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finite type. We prove an analog of P.Appell’s formula on decomposition of multiplicative functions with
poles of arbitrary multiplicity into a sum of elementary Prym integrals. We construct explicit bases
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Introduction

In the paper we study multiplicative meromorphic functions and differentials on Riemann sur-
faces of type (g, n). Recently the interest in this subject has increased in relation with applications
in theoretical physics, in particular, in description of vortex-like patterns in ferromagnetics [1].

Theory of functions on compact Riemann surfaces differs significantly from that on Riemann
surfaces of finite type even for the class of single-valued meromorphic functions and Abelian
differentials, since some of basic spaces of functions and differentials on Riemann surfaces F ′ of
type (g, n), g > 1, n > 0 are infinite-dimensional.

In this paper we continue constructing the general theory of functions on Riemann surfaces
of type (g, n) for multiplicative meromorphic function and differentials. We prove an analog
of P.Appell’s formula about the expansion of a multiplicative function with poles of arbitrary
multiplicity into a sum of elementary Prym integrals. Also we construct explicit bases for some
important quotient spaces and prove a theorem about fiber isomorphism of vector bundles and
n!-sheeted mappings over Teichmüller spaces. This theorem gives an important relation between
spaces of Prym differentials (abelian differentials) on compact Riemann surfaces and Riemann
surfaces of finite type.
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1. Preliminaries

Let F be a smooth compact oriented surface of genus g > 2, with the marking {ak, bk}gk=1,

i.e. an ordered collection of standard generators of π1(F ), and F0 be a compact Riemann surface
with the fixed complex-analytic structure on F . Fix different points P1, . . . , Pn ∈ F. We assign
type (g, n) to a surface F ′ = F\{P1, . . . , Pn}. By Γ′ we denote the Fuchsian group of genus 1
acting invariantly in the disk U = {z ∈ C : |z| < 1} and uniformizing the surface F ′

0. Thus,
F ′
0 = U/Γ′, where Γ′ has the representation [2, 3]

Γ′ = ⟨A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cn :

g∏
j=1

AjBjA
−1
j B−1

j C1 . . . Cn = I⟩.

Any other complex analytic structure on F ′ is given by a Beltrami differential µ on F ′
0, i. e. by

an expression of the form µ(z)dz/dz, invariant with respect to the choice of the local parameter
on F ′

0, where µ(z) is a complex-valued function on F ′
0 and ∥µ∥L∞(F ′

0)
< 1. We denote this

structure on F ′ by F ′
µ.

Let M(F ′) be the set of all complex analytic structures on F ′ with the topology of C∞

convergence on F ′
0, Diff

+(F ′) be the group of all orientation preserving smooth diffeomorphisms
of F ′ onto itself, which leave all punctures fixed, and Diff0(F

′) be the normal subgroup of
Diff+(F ′) of diffeomorphisms homotopic to the identity diffeomorphism on F ′

0. The group
Diff+(F ′) acts on M(F ′) by µ→ f∗µ, where f ∈ Diff+(F ′), µ ∈M(F ′). Then the Teichmüller
space Tg,n(F

′
0) is the quotient space M(F ′)/Diff0(F

′) [2].
Since the mapping U → F ′

0 = U/Γ′ is a local diffeomorphism, any Beltrami differential µ on
F ′
0 lifts to a Beltrami Γ′-differential µ on U , i. e. µ ∈ L∞(U), ∥µ∥∞ = esssupz∈U |µ(z)| < 1,

and µ(T (z))T ′(z)/T
′
(z) = µ(z), z ∈ U, T ∈ Γ′, see [2].

If the Γ′-differential µ on U is continued on C\U , setting µ = 0, then there is a single
quasiconformal homeomorphism wµ : C → C with fixed points +1,−1, i, which is a solution of
the Beltrami equation wz = µ(z)wz. The map T → Tµ = wµT (wµ)−1 defines an isomorphism of
the group Γ′ onto the quasi-Fuchsian group Γ′

µ = wµΓ′(wµ)−1.
In the work [2, p. 99] there were constructed abelian differentials ζ1[µ], . . . , ζg[µ] on F[µ],

that form a canonical base dual to a canonical homotopy base {aµk , b
µ
k}

g
k=1 on Fµ, which depends

holomorphically on moduli [µ] for a class of conformal equivalency of a marked Riemann sur-
face Fµ. Further on, for brevity we shall write simply Fµ for the class of equivalence F[µ]. Here we
assume that the class [µ] has Bers coordinates h1, h2, . . . , h3g−3 when embedding the Teichmüller
space Tg(F0) of compact Riemann surfaces into C3g−3. Moreover, the matrix of b-periods

Ω(µ) = (πjk[µ])
g
j,k=1 on Fµ consists of complex numbers πjk[µ] =

Bµ
k (ξ)∫
ξ

ζj([µ], w)dw, ξ ∈ wµ(U),

and depends holomorphically on [µ].

For any fixed [µ] ∈ Tg and ξ0 ∈ wµ(U) define the classical Jacobi mapping φ : wµ(U) → Cg

by the rule: φj(ξ) =
ξ∫

ξ0

ζj([µ], w)dw, j = 1, . . . , g. The quotient space J(F ) = Cg/L(F ) is called

the marked Jacobi manifold for F = F0, where L(F ) is a lattice over Z, generated by the columns
e(1), . . . , e(g), π(1), . . . , π(g) of the matrix (Ig,Ω), where Ig is an identity matrix of order g. The
universal Jacobi manifold of order g is a fibered space over Tg, with a fiber over [µ] ∈ Tg being
a marked Jacobi manifold J(Fµ) for a marked Riemann surface Fµ [4].

A character ρ for F ′
µ is any homomorphic ρ : (π1(F

′
µ), ·) → (C∗, ·),C∗ = C \ {0}. Further on

we shall assume that ρ(γµj ) = 1, where γµj is a simple loop around only one puncture Pj on F ′
µ,
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j = 1, . . . , n.

Definition 1. A multiplicative function f on F ′
µ for the character ρ is a mermorphic function

f on wµ(U) such that f(Tz) = ρ(T )f(z), z ∈ wµ(U), T ∈ Γ′
µ.

Definition 2. A Prym q-differential with respect to a Fuchsian group Γ′ for ρ, or a (ρ, q)-
differential, is a differential ω(z)dzq such that ω(Tz)(T ′z)q = ρ(T )ω(z), z ∈ U, T ∈ Γ′, ρ :
Γ′ → C∗.

If a multipicative function f0 on Fµ for ρ does not have zeroes or poles, then the character
ρ is called non-essential and f0 is called a unit. The characters which are not non-essential are
called essential on π1(Fµ). The set Lg of non-essential characters form a subgroup in the group
Hom(Γµ,C∗) of all characters on Γµ. A divisor on Fµ is a formal product D = Pn1

1 . . . Pnk

k ,

Pj ∈ Fµ, nj ∈ Z, j = 1, . . . , k.

Theorem (Abel’s theorem for characters, [3,5]). Let D be a divisor on a marked variable compact
Riemann surface [Fµ, {aµ1 , . . . , aµg , b

µ
1 , . . . , b

µ
g}] of genus g > 1, and ρ be a character on π1(Fµ).

Then D is a divisor of a multiplicative function f on Fµ for ρ if and only if degD = 0 and

φ(D) =
1

2πi

g∑
j=1

log ρ(bµj )e
(j) − 1

2πi

g∑
j=1

log ρ(aµj )π
(j)[µ]

(
≡ ψ(ρ, [µ])

)
,

where φ[µ] : Fµ → J(Fµ) is the Jacobi mapping.

The class M1(ρ) consists of those Prym differentials for ρ on F ′
µ, which have finitely many

poles on F ′
µ and admit meromorphic continuation to Fµ.

In [6] it was proved that for any essential character ρ, a point Q1 ∈ Fµ, and natural q > 1

or a non-essential character ρ, a point Q1 ∈ Fµ, and natural q > 1 there exists an elementary
(ρ, q)-differential τρ,q;Q1 of the third kind with a unique simple pole Q1[µ] on Fµ. For any non-
essential character ρ, a point Q1 ∈ Fµ if q = 1 there is no elementary (ρ, 1)-differential τρ;Q1 . Also
it is proved there that on a variable surface Fµ of genus g > 2 for any natural q > 1 there exists
an elementary (ρ, q)-differential τρ,q;Q1Q2 of the third kind with simple poles Q1, Q2 ∈ Fµ, and

τ
(m)
ρ,q;Q1

=
( 1

zm
+ O(1)

)
dzq, z(Q1) = 0, of the second kind with the pole Q1[µ] of order m > 2.

These differentials depend locally holomorphically on [µ] and ρ.
Let p : E → B be a locally trivial holomorphic vector bundle of rank m, i.e. E,B are complex

analytic manifolds, the base B is covered by a system of open simply-connected sets {Uα} such
that there exists a system of holomorphic fiber coordinate homeomorphisms φα : Uα × Cm →
p−1(Uα) for all α. On intersections Uα∩Uβ ̸= ∅ there are given φβα = φ−1

β φα : (Uα∩Uβ)×Cm →
(Uα∩Uβ)×Cm, holomorphic matrix transition functions, which satisfy on (Uα∩Uβ∩Uγ)×Cm the
relations φαγφγβφβα = id, where id is the identity homeomorphism for all indices. The transition
functions φβα(x, z) = (x, φ̃βα(x)z) define holomorphic mappings φ̃βα : Uα ∩ Uβ → GL(m,C),
where x ∈ B, z ∈ Cm и φ̃αγφ̃γβφ̃βα = 1. These conditions on B,Cm, {Uα} and such φβα, φ̃βα

are sufficient to define a locally trivial holomorphic vector bundle E of rank m over B [7].
Any holomorphic section s : B → E, i.e. ps(x) = x, x ∈ B, may locally be described as

φ−1
α s : Uα → Uα × Cm, which define holomorphic vector-valued functions sα : Uα → Cm by the

formula (φ−1
α s)(x) = (x, sα(x)), x ∈ Uα. On intersections Uα ∩Uβ ̸= ∅ these functions satisfy the

compatibility conditions sβ(x) = φ̃βα(sα(x)).

Conversely, given a set of holomorphic vector-valued functions sα : Uα → Cm with the com-
patibility conditions satisified, then the formula s(x) = φα(x, sα(x)) uniquely, i.e. independently
of the choice of the covering {Uα}, defines a holomorphic section s : B → E.
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If E is a locally trivial holomorphic vector bundle of rank m over B, then there exists a base
of locally holomorphic sections for {Uα} given by skα = φα(x, ek), k = 1, . . . ,m, x ∈ Uα, where
e1, . . . , em is the standard base in Cm.

Conversely, given a base of locally holomorphic sections skα, k = 1, . . . ,m, x ∈ Uα of E, the

coordinate homeomorphisms can be defined by φα(x, z) =
m∑
j=1

zjsjα, where z =
m∑
j=1

zjej , which

are holomorphic in x ∈ B and z ∈ Cm. Besides, from (s1α(x), . . . , smα(x))
t = φ̃αβ(x)(s1β(x), . . .

. . . , smβ(x))
t it follows that the transition functions φ̃αβ(x) are holomorphic on intersections

Uα ∩ Uβ ̸= ∅. In this manner (E, p,B) is endowed with the structure of a holomorphic vector
bundle of rank m over B.

2. An analog of Appel’s decomposition formula
for a multiplicative function on a variable Riemann
surface of finite type

Denote by T (1)
ρ;Q = −

P∫
Q0

τ
(2)
ρ;Q an elementary Prym integral of second kind on Fµ for an essential

character ρ with only simple pole at Q and with residue +1 in Q that depends holomorphically
on [µ] and ρ, where τ (2)ρ;Q has zero residue at Q [5, 6, 8].

Let f be a function on Fµ
′ of the class M1 for an essential character ρ with s simple poles

Pn+1, Pn+2, . . . , Pn+s and residues cn+1, . . . , cn+s at these poles respectively for some its branch.
Consider an analytic continuation of this function f (denoting it by the same symbol) from Fµ

′

to Fµ. Consider the expression f1 = f−cn+1T
(1)
ρ;Pn+1

−· · ·−cn+sT
(1)
ρ;Pn+s

−
g−1∑
j=1

c̃j
P∫

Q0

ζ̃j , where c̃j ∈ C,

j = 1, . . . , g−1, and ζ̃1, . . . , ζ̃g−1 is the base of Prym differentials of the first kind for an essential
character ρ on Fµ depending holomorphically on [µ] end ρ [2]. Then f1 is a meromorphic single-
valued branch of the Prym integral with an essential character ρ on the fundamental polygon △µ,

where the surface Fµ is uniformized [3], with the divisor (f1) >
1

P q1
1 ... P qn

n
, qj > 0, j = 1, . . . , n,

on Fµ. Here we assume P1, P2, . . . , Pn+s ∈ Int△µ. Besides, the Prym integral f1 for ρ has a
branch whose principal parts of Laurent series coincide with principal parts of Laurent series at
Pj , j = 1, . . . , n, for f and zero am-periods, m = 1, . . . , g − 1, on Fµ or on △µ [2]. Therefore

f =
s∑

j=1

cn+jT
(1)
ρ;Pn+j

+
g−1∑
j=1

c̃j
P∫

Q0

ζ̃j + f1.

If Pl is a pole of order ql, ql > 2, then in the formula above one should instead of clT
(1)
ρ;Pl

,

l = n + 1, . . . , n + s, (for simple poles), and also for poles Pl, l = 1, . . . , n, of the branch of f1
write sums of the form

Al,1T
(1)
ρ;Pl

+Al,2

∂T
(1)
ρ;Pl

∂Pl
+
Al,3

2

∂2T
(1)
ρ;Pl

∂P 2
l

+ · · ·+ Al,ql

(ql − 1)!

∂ql−1T
(1)
ρ;Pl

∂P ql−1
l

,

where Al,j are coefficients of the principal part of the Laurent series for some branch of f at
Pl, j = 1, . . . , ql(Pl), l = n + 1, . . . , n + s, and for a branch of f1 at P1, P2, . . . , Pn. Indeed, in a

neighborhood of Pl we have expansions T (1)
ρ;Pl

=
1

z − z(Pl)
+ O(1); (T

(1)
ρ;Pl

)′al
=

1

(z − al)2
+ O(1),

z(Pl) = al; . . . ; (T
(1)
ρ;Pl

)
(m)
al =

m!

(z − al)m+1
+O(1), 1 6 m 6 ql(Pl)− 1, where ql(Pl) is the order

– 266 –



Alexander V.Chueshev, Victor V.Chueshev Vector Bundle of Prym Differentials over Teichmüller . . .

of the pole at Pl for branches f and f1, l = 1, . . . , s+ n. From that follows the theorem.

Theorem 1. Let f be a branch of a function of class M1 for an essential character ρ on a variable
Riemann surface F

′

µ of type (g, n), g > 2, n > 0, with pairwise distinct poles at Pn+1, . . . , Pn+s

of multiplicities qn+1, . . . , qn+s with given principal parts:

Aj,qj

(z − z(Pj))qj
+ . . .+

Aj1

(z − z(Pj))
, j = n+ 1, . . . , n+ s. (1)

Then for an analytic continuation of f we have (f) > 1

P
q1
1 ... P

qn+s
n+s

, qj > 0, j = 1, . . . , n, on Fµ

and

f =

n+s∑
j=1

qj∑
m=1

[
Aj,m

(m− 1)!

∂m−1T
(1)
ρ;Pj

∂Pm−1
j

]
+

g−1∑
j=1

c̃j

∫ P

Q0

ζ̃j ,

where f =
Aj,qj

(z − z(Pj))qj
+. . .+

Aj,2

(z − z(Pj))2
+

Aj,1

z − z(Pj)
+O(1) for some branch in a neighborhood

of Pj , j = 1, . . . , n+ s, на Fµ, and all summands depend holomorphically on [µ] and ρ.

Let now ρ be a non-essential character. The proof of the previous expansion formula for an
essential character does not work since in this case there is no Prym integral of the second kind
with only simple pole on Fµ. Therefore we need a Prym differential τρ;Q2

1Q
2
2

of second kind for a
non-essential character ρ with two poles of second order at two distinct points Q1 and Q2 on △µ

with zero residues at Q1 and Q2 [5,6]. In this case one should use as basic elements of expansion

the Prym integrals Tρ;Q1Q2 = −
P∫

Q0

τρ;Q2
1Q

2
2

of second kind with two simple poles Q1 and Q2.

Consider one more Prym differential τρ;Q1Q2 = f0τQ1Q2 of the third kind on Fµ, where f0
is a unit for ρ on Fµ and τQ1Q2 is the normalized (i.e all a-periods vanish) abelian differential
with simple poles Q1 and Q2 on Fµ and residues +1 and –1 at these points, respectively, which
depend holomorphically on [µ] and ρ [5, 6]. It is known that τQ1Q2 = dΠQ1Q2 and the abelian
integral ΠQ1Q2 can be expressed implicitly via the Riemann theta-function for the surface Fµ.

It equals to a sum of two functions, one of which depends only on Q1, and another only on Q2

[5, p. 117]. Therefore the derivative
∂ΠQ1Q2

∂z1
does not depend on Q2, where z1 = z(Q1).

The Prym differential τ (2)ρ;Q1
admits the expansion

(
1

(z − z1)2
+

c
(1)
−1

z − z1
+O(1)

)
dz in a neigh-

borhood of Q1, z(Q1) = z1, where c(1)−1 =
g∑

j=1

log ρ(aj)φ
′

j(Q1) [5,6]. To prove this we consider the

abelian differential
τ
(2)
ρ,Q

f0
, where f0 is a multiplicative unit for ρ. Its complete sum of residues is

zero. In a neighborhood of Q, z(Q) = z0 we have the Laurent expansions

τ
(2)
ρ,Q =

(
1

(z − z0)2
+

c−1

z − z0
+ c0 + . . .

)
dz,

1

f0(z)
= exp

(
−

g∑
j=1

λjφj(z)

)
=

1

f0(z0)
− (z − z0)

f0(z0)

(
λ1φ

′
1(z0) + . . .+ λgφ

′
g(z0)

)
+ . . . ,

where λj = log ρ(aj), j = 1, . . . , g. From that we get

0 = resz0
τ
(2)
ρ,Q

f0
=

c−1

f0(z0)
−
λ1φ

′
1(z0) + · · ·+ λgφ

′
g(z0)

f0(z0)
,
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since Q is the only pole of the abelian differential. Therefore c−1 =
g∑

j=1

λjφ
′
j(z0) and c−1 = 0

in a finite number of points Q on △µ. Indeed, df0 = exp
( g∑

j=1

λjφj(P )
) g∑

j=1

λjφ
′
jdz(P ), and the

equivalency
g∑

j=1

λjφ
′
j(Q) = 0 ⇔ df0(Q) = 0 holds. Thus, for a non-essential character ρ there is

no Prym differential of the second kind with only pole of the second order at an arbitrary point

Q and principal part
1

(z − z0)2
, since the condition λ1φ′

1(z0) + · · ·+ λgφ
′
g(z0) = 0 holds only for

a finite number of points Q on △µ, i.e. at points Q that are zeroes of the differential df0.

The Prym differential τ (2)ρ;Q2
also has an expansion

(
1

(z − z2)2
+

c
(2)
−1

z − z2
+O(1)

)
dz in a neigh-

borhood of Q2 on Fµ, where c(2)−1 =
g∑

j=1

log ρ(aj)φ
′
j(Q2).

A Prym differentials with two poles of the second order and zero residues at these points may
be given in the form

τρ;Q2
1Q

2
2
= c

(2)
−1f0(Q1)τ

(2)
ρ;Q1

− c
(1)
−1f0(Q2)τ

(2)
ρ;Q2

− c
(1)
−1c

(2)
−1τρ;Q1Q2 .

Note that the principal part for τρ,Q1Q2 at Q1 has the form
f0(Q1)

z − z1
, and at Q2 it is −f0(Q2)

z − z2
.

It follows that the differential constructed above τρ;Q2
1Q

2
2

has poles of the second order at Q1

and Q2, and zero residues at these points. Indeed, in a neighborhood of Q1 its principal part

has the form c
(2)
−1f0(Q1)

[
1

(z − z1)2
+

c
(1)
−1

z − z1

]
− c

(1)
−1c

(2)
−1

f0(Q1)

z − z1
=
c
(2)
−1f0(Q1)

(z − z1)2
; analogously at Q2:(

−c(1)−1f0(Q2)

[
1

(z − z2)2
+

c
(2)
−1

z − z2

])
+c

(1)
−1c

(2)
−1

f0(Q2)

z − z2
= −

c
(1)
−1f0(Q2)

(z − z2)2
. The constructed differential

τρ;Q2
1Q

2
2

depend holomorphically on [µ] and ρ.

Theorem 2. Let f be a branch of a function of class M1 for a non-essential character ρ on
a variable Riemann surface F

′

µ of type (g, n), g > 2, n > 0, with pairwise distinct poles at
Pn+1, . . . , Pn+s of multiplicities qn+1, . . . , qn+s with given principal parts (1). Assume that for

an analytic continuation of f to Fµ the conditions (f) > 1

P q1
1 ... P

qn+s

n+s

, qj > 0, j = 1, . . . , n, and
g∑

j=1

log ρ(aj)φ
′

j(Pn+s) ̸= 0 are fulfilled. Then

f(P ) =

g∑
j=1

cj

∫ P

Q0

f0ζj +
n+s−1∑
r=1

Ar1Tρ;PrPn+s

dn+sf0(Pr)
+

q1∑
m=2

A1m

(m− 1)!

∂m−1Tρ;P1Pn+1

∂Pm−1
1

+

+
n+s∑
j=2

[
Aj,2

∂Tρ;PjP1

∂Pj
+
Aj,3

2!

∂2Tρ;PjP1

∂P 2
j

+ . . .+
Aj,qj

(qj − 1)!

∂qj−1Tρ;PjP1

∂P
qj−1
j

]
+C,

where
f =

Aj,qj

(z − z(Pj))qj
+ . . .+

Aj,2

(z − z(Pj))2
+

Aj,1

z − z(Pj)
+O(1)

for some branch in a neighborhood of Pj , j = 1, . . . , n + s, on Fµ; C = 0 for ρ ̸= 1; dk =

=
g∑

m=1
log ρ(am)φ

′

m(Pk), k = 1, . . . , n + s, on Fµ, and all summands depend holomorphically on

[µ] and ρ.
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Proof. It is enough to check that principal parts of both parts of the formula coincide. For a
neighborhood of Pr, r = 1, . . . , n+ s− 1, on △µ we have the Laurent expansion

n+s−1∑
r=1

(
dn+sf0(Pr)

z − Pr
− drf0(Pn+s)

z − Pn+s
)

Ar1

dn+sf0(Pr)
=

Ar1

z − Pr
+ . . . .

For a neighborhood of Pn+s on △µ we have
n+s−1∑
r=1

−drf0(Pn+s)

z − Pn+s

Ar1

dn+sf0(Pr)
=

1

z − Pn+s

f0(Pn+s)

dn+s

n+s−1∑
r=1

−drAr1

f0(Pr)
+ . . . =

An+s,1

z − Pn+s
+ . . . ,

since
n+s∑
r=1

−Ar1dr
f0(Pr)

= 0,
f0(Pn+s)

dn+s

n+s−1∑
r=1

−drAr1

f0(Pr)
= An+s,1, according to the complete sum of

residues formula for an abelian differential
f

f0
d

(
g∑

j=1

log ρ(aj)φj

)
of the third kind on Fµ, which

at Pj has the residues
Aj1dj
f0(Pj)

, j = 1, . . . , n+s. Thus, the coefficients at the power –1 in principal

parts at P1, P2, . . . , Pn+s, are the same.
The third sum shows that the coefficients coincide in principal parts at P1 for powers starting

from –2. The fourth sum shows that the coefficients coincide in principal parts at P2, P3, . . . , Pn+s

for powers starting from –2.
If ρ = 1 then all the summands in the formula become abelian integrals, which differ by a

constant C. If ρ ̸= 1 and ρ is a non-essential character, then C = 0, since a constant is neither a
multiplicative function, nor a Prym integral for this character on Fµ of genus g > 2.

Remark. P.Appel [6, see p. 118] proved Theorem 2 for a fixed compact Riemann surface and
simple poles with every simple element (summand) depending on additional g − 1 poles. Our
theorem is proved for a variable Riemann surface F ′ of finite type (g, n), g > 2, n > 0, and poles
of any order with any summand having either one or two poles. Moreover, if ρ = 1, n = 0 we
recover the classical fact on decomposition of a single-valued meromorphic function into a sum
of abelian integrals on a compact Riemann surface.

Corollary. For any non-essential character ρ on a variable compact Riemann surface Fµ of
genus g > 2 at Q1, which are zeroes of the differential df0, there exists a differential τ (2)ρ,Q1

of the
second kind with only pole of the second order at Q1 that depends holomorphically on [µ] and ρ,
and having zero residue at Q1.

3. Vector bundles of Prym differentials over a Techmüller
space of Riemann surfaces of finite type

Denote by Ωq
ρ

(
1

Qα1
1 · · ·Qαs

s
;Fµ

)
the vector space of (ρ, q)−differentials that are multiples

of the divisor
1

Qα1
1 · · ·Qαs

s
, where αj > 1, αj ∈ N, j = 1, . . . , s, s > 1, q > 1, q ∈ N, and

by Ωq
ρ(1;Fµ) the vector subspace of holomorphic (ρ, q)-differentials on Fµ [3]. Here the divisor

Q1 . . . Qs on Fµ is understood as a constant set of points on a surface F of genus g > 2.

Let Ẽ be the principal Hom(Γ,C∗)-bundle over Tg(F0) with the fiber Hom(Γµ,C∗) over F[µ]

from Tg(F0). Here F0 = U/Γ, Γ is a Fuchsian group uniformizing F0 over the circle U, and
F[µ] = wµ(U)/Γµ = ∆µ/Γµ, Γµ be a quasi-Fuchsian group uniformizing the compact Riemann
surface F[µ] over wµ(U).
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Lemma 1 ( [5], pp. 105–106). A holomorphic principal Hom(Γ,C∗)-bundle Ẽ is biholomorphic
to the trivial bundle Tg(F0)×Hom(Γ,C∗) over Tg(F0).

Proposition 1. The vector bundle E = ∪Ωq
ρ

( 1

Qα1
1 · · ·Qαs

s
; Fµ

)
/Ωq

ρ(1;Fµ) over Tg ×

(Hom(Γ,C∗)\1) for q > 1
(
over Tg × (Hom(Γ,C∗)\Lg) when q = 1

)
and g > 2 is a holo-

morphic vector bundle of rank α1 + · · ·+ αs = d, while the co-sets of (ρ, q)-differentials

τ
(1)
ρ,q;Q1

, . . . , τ
(α1)
ρ,q;Q1

, . . . , τ
(1)
ρ,q;Qs

, . . . , τ
(αs)
ρ,q;Qs

, (2)

form a basis of locally holomorphic sections of this bundle.

Proof. With given conditions on q for the character ρ we have the equality dimΩq
ρ(1;Fµ) =

= (g − 1)(2q − 1). By the Riemann-Roch theorem for (ρ, q)-differentials we find the dimension

iρ,q(Q
−α1
1 . . . Q−αs

s ;Fµ) = (g − 1)(2q − 1) + α1 + . . .+ αs + r
(
(f [µ])Zq−1Qα1

1 . . . Qαs
s

)
,

where f [µ] is a function for ρ, Z is the canonical class for abelian 1-differentials on Fµ. Here
r
(
(f [µ])Zq−1Qα1

1 · · ·Qαs
s

)
= 0, since deg

(
(f [µ])Zq−1Qα1

1 · · ·Qαs
s

)
> α1 > 0. Thus,

dimΩq
ρ

( 1

Qα1
1 · · ·Qαs

s
;Fµ

)
/Ωq

ρ(1;Fµ) = α1 + . . .+ αs = d.

It follows from Theorems 2.1 and 2.2 of [6] that there exist differentials from the set (2) that
depend locally holomorphically on [µ] and ρ.

Let us show that the set (2) of equivalency classes of (ρ, q)-differentials that depend locally
holomorphically on [µ] and ρ is linearly independent over C for given characters ρ. Consider a
linear combination of the form

C
(1)
1 τ

(1)
ρ,q;Q1

+ . . .+ C
(α1)
1 τ

(α1)
ρ,q;Q1

+ . . .+ C(1)
s τ

(1)
ρ,q;Qs

+ . . .+ C(αs)
s τ

(αs)
ρ,q;Qs

= ω,

where ω is a holomorphic (ρ, q)-differential on Fµ. Since the right hand side does not have
singularities, all the coefficients are zeroes. All these differentials depend holomorphically on
[µ], ρ and divisors Q1 . . . Qs, which are locally holomorphic (constant) sections of the bundle of
integer divisors of degree s over the Teichmüller space Tg of genus g [4]. Therefore, this set gives
the base of locally holomorphic sections of this bundle.

Lemma 2. For any divisor P q1
1 · . . . ·P qn

n , qj > 0, j = 1, . . . , n, q > 1 and any ρ (or q = 1 and an

essential character ρ) on Fµ of genus g > 2, there exists a differential ω̃ ∈ Ωq
ρ

( 1

P q1
1 · . . . · P qn

n
, Fµ

)
with the divisor (ω̃)=

R1, . . . , RN

P q1
1 · . . . · P qn

n
, where Rj ̸=Pl, l=1, . . . , n, j=1, . . . , N, N = (2g − 2)q+

+q1 + . . . + qn, and any given principal parts of Laurent series at Pj , j = 1, . . . , n, for its
branches. This differential depends locally holomorphically on moduli [µ] of the surface Fµ and
the character ρ.

Proof. If qj = 0 for all j, there exists a holomorphic (ρ, q)-differential ω̃ ̸= 0 on Fµ for every
q > 1 and ρ, since iρ,q(1) = (2q − 1)(g − 1) > 3 if q > 1 and iρ(1) > g − 1 > 1 if q = 1.

Fix q1, . . . , qn as possible order of poles at punctures P1, . . . , Pn on Fµ respectively and assume
that for at least one j, qj > 1.

If q = 1 and q1 = 1, q2 = 0, . . . , qn = 0 for an essential character ρ there exists a differential

ω̃ ̸= 0 such that (ω̃) > 1

P1
[6]. Further on, if q = 1 we shall assume that q1 + q2 + · · ·+ qn > 2.

For any (ρ, q)-differential ω̃ the degree of its divisor deg(ω̃) = (2g − 2)q on Fµ. It fol-
lows that N = (2g − 2)q + q1 + . . . + qn. By Proposition 1.4.4 [5] and Abel’s theorem

– 270 –



Alexander V.Chueshev, Victor V.Chueshev Vector Bundle of Prym Differentials over Teichmüller . . .

there exists a differential ω̃ ̸= 0 with the divisor (ω̃) =
R1, . . . , RN

P q1
1 · . . . · P qn

n
if and only if the

equality φ(R1 . . . RN ) − φ(P q1
1 . . . P qn

n ) = −2Kq + ψ(ρ) holds in the Jacobi manifold J(Fµ),
where K is the vector of Riemann constants. From this it follows that φ(R1 . . . Rg) =
=−2Kq+φ(P q1

1 . . . P qn
n )+ψ(ρ)−φ(Rg+1 . . . RN ). Thus, to determine the zeroes of the differential

we have N−g = (2g−2)q−g+q1+. . .+qn > g−1 > 1 free parameters that can be chosen so that
they depend locally holomorphically on moduli [µ]. Solving the Jacobi inversion problem we find
the divisor R1 . . . Rg, which is the only holomorphic solution to the previous equation if the right
hand side does not belong to W 1

g [3,5]. This can be done since dimW 1
g 6 g−2, but N−g > g−2

under our hypothesis. Therefore the divisor of the differential (ω̃) =
R1 . . . RN

P q1
1 . . . P qn

n
has exactly re-

quired singularities, ifRj ̸= Pl for all indices. In order to do this we choose pointsRg+1, . . . , RN ̸=
P1, . . . , Pn. We shall show that after a specific choice of the divisor Rg+1 . . . RN we can satisfy
the condition Rj ̸= Pl for any j and l. Assume the converse, if R1 = P1 on Fµ, then from the
previous equality we get φ(R2 . . . Rg) = −2Kq+φ(P q1−1

1 P q2
2 . . . P qn

n )+ψ(ρ)−φ(Rg+1 . . . RN ) or
φ(R2 . . . RgRg+1 . . . R2g−1) = −2Kq + φ(P q1−1

1 P q2
2 . . . P qn

n ) + ψ(ρ) − φ(R2g . . . RN ). Consider
the integer divisor D = R2 . . . RgRg+1 . . . R2g−1 of degree 2g − 2. It has g − 1 free points
Rg+1, . . . , R2g−1. By the free points theorem [3] we get the inequality i(D) > 1, and therefore
φ(D) = −2K. Then the previous inequality can be rewritten as

−2K(q − 1) + φ(P q1−1
1 . . . P qn

n ) + ψ(ρ) = φ(R2g . . . RN ). (3)

Note that N − (2g− 1) = (2g− 2)q+ q1 + . . .+ qn − 2g+1 > 1 in these conditions. Thus, we see
that the sets defined by both sides of this equality in J(Fµ) has different dimensions. Therefore
we can choose R2g, . . . , RN on Fµ such that (3) does not hold. This is a contradiction.

It is known that under our conditions on q and character ρ there exist elementary (ρ, q)-
differentials of the form τ

(1)
ρ,q;Q and τ

(m)
ρ,q;Q,m > 1 on Fµ [6]. Therefore we can construct any

principal parts for Laurent series of the differential ω̃ at all points Pj , j = 1, . . . , n, on Fµ.

Further on, we shall assume that the character ρ′ on Γ′ such that ρ′(γj) = 1, j = 1, . . . , n,

i.e. ρ′ = ρ ∈ Hom(Γ,C∗). Consider the diagram

E′ = ∪
Ωq

ρ(
1

Q
α1
1 ...Qαs

s
, F ′

µ) ∩M1

Ωq
ρ(1, F ′

µ) ∩M1
→ ∪

Ωq
ρ(

1
Q

α1
1 ...Qαs

s
, Fµ)

Ωq
ρ(1, Fµ)

= E

↓ ↓ (4)

T̃n
g ×Hom(Γ,C∗)\X → Tg ×Hom(Γ,C∗)\X,

where T̃n
g is a part of the Teichmüller space Tg,n [6, p.81, p.88], the vertical arrows are projec-

tions in vector bundles, and the lower horizontal arrow is related to the operation of gluing the
punctures, which makes the surface F\{P1, . . . , Pn} into a compact surface F [3]. The upper
horizontal arrow will be explained later.

Theorem 3. The diagram above is a commutative diagram of vertical holomorphic vector bundles
with isomorphic corresponding fibers and horizontal holomorphic n!−sheeted mappings, where
X = 1 when q > 1, and X = Lg when q = 1.

Proof. By the Riemann-Roch theorem we find the dimension iρ,q
(

1

P q1
1 . . . P qn

n
, F

)
= (2q−1)(g−

−1) + q1 + . . .+ qn. Therefore, Ωq
ρ(1, F

′) is an infinite-dimensional vector space.
Now we prove the isomorphism of fibers for fixed F ′ and F, where F is obtained from F ′ by

glueing up the punctures. For any fixed ρ ̸= 1 we define the map θ of a fiber of E′ over F
′
into
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a fiber of E over F , which puts in correspondence to the class < ω >= ω + Ωq
ρ(1, F

′) ∩M1 the

class < ω − ω̃ >= ω − ω̃ +Ωq
ρ(1, F ) in the following way. If ω ∈ Ωq

ρ

(
1

Qα1
1 . . . Qαs

s
, F ′

)
∩M1, i.e.

(ω) > 1

Qα1
1 . . . Qαs

s
· 1

P q1
1 . . . P qn

n
, then we put into correspondence ω − ω̃, since by Lemma 2 we

can choose the differential ω̃ such that (ω̃)=
R1 . . . RN

P q1
1 . . . P qn

n
, Rj ̸=Pl, j=1, . . . , N, l=1, . . . , n, and

having the same principal parts of Laurent series at all points Pj , j = 1, . . . , n, as an analytic

continuation of the differential ω to F. Then ω− ω̃ ∈ Ωq
ρ

(
1

Qα1
1 . . . Qαs

s
, F

)
. Let θ

(
ω+Ωq

ρ(1, F
′)∩

M1

)
= ω − ω̃ +Ωq

ρ(1, F ).
We shall show that this mapping is well-defined. Consider another differential ω′ from the

same equivalency class < ω + Ωq
ρ(1, F

′) ∩ M1 >. It has the same singularities as ω at all

points Q1, . . . , Qs, and its own singularities at the punctures, i.e. (ω′) > 1

Qα1
1 . . . Qαs

s P
q′1
1 . . . P

q′n
n

.

Then we choose ω̃′ such that ω′ − ω̃′ ∈ Ωq
ρ

(
1

Qα1
1 . . . Qαs

s
, F

)
. Therefore, on the one hand we

have θ(< ω >) =< ω − ω̃ >, on the other hand we have θ(< ω′ >) =< ω′ − ω̃′ >. Consider the
difference of representatives of both classes (ω−ω′)+(ω̃′−ω̃) = (ω−ω̃)−(ω′−ω̃′) = ϕ ∈ Ωq

ρ(1, F ),
i.e. ϕ is a holomorphic (ρ, q)-differential on F. Therefore,

θ(< ω >) = ω − ω̃ +Ωq
ρ(1, F ) = ω′ − ω̃′ + ϕ+Ωq

ρ(1, F ) = ω′ − ω̃′ +Ωq
ρ(1, F ) = θ(< ω′ >).

Thus, the map θ is well defined on the equivalency classes.
Let us establish that θ is surjective. For any equivalency class ω0+Ωq

ρ(1, F ) we define the class

ω0 + ˜̃ω + Ωq
ρ(1, F

′), where (˜̃ω) =
R1 . . . RN

P q1
1 . . . P qn

n
on F and (ω0 + ˜̃ω) ∈ Ωq

ρ

(
1

Qα1
1 . . . Qαs

s
, F ′

)∩
M1

for some qj > 0, j = 1, . . . , n. Thus, θ(ω0 + ˜̃ω + Ωq
ρ(1, F

′)
∩
M1) = ω0 + Ωq

ρ(1, F ). This can be
proved differently. Take a Prym differential with required singularities holomorphic at punctures
on Fµ from the bundle in the right hand side of (4) and consider it on the surface with punctures.
The map θ takes it back.

Now let us prove that the mapping of a fixed fiber over F ′ and a fiber over the corresponding
surface F is 1–to–1. Assume that different equivalency classes are mapped by θ to one class,

i.e. θ(< ω1 >) =< ω1 − ω̃1 >=< ω2 − ω̃2 >= θ(< ω2 >), where ω̃1 ∈ Ωq
ρ

(
1

P q1
1 . . . P qn

n
, F

)
,

а ω̃2 ∈ Ωq
ρ

(
1

P
q′1
1 . . . P

q′n
n

, F

)
and (ω2 − ω1) does not belong to Ωq

ρ(1, F
′) ∩ M1. Consider the

difference (ω2 − ω1) + (ω̃1 − ω̃2) = (ω2 − ω̃2) − (ω1 − ω̃1) = ϕ ∈ Ωq
ρ(1, F ). Therefore ω2 − ω1 =

= ϕ+ ω̃2 − ω̃1 ∈ Ωq
ρ(1, F

′) ∩M1. This is a contradiction.
Now we prove that θ is linear. Indeed, for cj ∈ C, j = 1, 2, we have equalities

θ[c1(ω1 +Ωq
ρ(1, F

′) ∩M1) + c2(ω2 +Ωq
ρ(1, F

′) ∩M1)] =

= θ[c1ω1 + c2ω2 +Ωq
ρ(1, F

′) ∩M1] = c1ω1 + c2ω2 − (c1ω̃1 + c2ω̃2) + Ωq
ρ(1, F ) =

= c1(ω1 − ω̃1) + c1Ω
q
ρ(1, F ) + c2(ω2 − ω̃2) + c2Ω

q
ρ(1, F ) = c1θ(< ω1 >) + c2θ(< ω2 >).

Thus, θ is linear, and we get an isomorphism

θ :
Ωq

ρ

(
1

Q
α1
1 ...Qαs

s
, F ′

µ

)
∩M1

Ωq
ρ(1, F ′

µ) ∩M1
→

Ωq
ρ

(
1

Q
α1
1 ...Qαs

s
, Fµ

)
Ωq

ρ(1, Fµ)
,
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of fibers under these conditions.
Now we lift the set (2) to the set of Prym differentials on F ′

µ, which is obtained from (2)
by adding some differential from Ωq

ρ(1, F
′

µ) ∩M1. All these differentials can be chosen so that
they depend holomorphically on [µ] and ρ on F

′

µ. Thus, we obtain a set of equivalency classes of
differentials

τ
(1)
ρ,q;Q1

+Ωq
ρ(1, F

′

µ), τ
(2)
ρ,q;Q1

+Ωq
ρ(1, F

′

µ), . . . , τ
(α1)
ρ,q;Q1

+Ωq
ρ(1, F

′

µ), τ
(1)
ρ,q;Q2

+Ωq
ρ(1, F

′

µ), . . .

. . . , τ
(α2)
ρ,q;Q2

+Ωq
ρ(1, F

′
), . . . , τ

(1)
ρ,q;Qs

+Ωq
ρ(1, F

′

µ), . . . , τ
(αs)
ρ,q;Qs

+Ωq
ρ(1, F

′

µ), (1′)

which correspond to Prym differentials from (2), on F
′

µ. It is a basis of locally holomorphic
sections of the vector bundle E′. Consequently, both these bundles E and E′ are holomorphic
vector bundles of rank d over mentioned bases.

The operation of gluing up the punctures that makes F ′ into F defines an n!-sheeted holo-
morphic mapping from T̃n

g onto Tg. Here, over each surface F with fixed points P1, . . . , Pn there
are n! surfaces F ′.

Thus, we have proved commutativity of the diagram (4) with required properties.

4. Spaces of univalent differentials

Lemma 3. For each divisor P q1
1 · . . . · P qn

n , qj > 0, j = 1, ..., n, and q > 1 on Fµ of genus g > 2

there exists a differential ω̃ ∈ Ωq

(
1

P q1
1 · . . . · P qn

n
, Fµ

)
with the divisor (ω̃) =

R1, . . . , RN

P q1
1 · . . . · P qn

n
,

where Rj ̸= Pl, l = 1, . . . , n, j = 1, . . . , N, N = (2g− 2)q+ q1+ . . .+ qn, and any given principal
parts of Laurent series at Pj , j = 1, . . . , n. This differential depends locally holomorphically on
moduli [µ] of the surface Fµ.

The proof is analogous to the proof of Lemma 2.

Denote by Ωq

(
1

Qα1
1 . . . Qαl

l Ql+1 . . . Qs
;Fµ

)
for q > 1 the space of q-differentials on Fµ that

are multiple of the divisor
1

Qα1
1 . . . Qαl

l Ql+1 . . . Qs
, where α1, . . . , αl > 2, s > 1, 0 6 l 6 s

and the points Q1, . . . , Qs are distinct, and by Ωq(1;Fµ) denote the subspace of holomorphic
q-differentials on Fµ.

By the Riemann-Roch theorem for q-differentials we find the dimensions of these spaces. It
is known that dimΩq(1;Fµ) = (2q − 1)(g − 1) for q > 1. Moreover,

iq

(
1

Qα1
1 . . . Qαl

l Ql+1 . . . Qs

)
= (g − 1)(2q − 1)− deg

(
1

Qα1
1 . . . Qαl

l Ql+1 . . . Qs

)
+

+r
(
Zq−1Qα1

1 . . . Qαl

l Ql+1 . . . Qs

)
= (g − 1)(2q − 1) + α1 + . . .+ αl + s− l (> 4).

Therefore, dimΩq

(
1

Qα1
1 . . . Qαl

l Ql+1 . . . Qs
;Fµ

)
/Ωq(1;Fµ) = α1 + . . .+ αl + s− l (> 1).

Consider the sets of q-differentials:

τ
(1)
q;Q1

, τ
(2)
q;Q1

, . . . , τ
(α1)
q;Q1

, . . . , τ
(1)
q;Ql

, τ
(2)
q;Ql

, . . . , τ
(αl)
q;Ql

, τq;Q1Ql+1
, . . . , τq;Q1Qs (5)

for l > 1, q > 1;

τ
(1)
q;Q1

, τq;Q1Q2 , . . . , τq;Q1Qs (6)

for l = 0, q > 1 on Fµ.
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Proposition 2 ( [6]). The bundle

∪Ωq

(
1

Qα1
1 . . . Qαl

l Ql+1 . . . Qs
;Fµ

)
/Ωq(1;Fµ)

is a holomorphic vector bundle of rank α1+ . . .+αl+ s− l over Tg, where g > 2, α1, . . . , αl > 2,
s > 1, 0 6 l 6 s, q > 1 and the points Q1, . . . , Qs are distinct. The equivalency classes of
q-differentials from (5), (6) form a base of locally holomorphic sections of this bundle over Tg.

Consider the diagram

E′ = ∪
Ωq

(
1

Q
α1
1 ...Q

αl
l Ql+1...Qs

, F ′
µ

)
∩M1

Ωq(1, F ′
µ) ∩M1

→ ∪
Ωq

(
1

Q
α1
1 ...Q

αl
l Ql+1...Qs

, Fµ

)
Ωq(1, Fµ)

= E

↓ ↓ (7)

T̃n
g → Tg.

Теорема 4. The diagram (7) is commutative; vertical arrows stand for holomorphic vector
bundles with isomorphic corresponding fibers, horisontal arrows are for holomorphic n!-sheeted
mappings over bases from T̃n

g (a part of the Teichmüller spaces Tg,n) and a Teichmüller space Tg.

The proof follows the proof of Theorem 3 together with Lemma 3 and Proposition 2.
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Векторное расслоение дифференциалов Прима над
пространствами Тейхмюллера поверхностей с проколами

Александр В. Чуешев
Виктор В.Чуешев

Институт фундаментальных наук
Кемеровский государственный университет

Красная, 6, Кемерово, 650043
Россия

В работе исследуются мультипликативные мероморфные функции и дифференциалы на рима-
новых поверхностях конечного типа. Доказан аналог формулы П.Аппеля о разложении мульти-
пликативной функции с полюсами любых кратностей в сумму элементарных интегралов Прима.
Построены явные базисы для ряда важных фактор-пространств. Доказана теорема о послойном
изоморфизме векторных расслоений и n!-листных отображений над пространствами Тейхмюлле-
ра. Эта теорема дает важную связь между пространствами дифференциалов Прима (абелевых
дифференциалов) на компактной римановой поверхности и на римановой поверхности конечного
типа.

Ключевые слова: пространства Тейхмюллера римановых поверхностей конечного типа, диффе-
ренциалы Прима, векторные расслоения, группа характеров, многообразия Якоби.
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