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Various physical, ecological, economic, etc phenomena are governed by planar differential systems. Sub-
sequently, several research studies are interested in the study of limit cycles because of their interest in
the understanding of these systems. The aim of this paper is to investigate a class of quintic Kolmogorov
systems, namely systems of the form

z =z Py (z,y),

Yy =y Qa(z,y),
where Py and Qa4 are quartic polynomials. Within this class, our attention is restricted to study the limit
cycle in the realistic quadrant {(ac7 y) ER: >0, y> 0}. According to the hypothesises, the existence
of algebraic or non-algebraic limit cycle is proved. Furthermore, this limit cycle is explicitly given in

polar coordinates. Some examples are presented in order to illustrate the applicability of our result.
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1. Introduction and preliminaries

The so-called Kolmogorov systems on the plane are differential equations of the form

Ji‘=d*=3731[’(3:,y)7

! (1)
Y= % zyQ(x,y),

where P and @ are two coprime polynomials of R [z, y] and the derivatives are performed with
respect to the time variable. By definition, the degree of the system (1) is the maximum of
the degrees of the polynomials P and ). These systems arise in great variety of applications, for
example, ecology and population dynamics [20,22,25], chemical reaction and plasma physics [19],
hydrodynamics [10], economics, etc ...

System (1) is said to be integrable on an open set Q) of R? if there exists a non constant
continuously differentiable function H : 2 — R called a first integral of this system on £ which
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is constant on the trajectories of the polynomial system (1) contained in Q i.e., if

dH OH OH . .
s (z,y) = Oz (z,y) « P(z,y)+ Dy (z,y) y Q(x,y) =0 in the points of 2.

Moreover, H = h is the general solution of the above equation, where h is an arbitrary constant.
It is well know that for planar differential system, the existence of a first integral determines its
phase portrait, see [11].

In the qualitative theory of planar polynomial differential systems [12], one of the most
important topics is related to the second part of the unsolved Hilbert 16th problem concerned
essentially by the number H (n) of limit cycles of (1) and their positions in the phase space. There
is an extensive literature on that subject, most of it deals essentially with detection, number and
stability of limit cycles.

We recall that in the phase plane, a limit cycle of system (1) is an isolated periodic solution
in the set of all its periodic solutions. If limit cycle contained in the zero set of invariant algebraic
curve of the plane, then we say that it is algebraic, otherwise it is called non-algebraic.

In the literature, we can find also another interesting but even more difficult problem is to
give an explicit expression of a limit cycle. The limit cycles previously known in an explicit way
were algebraic see [3,4,15].

After the Odani’s work [23], where it has been proved that the limit cycle appearing in the
Van der Pol equation is not algebraic without giving an explicit expression, several articles have
been published presenting differential systems polynomials for which non-algebraic limit cycles
exist and are explicitly determined see [1,6,9,14,16].

Concerning the Kolmogorov systems, most of the studies were limited to study the existence
of limit cycles for classes of these systems see [17,20,21,25-27]. To our knowledge, the exact
analytic expressions of the limit cycles for a given Kolmogorov system is still unknown except in
algebraic case. For instance, Bendjeddou, Cheurfa and Berbache in [2] showed that the quartic
system admits the circle as an invariant curve which corresponds of course to the limit cycle.
In the same context, Benyoucef and Bendjeddou studied in [7, 8] two polynomial systems of
any degrees. They showed in the first paper that the considered system can admit up to four
algebraic limit cycles in the plane and in the second one the system can admit a unique algebraic
limit cycle in the first quadrant.

In this paper, we are interested on the quintic Kolmogorov systems of the form

{ z =z Py(z,y),

Yy :yQ4(xay)7 (2)

where
Py(x,y) =4X—4(B+2N) 2 +2(28 -3\ y+2 (38 +4N) 22 +2(4\ — B) oy +2 (A — 28) y>—
—4(B+N) 22— (B+5N) 2%y + (68 — 22 — D)oy + (A — B) >+
+(B+ Nt + (B+N) 2Py + (1= 28) 2%y + (A= B)ay’ + (8- Ny,
Qi (z,y) = —4X+2(28+ N2 +4 (2N — B)y +2)\2? — 6Bzy +2 (38 — 4\) y*>—
—3(B+Nz+(28-22-1)2*y+ BB —N)zy* +4 (A= B)y>+
+ (BNt + B+ N2y + (1 -28) 2%y + (A= B)ay® + (8- Ny,
and A, § are reals constants. Within this class, we study the existence of a limit cycle in the

realistic quadrant {(:r7 y) ER%L >0, y > 0} and show under appropriate conditions that this
cycle is non-algebraic giving its explicit form.
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For presenting our main result, the coordinates are translated by a vector (1,1), which
trasforms our system (2) to the following,

r=(z+1) ((x—2y+w2+xy—y2) ((ﬂ+)\)x2+()\—ﬂ)y2)+:E(y+1)2(x+1)), 5
y=(y+1)<(2x+y+x2+xy—y2) ((ﬂ+A)x2+(A—ﬁ)y2)+y(x+1)2(y+1)).

We can write the system (3) in polar coordinates (r,6) through z = rcosf, y = rsin6, as

= (O B O + 50+ L0 +8).

: (4)
0 =r2(A+ Bcos20)(2+r(cosf +sinh)),
where
f1(0) =1+48+ 41 (2cos20 +sin20) + (48 — 1) cos 46 + 25 sin 46,
f2(0) =4((28+ 4N+ 1)cosf +sinf + (28 — 1) cos 30 + sin 36) ,
f3(0) =8 (1 4+ X+ Bcos26 + 2sin26),

fa(0) =16 (cos® +sin ) .
Since we are dealing with solutions of system (2) in the ﬁrst quadrant we have rcosf > —1

and rsinf > —1 hence (2 + r (cos@ +sin)) > 0. If A + |3] < —, then (A + B cos20) is strictly

de
negative and as a result §# = — is negative for all ¢. This s1gn1ﬁeb that (1,1) is the unique

equilibrium point of system (2) in the first quadrant and the orbits (r (t),60 (¢)) of system (4)
have opposite orientation with respect to (x (t),y (¢t)) of system (2).

2. The main result

Our main result on the limit cycles of the quintic Kolmogorov system defined by (2) is as
follows
Theorem 2.1. Consider the polynomial system (2), then the following statements hold
-1
DIfFB#0and \+8| < 5 the system (2) has non-algebraic, stable and hyperbolic limit cycle

explicilty given in polar coordinates (r,6) by

A(0) (cosd +sind) + /A2 (0) + 4A(0) — A2 (0) sin 20

r(#:m0) = 2 A(0)sin20 ’
where A (0) = exp (0) < fo )\e—’)_q; 005)25 ds) and

27 _
2
\/e f)\Jrﬂcost 2r s 2 s P
o= 2(e?™ —1) / )\—i—ﬁcost /)\—i—Bcost sa(er=1) .

-1
2)If =0 and A < 55 the system (2) has algebraic, stable and hyperbolic limit cycle explicilty

(cosf +sinf) + /1 — 4\ —sin 26
—(2\ +sin20)

given in polar coordinates (r,0) by r (0,1¢) = , and in Cartesian

coordinates by A (z —1)* + A (y — 1)* + 2y = 0.
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For the demonstration of Theorem (2.1), we need the following lemmas

Lemma 2.2. The system of the form

P :F(@)H(r,e)—a—lg(rﬁHG(@),
o (5)
0 :W(Tﬁ)

possess a first integral expressed as

L(r,0) = H (r,0) exp(— / / s)exp(— /0 F(w (6)

0

Proof. Let set A(r,0) = H (r,0) exp( ds) and B(#) = [G exp( fF( )dw) ds,
0

then the derivatives of A and B with respect to 6 are

Ccllf;l(rg) (%Ig(re) (G)H(ré?))exp(—/OeF(S)dS)

‘2?(9) exp< /F )

By replacing the expression of derivatives of A and B with respect to 0 in the expression of L,

it follows that 2 (r, 0) = (‘9H (r,6) — F(6) H (r,0) — G (8 ) eXp( fF )

db 00
By the chain rule, the derivative of L with respect to t is given by follovvlng expression,
dL oL dr 0L do
E(T(f)ﬁ(t)) = E(raa) FTREET) (7”79)% =

(gf(r,e>exp(AeF<s>ds)> (Fo 00~ G o)+ G 0)) +

n ((88]';] (T‘ 0) (G)H(Tﬁ)—G(G))exp(_/an(S)ds)> 8875(7“,9):

So L (r,0) is a first integral of system O

-1
Lemma 2.3. Let A\, 3 € R such that A + |8] < -5 then the following statements hold

2m 27 e~s

e
1
)0<62” f)\Jrﬂcost

ds < 2.

675

2) The function g defined on [0,27] by g (0)= 2exp (— +fm

ds is strictly decreasing.

2m 2 —5

e —e
d
e —1 “Of A+ B cos2s s

3)0<A(0):exp(9)<

Furthermore g (0) >

627r 27 —e 8 e~ 5
——ds | <2.
e — 1 Of A+ Bcos2s +f A+ Bcos2s
Proof of statement 1) of Lemma 2.3 We have A+ 3 cos2s < A+ < — Wthh implies 0 <

—_e~ 8 2w 27 —e~ 8 %2 27 27r

e
——— < 2e7 %, consequently 0 < ds < e *ds, whence
A+ 3 cos2s ’ d Y 62”—10f/\+6c0828 e2r f v

e2m 27 —e—S
0< ds < 2.
6277*1/0 A+ Bcos2s 8

— 288 —



Ahmed Bendjeddou, Mohamed Grazem A Class of Quintic Kolmogorov Systems with Explicit. ..

Proof of statement 2) of Lemma 2.3. Over the interval [0, 27], the function g is differentiable

and (—6) .
"(0) = —2 gy xR o) (2+—— ).
g(9) exp ( )+/\+Bc0529 exp (=0) +)\—|—500529
1
Since A + Bcos20 < A+ ||, then ¢' () < —exp(—0) <2+ T |ﬁ|> < 0. Therefore g is
strictly decreasing function. On the other hand, from the statement 1) of Lemma 2.3, we have
1 27 —e 8

—27 . . .
2 _ ] of Nt Boos 2s ds < 2e~*", which implies

2 — 2 _
6271' ™ —e~ 8 ™ —e~ 8

ds — —ds<2e %"
e —1J, A+ [cos2s y o A+ [Bcos2s 5 e

1 27
because oz (e; 3~ 1) , consequently
e271' 27 —e—S 27 —e 8
ds < 2e %" ———ds=g(2n),
62”—1/0 A+ B cos2s s +/0 A+ Bcos2s s =9(2n)
2 27 —s

—e

e —1 { A+ B cos2s

as ¢ is strictly decreasing function, then ds < g(0). O

Proof of statement 3) of Lemma 2.3. Let us first show that A is strictly positive. From the
relationship of Chasles

6271' 6 —e—$ 2 —e—S 0 —e—S
A = — — —
(6) = exp () <62“1 </0 )\+ﬁcos2sds+/9 )\JrﬂcostdS /0 )\+50052st ’

which implies

6271- 27 —e~8 627" g —e 9
A(0) = =1 1) | 3T Beoszs® )
(0) = exp (0) 62”—1/9 )\+5cos2sd3+ (egﬂ_l )/0 )\+ﬁcos2sds
27 s

—e
-1 _ hen A .
T >0 and )\+ﬁcos2s>0’t en A(0) >0
)

Let us now show that A () < 2. From the statement 2) of Lemma 2.3, we have

27 2m -5 0 -5
¢ / c ds < 2exp (—0) +/ eids,
0 0

Since

e2™ —1 A+ Bcos2s A+ Bcos2s
27 27 —_e~$ 6 e~s
hich impli d —d 2 —0), theref
which implies eQﬂ—lg)\—Fﬂcost S+g/\—|—ﬁc0523 s | < 2exp(—0), therefore

o2 27 —e—S 0 e—*
A(0) = 0 d —d 2
(©) eXp()(e%l/o A+ Bcos2s s+/0 A+ Bcos2s <=
whence 0 < A (0) < 2. O

-1
Proof of Theorem 2.1. We assume that \ + |8] < - In the new independent variable 6, the

differential system (4) becomes

dr 1 fHO)r' +f0)r3+f0)r* + f1(0)r+38
g 8r (A + Bcos26) (247 (cosf + sinh)) '

(7)
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which can be expressed as

dr F(G)H(r,@)—%—?(r,@)—FG(G)
@ = OH ) (8)
E (’I“, 9)

r2 1
F)=1land G(#) = ————.
(rcos@+1)(rsinf + 1)’ (6) and G (6) A+ Bcos20
By Lemma 2.2, the solutions of the equation (7) are expressed as

where H (r,0) =

T’2 €

0
(rcosf+ 1) (rsinf + 1) —exp (0) <k+/0 A+ Bcos2s

—S

ds) =0, where k€R. 9)

In the region 2 — A () sin 260 # 0 and A? (9) +4A (0) — A% (0) sin 20 > 0 the equation (9) has two
solutions

ria (8) = A(0) (cosf + sin ) ;t_\/j(ze()ﬂgiizz;A (0) — A2 (0) sin 29’ »

—S

g e
ith A (0) = o[k —d
W () exp()( +Of/\+ﬁcos2s 5

Notice that system (3) has a periodic solution if and only if equation (7) has a strictly positive
2m-periodic solution. For 8 = 0, we have

7"1(0):%<k+\/k(k+4)> and rﬂO)z%(lﬂ—M),

r1,2 (0) are defined if only if k € ]—o0, =4[ U ]0, +00[. Over the interval |—oo, —4[, r; (0) and
r9 (0) are negative, and in |0, 4o0[, 71 (0) is positive but r9 (0) is negative. Consequently, the
admitted solution of equation (9) is

A(0) (cosf +sinf) + /A2 (0) + 4A (0) — A2 (0) sin 20

r(@)=r0) = 2~ A(0)sin20 (11)
where A (0) =exp (0) | k+ jﬂ Lds and k = O >0
o 5 A+ Bcos2s Cr(0)+1 '

The solution of the equation (9) starting at r (0,79) = ro > 0 is given by

A () (cos O + sind) + /A2 (0) + 4A(0) — A2 (0) sin 20

r(0:70) = 92— A(0)sin20 ’

2 0

e
where A (0) = exp (0) <r0—(6)—1 +0f)\+6c0328d8> and ro =7 (0).

The condition of the periodic solution with 27-periodic starting at 7 (0,79) = ro > 0 is
r(0,79) =7 (27, 19) . For § = 27, we obtain

—S

r (21, 70) = % (A (27) + /A (27) (A (271) + 4))

2 27
)

e * d
s ).
ro+1 o A+ Bcos2s

where A (27) = €27 (
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The resolution of equation r (0,7¢) = r (2w, 7¢) gives

27 _
27
_\/e f,\+6C0523 / / ds + 4(e2n 1)
o= 2(e?™ —1) )\+ﬂcos2s )\Jrﬁcost €

2 27 27 —e~ S
By some simplifications, we obtain Tori 1= 626 f N T Beos s ds. Finally, the general so-

lution of (4) is given explicitly by

A(0) (cosd +sind) + /A2 (0) +4A(0) — A% (0) sin 20
2 — A(0)sin20 ’

r(0,19) = (12)

e27r 27 _,—S 6 e~s

ith A (0) = ¢
w1 ( ) eXP( ) <e2‘n’_1 E)f /\+6C0523 Of +ﬁCOS25

ds) and ro = r (0).

Periodicity of r(0,79). Let us now show that A (6) is 2m-periodic function. We have

o2 o e 0+2m e—*s
A0+ 2m) = 0+2 d —d
(0 +27) = exp (6 + 27) e —1J, A+ Bcos2s s+/0 A+ Bcos2s A

it follows

A0+ 2m) = H2m " /2” —c ds + /%es ds + /9+27T6S ds
e?™ —1J, A+ Bcos2s 0o A+ [cos2s o9x A+ Bcos2s ’

i.e.
1 27 _e—s 0+27m e—s
AO+2 _ 0,27 / d / _° 4
(6+2m) = e%e (e%—l o A+ [cos2s ot on A+ [cos2s A

0427

e
by the ch f iabl =s5s—2 btai Y . 2 o.
y the change of variable u = s ™, we obtain 2[1' N+ Boos 25

27 27 —s 0 -5
A 0 2 = 0 € / —¢ d 27 —27r/ eid
(6 +27m) =e (ezw—l o A+ [cos2s shere o A+ [cos2s o)

therefore A (6 + 27) = A(f). Furthermore, as § — sinf, § — cosf and § — A(0) are
2m-periodic functions, then r (0, r) is also.

—S —S

— —27rf

—ds,
A+ Bcos2s
then

Strict positivity of r(0,rg). By the statement 3) of Lemma 2.3, we have 0 < A () < 2, then
the denominator of r (6, ) is strictly positive. Two cases are distinguished

i) If (cos 0 + sin 0) >0, the numerator of r (6, rg) is strictly positive, consequently r (6, 1) is also.
ii) If (cosf + sinf) < 0, we have 44 (§) — 242 (§) sin 20 > 0, which implies
A% (0) +4A(0) — A% (A)sin20 > A (H) + A? (0) sin 26,

i.e.

A% (0) +4A () — A (0)sin 20 > (—A (0) (cos 0 + sinh))?,
then

VA2 (0) +4A(0) — A2 (0)sin20 > — A (0) (cos 6 + sin ),
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hence

A(6) (cos O +sin6) + /A2 (0) +4A (0) — A% (0)sin26 > 0.

Therefore 1 (6, 19) is stictly positive. Finally r (6,7) defines through (4) is a periodic solution.
Let us show that this peiodic solution is a limit cycle. For this aim, we introduce the Poincaré
return map

v () = r (21, 7) = % (A (27) + /A2 (21) + 44 (QW)) ,

2 27 —5
where A (27) = exp (27) (71 T + of \ +;COS 7 ds> and show that the function of Poincare
dll
first return verify d(w # 1 see [12]. We remark that
v Y=To
VA () FAAQ@R) = g VO DY+ D) (7 (0 4 Dy + D)+ 4G+ 1)),
with )
= / S
o A+ [Bcos2s
We have 5 )
2 (amy =104 r
Iy (y+1)
and

0 er
7 (G VP DT D@ G Dy DG D)) =

y(y+2)e” (e*™ (*+Dy+ D) +2(y+1))
(v+1* VOE+Dy+D)(* (3> + Dy + D) +4(y +1))

consequently

0 (; (A(2m) + VA2 (2m) + 44 (QW))) -

vy
17(7+2)e“< (€’" (+* + Dy + D) +2(y+1)) e”)
VOZ+ Dy +D) (@ (2 + Dy + D) +4(7+1)) ’

2 (y+1)
then
dii()|  _ 1y(y+2)e (€ (* +Dy+D) +2(y+1) o
T e 2 (v41)° \VOZ+Dy+D) (2" (2 + Dy + D) +4(y+1)) e

_lrg(ro+2)e” (e*™ (rg + Dro + D) + 2 (ro + 1)) .
2 (ro+1)> V(72 4 Dro 4 D) (27 (12 4+ Dro + D) + 4 (19 + 1)) '

-1
Since A + |8] < - then 0 < (r3 + Dro 4+ D) < r§ because D < 0 and A > 0. Therefore

(€™ (r§ + Dro+ D) +4(ro + 1)) < (e*™r§ +4 (ro + 1)) < €™ (r§ +2rg +1) = €™ (ro + 1)?

because e2™ > 4. It follows that

\/(7“3 + Dro+ D) (2 (r2 + Dro+ D) + 4 (ro + 1)) < \/r2e27 (ro + 1)* = e™rg (ro + 1),
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1 1
ie. > , which implies
V@2 + Dro+ D) (e2 (r2 + Dro+ D) + 4(ro + 1))~ €™ro(ro+1)
(e*™ (r3 + Dro+ D) 4+ 2 (ro + 1)) - 2(ro+1) 2

V(24 Dro+ D) (€™ (12 + Dro+ D) +4(rg + 1)) €™ro(ro+1)  e™ro’
because (€*™ (rd + Dro+ D) +2(ro+1)) >2(ro +1).

Consequently
dIl 1 2)e" (2
('y) > 77”0 (TO + )26 < - + eﬂ') _
dry y=ro 2 (TO + 1) € To
_ (ro+2) | 1lro(ro+2) 2 _
(ro+1)* 2 (rg+1)°
9 o 27
= (7"07—’_)2 (1 + ero) > (because £ > 1)
(’I“o + 1) 2 2
ro + 2
s 0ty -
(ro+1)
_ (n+2) > 1.
(’I“o + 1)
Hence dIl
) > 1.
d’}/ Y=To0

Therefore the solution of differential equation (4) is unstable and hyperbolic limit cycle see [12],
consequently, it is a stable and hyperbolic limit cycle for the system (2).

1) If B # 0, this limit cycle is non-algebraic, due to the expression of A (9).
-1
More precisely, in Cartesian coordinates (7‘2 = (zr— 1)2 + (y — 1)2 , 8 = arctan (yl)>’ the
T

(z—1)°+(@y-1°
zy

y—1
y— 1 6271— 2 —e—5 arctan =y e—s
(z,9) exp(arc R ><e2”—1< o A+ Bcos2s )T 0 A+ [ cos2s °

o am
There is no integer n for which both —= and —{ vanish identically. To be convinced by this

ox™ dy

0
fact, one has compute for example a—f, that is
Y

curve defined by this limit cycle is f (z,y) = — B (z,y) =0, with

of

(z.5) —2? 4 2x 4+ y? -2 x—1 1
9 () = _
ay &Y

B(z,y) +
2 2 J
zy? (z-1)"+(@y—-1) A+ B cos (2 arctan (%))
Since B (x,y) appears again, it will remains in any order of derivation, therefore the curve

f (z,y) = 0 is non-algebraic and the limit cycle of the system (2) will also be non-algebraic. This
complete the proof of statement 1) of Theorem 2.1.

—S

A A A

-1 2
simplification we obtain rg = — (\/ 1—4X+ 1) and o _
2\ ro+ 1

values of ro and A (6) in (12), the solution of (4) becomes

0 _ 1 21 1
2) If 8 = 0, we have fmds = X(lfefe) and €2 [ € _ds = ~(1=¢€*), by
0 0
-1
- = A (0) . By substituting the
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-1 0+ sin 0 1 4 1 . 50
- (0.10) S (cosOrsinf) 45 =33 (eos0 1 sind) + VI = AN —sin 20
sTo) = — :
2+§sin29 — (2A + sin 20)

In Cartesian coordinates, the curve defined by this limit cycle is A (z — 1)+ A(y — 1) + 2y =0
which is algebraic. This complete the proof of statement 2) of Theorem 2.1. O

3. Applications

In this section, we present some examples to illustrate the applicability of the our main result.
In addition, a plot of phase portraits in the Poincaré disc for each example were performed
showing a limit cycle in the first quadrant.

-1
Eexample 3.1. In the system (2), we take A= —2and =1 ()\ +18l=-1< 2) , we obtain

—8 4 12z + 16y — 1022 — 18zy — Sy? + 423 + 922y

r=ux 4

+9zy% — 32 — 2% — :173y — 172y2 — 3z + 3y4

_ 8 — 20y — 4a? — 6ay + 222 + 323 + Sx?y
=y +7xy? — 123 — 2 — 23y — 22y% — 3xy® + 3y

which has a non-algebraic, stable and hyperbolic limit cycle whose expression in polar coordinates

(r,0) is

A(0) (cosf +sinf) + /A2 (0) + 4A (0) — A2 (0) sin 20
2 — A(0)sin20 ’

r(6,7r0) =

r2 0

7”o+1+0f

where A (0) = exp (0) < ) + cos 2s

exp (=5) ds> and 1o ~ 1.1877 (Fig. 1).

Fig. 1. The phase portrait on the Poincaré disc of the system (13), showing a limit cycles in the
first quadrant
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-1
Eexample 3.2. In the system (2), we take A = —10 and 5 =0 ()\ < 2) , we obtain

—40 + 80z + 60y — 8022 — 80xy — 20y% + 402% + 5022y

r= +19zy? — 10y3 — 102* — 1023y + 2%y? — 10293 + 10y* ’

. 40 — 202 — 80y — 2022 + 80y? + 3023 + 1922y + 10xy?
=y —40y3 — 102* — 1023y + 2%y? — 10xy® + 10y* ’

which has an algebraic, stable and hyperbolic limit cycle given by the expression (Fig. 2).

~10(z —1)>=10(y — 1)* + 2y = 0.

Fig. 2. The phase portrait in the Poincaré disc of the system (14), showing a limit cycle in the
first quadrant

Conclusion

In this paper, a quintic Kolmogorov system with two parameters A and § having (1,1) as
positive equilibrium point was investigated. By translation the coordinates of vector (1,1) and
rewritten the system in polar coordinates, we mainly shown that there is a sufficient condition
for the existence of a limit cycle. Moreover, this limit cycle is non-algebraic in the case 8 # 0.

Finally, It is of interest to extend this study by answering to the following question: Is there
a quartic or quintic Kolmogorov system that exhibit more than one non-algebraic limit cycle?
This is left as a topic for future research.
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Kinacc kBUHTHTYECKX KOJMOTOPOBCKUX CHUCTEM C SIBHBIM
HeaJIreOpanmvecKnuM IIpeIe/IbHbIM MUKJIOM

Axwmen Benmxemty

Kadeapa maremarnkn, dakynbrer Hayk
Yuusepcurer Cerud 1, 19000

Askup

Moxamen I'pazem

Kadenpa maremaruku, dakyabreT HAYK
Yuusepcurer Bymepnec, 35000

Asnkup

Pasaunnvie usuneckue, IK0002UNECKUE, FKOHOMUNMECKUE U M. 0. ABAEHUSA NEPEKPBIBAIOMCA NAGHAPHOLMU
duppeperyuanrvrvimu cucmemamu. Bnocaedemeuu nexomopwie uccaedo8anuA NPUBAEKYM BHUMAHUE K
UBYYEHUIO NPECEADHBIT YUKAOE U3-304 UT UHMEPECE K NOHUMAHUIW dmux cucmem. Lleavio dannoti pabomuot
ABAAETNCA UCCALI0BAHUE 0OHO20 KAACCA KEUHMUYECKUT KOAMOZ20POBCKUL CUCTNEM, G UMEHHO CUCTEM 6UIA

T =z Pi(z,y),
y =y Qa(x,y),

2de Py u Qa4 — K8apMUMHDBIE NOAUHOMDL. B amom xaacce Haule HUMAHUE 02PAHUNEHO USYUEHUEM TPe-
0eAbH020 YUKAQ 8 PEAAUCTNUNECKOM KEAIPAHIME {(x, y) € R? >0, y > O}. Cozaacro eunomesam 0oxa-
3aH0 CYULLCTNBOBAHUE AA2eOPAULECKO20 UAU Hear2ebpauieckozo npedeavrozo yukaa. Kpome mozo, amom
npedesvHull YukA A6HO 3a0aH 8 NOAAPHUT Koopdurnamaz. Hexomopuie npumeps, npedcmasienvs 044 Mo-
20, 4MO6BL NPOUAAMOCTNPUPOBATND BO3MONACHOCTIU NPUMEHEHUA HAULE20 PE3YALMAMA.

Karouesvie ca08a: K0AMO20POSCKUE CUCTEMDL, MEPEBIT UHMEZPAA, NEPUOIUNECKUE OPOUMDL, anzebpaure-
crutll u Heanzebpauteckull npedesvHvle UUKADL.
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