of E are attained near the critical points. So, for water we have E ∼ 0.02
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at θ = 303.15 K; E ∼ 0.6 at θ = 573.15 K; E ∼ 0.7 at θ = 623.15 K (critical point for water is
θкр = 647.30 K).

In the paper we study a two-dimensional stationary flow of two immiscible liquids with a
common interface at which the total energy condition is satisfied. The influence of dimensionless
parameters on the structures of emerging flows is studied.

1. Problem formulation

To describe a two-layer stationary flow of viscous heat-conducting fluids in layers bounded
by solid walls y = 0, y = h with a common interface y = l < h we assume the following form of
velocity and temperature fields

u1
j (x, y) = wj(y)x, u2

j (x, y) = vj(y),

θj(x, y) = aj(y)x
2 + bj(y),

(2)

where 0 < y < l for j = 1, l < y < h for j = 2; u1, u2 are velocity vector components, θ is
temperature. Such representation of the velocity field corresponds to the well-known Hiemenz
solution [3]. The substitution of expression (2) into the equations of motion and heat transfer
results in the nonlinear systems of equations for functions wj(y), vj(y), aj(y) and bj(y)

vjwjy + w2
j = νjwjyy + fj , wj + vjy = 0,

2wjaj + vjajy = χjajyy,

vjbjy = χjbjyy + 2χjaj ,

(3)

where νj are the kinematic viscosities, ρj = µj/νj are the densities, fj are the constants. The
pressures in liquids are distributed as

1

ρj
pj(x, y) = νjvjy −

v2j
2

− fj
x2

2
+ d0j , d0j = const. (4)

The values of fj characterize pressure gradients along the x axis.
Conditions on the rigid walls are

w1(0) = v1(0) = 0, a1(0) = a10, b1(0) = b10,

w2(h) = v2(h) = 0, a2(h) = a20, b2(h) = b20.
(5)

The following relations are satisfied on the interface y = l

w1(l) = w2(l), v1(l) = v2(l) = 0, a1(l) = a2(l), b1(l) = b2(l),

µ2w2y(l)− µ1w1y(l) = −2æa1(l),

k2a2y(l)− k1a1y(l) = æa1(l)w1(l),

k2b2y(l)− k1b1y(l) = æb1(l)w1(l).

(6)

The first four conditions in (6) follow from the continuity of the velocity and temperature fields
at the interface, and the fifth condition is the dynamic condition for tangential stresses. The
last two conditions were obtained by taking into account relation (1) and the linear temperature
dependence of the surface tension coefficient. From the condition for normal stresses we obtain
that the interface remains flat. This assumption can be fulfilled, for example, under the action
of sufficiently large capillary pressure [4].
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Taking into account the no-slip conditions on the walls, vertical velocities vj(y) are excluded
from the continuity equations

v1(y) = −
∫ y

0

w1(z) dz, 0 6 y 6 l; v2(y) = −
∫ h

y

w2(z) dz, l 6 y 6 h. (7)

Let us introduce dimensionless functions and parameters

Wj(ξ) =
h2

Mχ1
wj(y), Aj(ξ) =

aj(y)

a10
, Fj =

h4

Mχ2
1

fj , ξ =
y

h
, Pj =

νj
χj

,

M =
æa10h

3

χ1µ2
, E =

æ2a10h
2

µ2k2
,

where Pj are the Prandtl numbers, M is the Marangoni number. Parameters M, E can be either
positive or negative. Then we have the following inverse adjoint boundary value problem in
dimensionless variables

W1ξξ =
M
P1

[
W 2

1 −W1ξ

∫ ξ

0

W1(z) dz

]
− F1

P1
,

A1ξξ = M

[
2A1W1 −A1ξ

∫ ξ

0

W1(z) dz

]
, 0 < ξ < γ,

(8)

W2ξξ =
χM
P2

[
W 2

2 −W2ξ

∫ ξ

1

W2(z) dz

]
− χF2

P2
,

A2ξξ = χM

[
2A2W2 −A2ξ

∫ ξ

1

W2(z) dz

]
, γ < ξ < 1,

(9)

Boundary conditions for this problem follow from (5), (6) and (7)

W1(0) = 0, W2(1) = 0, A1(0) = 1, A2(1) =
a20
a10

= δ,

W1(γ) = W2(γ), A1(γ) = A2(γ),

W2ξ(γ)− µW1ξ(γ) = −2A1(γ), (10)

A2ξ(γ)− kA1ξ(γ) = EA1(γ)W1(γ),∫ γ

0

W1(z) dz = 0,

∫ 1

γ

W2(z) dz = 0,

where γ = l/h < 1, µ = µ1/µ2, χ = χ1/χ2, k = k1/k2. Integral conditions in (10) allow us to
find unknown constants (pressure gradients along the layers) Fj , j = 1, 2. Functions bj(y) are
found after solving problem (8)–(10) and they do not affect the velocity field in the layers.

Remark. Suppose that |M| ≪ 1 and we seek the solution of problem (8)–(10) in the form
Wj = W 0

j +MW 1
j +. . . , Fj = F 0

j +MF 1
j +. . . , Aj = A0

j+MA1
j+. . . . Then, zeroth approximation

has the form [5]

W 0
1 (ξ) =

ν(1− γ)2

6γ2P1
F 0
2

(
−3ξ2 + 2γξ

)
, A0

1(ξ) = 1 + C1ξ, 0 6 ξ 6 γ,

W 0
2 (ξ) =

χF 0
2

6P2

(
−3ξ2 + 2(γ + 2)ξ − 1− 2γ

)
, A0

2(ξ) = C2(ξ − 1) + δ, γ 6 ξ 6 1,
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C2 =
1 + γC1 − δ

γ − 1
, F 0

1 =
ν(1− γ)2

γ2
F 0
2 , F 0

2 =
3γP1Z

ν(γ − 1) (γ + µ(1− γ))
, (11)

and parameter Z = 1 + γC1 is the solution of the quadratic equation

γ2(1− γ)2E
2 (γ + µ(1− γ))

Z2 + (γ + k(1− γ))Z − (k(1− γ) + γδ) = 0.

Expressions for dimensionless vertical speeds are determined with the use of (7). Simple calcu-
lations show that when E = 0 (no interfacial energy effect) there is unique solution of problem
(8)–(10) for small Marangoni numbers.

2. Numerical method and calculation results

To solve problem (8)–(10) the Tau method is used. This method is a modification of the
Galerkin method [6]. Let us introduce new variables: ξ′ = ξ/γ for j = 1 and ξ′ = (1− ξ)/(1− γ)

for j = 2. Then problem (8)–(10) can be rewritten in the form (primes are omitted)

L1(W1, F1) ≡ W1ξξ −
γ2M
P1

[
W 2

1 −W1ξ

∫ γξ

0

W1(z) dz

]
− γ2F1

P1
= 0,

N1(W1, A1) ≡ A1ξξ − γ2M

[
2A1W1 −A1ξ

∫ γξ

0

W1(z) dz

]
= 0, 0 < ξ < 1,

(12)

L2(W2, F2) ≡ W2ξξ −
χ(1− γ)2M

P2

[
W 2

2 −W2ξ

1−(1−γ)ξ∫
0

W2(z) dz

]
− χ(1− γ)2F2

P2
= 0,

N2(W2, A2) ≡ A2ξξ − χ(1− γ)2M

[
2A2W2 −A2ξ

1−(1−γ)ξ∫
0

W2(z) dz

]
= 0, 0 < ξ < 1,

(13)

W1(0) = W2(0) = 0, A1(0) = 1, A2ξ(0) = 0, W1(1) = W2(1), A1(1) = A2(1), (14)

1

1− γ
W2ξ(1) +

µ

γ
W1ξ(1) = 2A1(1),

1

1− γ
A2ξ(1) +

k

γ
A1ξ(1) = −EA1(1)W1(1), (15)

∫ 1

0

W1(z) dz = 0,

∫ 1

0

W2(z) dz = 0. (16)

An approximate solution of problem (12)–(16) is sought in the following form

Wjn(ξ) =

n∑
k=1

W k
j Rk(ξ), Ajn(ξ) =

n∑
k=0

Ak
jRk(ξ), (17)

where Rk(z) = Pk(2z − 1) are shifted Legendre polynomials, z ∈ [0, 1], Pk(z) are ordinary
Legendre polynomials [7]. Taken into account orthogonality of the Legendre polynomials Rk(z)

on the interval [0, 1]

∫ 1

0

Rk(z)Rm(z) dz = δkmhm, hm =
1

2m+ 1
, δkm =

{
1, k = m,

0, k ̸= m,
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we obtain from integral conditions (16) that W 0
1 = W 0

2 = 0. Coefficients W k
j , Ak

j and constants
F1, F2 are determined from the system of Galerkin approximations∫ 1

0

Lj(Wjn, Fj)Rm(ξ) dξ = 0,

∫ 1

0

Nj(Wjn, Ajn)Rm(ξ) dξ = 0, m = 0, . . . , n− 2, j = 1, 2 (18)

and transformed boundary conditions (14)–(15)
n∑

k=1

(−1)kW k
1 = 0,

n∑
k=1

(−1)kW k
2 = 0,

n∑
k=0

(−1)kAk
1 = 1,

n∑
k=0

Ak
2R

′
k(0) = 0,

n∑
k=1

W k
1 =

n∑
k=1

W k
2 ,

n∑
k=0

Ak
1 =

n∑
k=0

Ak
2 ,

1

1− γ

n∑
k=1

W k
2 R

′
k(1) +

µ

γ

n∑
k=1

W k
1 R

′
k(1) = 2

n∑
k=0

Ak
1 ,

1

1− γ

n∑
k=0

Ak
2R

′
k(1) +

k

γ

n∑
k=0

Ak
1R

′
k(1) = −E

n∑
k=0

Ak
1

n∑
k=1

W k
1 .

(19)

We also taken into account that Rk(1) = 1, Rk(0) = (−1)k. Thus, equations (18), (19) form a
closed system of algebraic nonlinear equations for coefficients W k

j , Ak
j and constants Fj , j = 1, 2.

Calculations were carried out for parameters of water (j = 1) and water vapor (j = 2)
system on the saturation line at temperature 300 ◦C: ρ1 = 712 kg/m3, ρ2 = 46.8 kg/m3, ν1 =

= 1.3 · 10−7 m2/s, ν2 = 4.2 · 10−7 m2/s, χ1 = 1.4 · 10−7 m2/s, χ2 = 2.5 · 10−7 m2/s, k1 =

= 0.54 W/m·◦C, k2 = 0.0719 W/m·◦C, æ = 1.4·10−4 N/m·◦C, P1 = 0.96, P2 = 1.69, E = 0.6,
M = 16.5, δ = 1(a10 = a20), h = 1 · 10−9 m, l = 0.5 · 10−9 m and n = 15. Three different values
of dimensionless constants F1, F2 were obtained: {F 1

1 = −0.998, F 1
2 = −3.4}, {F 2

1 = 26.241,
F 2
2 = 82.04} and {F 3

1 = −68.86, F 3
2 = −352.18} (superscript indicates the solution number).

The obtained values at n = 15 and at n = 16 differ by 10−20, 10−12 and 10−7 for F 1, F 2 and
F 3 respectively. It means good convergence of the Tau method in solving this boundary value
problem. Fig. 1 shows the profiles of dimensionless functions Wj(ξ) and transverse velocities Vj(ξ)

for values F 1 and F 2, respectively. Here functions W (ξ) and V (ξ) coincide with functions Wj(ξ)

and Vj(ξ), j = 1, 2 on their domains of definition. Profiles W (ξ) and V (ξ) qualitatively coincide
for F 3 and F 1. However, the flow is more intense for F 3 because max

ξ∈[0,1]
|V (ξ, F 3)| = 0.365,

max
ξ∈[0,1]

|W (ξ, F 3)| = 6.04, and max
ξ∈[0,1]

|V (ξ, F 1)| = 0.0032, max
ξ∈[0,1]

|W (ξ, F 1)| = 0.044.

Fig. 2 shows the relationship between dimensionless functions Wj(ξ) and transverse velocities
Vj(ξ) for F 1 and dimensionless parameter δ. It is seen that with decreasing δ the flow intensity
decreases. For F 2 and F 3 the situation is similar.

One should note that dimensionless parameters E,M,P1,P2 affect only the intensity of flows.
For example, for F 1 with decreasing number E the flow rate increases and with increasing Prandtl
number P1 the flow rate decreases. It was also established that with decreasing Marangoni
number M the obtained solutions F 1 and F 2 tend to solutions of the model problem F 01

1 =

= −1.036, F 01
2 = −3.506 and F 02

1 = 654.63, F 02
2 = 2215.12, respectively (see (11)). For

example, at M = 0.001 we obtain |F 01
j − F 1

j |≈ 10−9 and |F 02
j − F 2

j |≈ 10−3, j = 1, 2.

This research was supported by the Russian Foundation for Basic Research (grant 17-01-
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Fig. 1. Profiles of dimensionless functions W (ξ) (—–) and transverse velocities V (ξ) (−−) for
F 1 (а) and F 2 (b)

Fig. 2. Profiles of dimensionless functions W (ξ) and transverse velocities V (ξ) for F 1
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Двумерное плоское термокапиллярное течение двух
несмешивающихся жидкостей

Елена Н.Лемешкова
Институт вычислительного моделирования СО РАН

Академгородок, 50/44, Красноярск, 660036
Россия

Изучается задача о двумерном стационарном течении двух несмешивающихся жидкостей в
плоском канале. На твердых стенках канал поддерживает заданное распределение температу-
ры. Жидкости контактируют через общую поверхность раздела, на которой учитываются за-
траты энергии на ее деформацию. Температура в жидкостях распределена по квадратичному
закону, что согласуется с полем скоростей типа Хименца. Математический анализ такого те-
чения приводит к возникновению сопряженной краевой задачи, которая является нелинейной и
обратной относительно градиентов давлений вдоль канала. Применение к ней тау-метода пока-
зывает, что она имеет три различных решения. Численно установлено, что полученные решения
с уменьшением числа Марангони сходятся к решениям задачи о ползущем течении. Для каждого
из решений построены характерные структуры течения.

Ключевые слова: граница раздела, термокапиллярность, обратная задача, тау-метод.
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