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1. Introduction and preliminaries

The study of ergodic properties of interval exchange maps (i.e.m.) is a classical problem of
dynamical systems. In recent years interest in this topic has been renewed (see [1-6]).

A standard i.e.m. f on an finite length interval [ is a one-to-one map which is locally trans-
lation except at a finite number of discontinuities. The generalized i.e.m. obtained by replacing
linear mappings of subintervals with a locally orientation-preserving homeomorphism. Let d be
the number of intervals of continuity of f. When d = 2 standard i.e.m. correspond to linear
rotations of the circle, and generalized i.e.m. correspond to homeomorphisms of the circle with
two break points. Generalized interval exchange maps were introduced [5]. It was showed that
sufficiently smooth generalized i.e.m. of a certain combinatorial type (deformations of stan-
dard interval exchange transformations and tangent to them at the points of discontinuities) are
smoothly linearizable. Considering piecewise C>**-smooth circle homeomorphisms as generalized
interval exchange maps of genus one, Cunha and Smania [3] showed that two generalized i.e.m.
with the same bounded-type combinatorics and zero mean nonlinearities C'-smoothly conjugate
to each other. In the case of circle maps it was shown that for almost all rotation numbers
every two C2?T¢-smooth circle homeomorphisms with a break point, with the same irrational
rotation number and the same size of the break are C''-smoothly conjugate to each other [7-9].
Let us note that statement on the regularity of conjugating map can be obtained by using the
convergence of renormalizations of given maps.

The lower bound of the scale of smoothness for a homeomorphism f, that is, Df is abso-
lutely continuous and Dlog Df € L, for some p > 1 was considered [10,11]. The latter conditions
on smoothness of f are called the Katznelson and Ornstein (KO, for short) smoothness condi-
tion [12]. For this low smoothness case in it was shown that the Rauzy-Veech renormalizations of
two piecewise KO-smooth maps satisfying certain combinatorial assumptions approach to each
other in C1*£1norm [11]. Let us note that the KO smoothness condition is smaller than C?+¥
smoothness but the obtained convergence rate is slower than exponential [3,7]. However, in
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this case one can expect the absolutely continuity (not C! rigidity) of conjugate map between
two generalized i.e.m.. Our objective is to obtain a sufficient condition for conjugate map to be
absolutely continuous.

Let us define a class of generalized interval exchange maps. Let BX© be the set of g.i.e.m.
f: I — I such that

(i) the map f has cyclic permutation;
(ii) the map f has no connection and has k- bounded combinatorics.

(iii) on each intervals of continuity of f the map f satisfies the Katznelson and Ornstein smooth-
ness condition: D f is absolutely continuous and DIn Df € L,, for some p > 1.

Conditions (i) and (i7) are explained in Section 2. Let us note that the class BX© consists of

circle homeomorphisms with several break points and with irrational rotation number of bounded
type.

Two g.i.em. fi, fo € BX? with the same combinatorics are called break-equivalent if the
following conditions hold true:

(a) the break points of one map u; are mapped into the break points of the other map v; by a
topological conjugacy h satisfying fo = h=1 o f o h, i.e., u; = h(v;);

(b) the corresponding sizes of breaks ¢;=+/f](u; — 0)/f{(u; +0), ¢;=+/f5(v; — 0)/ f4(v; +0)
are the same for each i =1,...,k.

Let f1 and f» be break-equivalent g.i.e.m. of class BXC. Let us consider dynamical partitions
&n(f1) and &, (f2) generated by maps f1 and fs. Let h be a conjugation homeomorphism between
fi1 and fo, that is, ho f; = fyoh. Let us assume that A are elements of the partition of &, (f2).
Since h is a conjugate map between fi and fo for any L™ € &,(f1), we have h(L™) = A
and A™ € ¢&,(f2). The main result is the following

Theorem 1.1. Let f; and fo be break-equivalent g.i.e.m. of class BEC. Suppose that there
o0

exist a sequence 8, with Y §2 < 0o such that
n=1

(L) L) "
[R(RET)] T JROI[| SO

for each pair of adjacent intervals L™, R(™ € ¢, (f1). Then the conjugate map h is absolutely
continuous function.

The structure of the paper is as follows. In Section 2 we present necessary definitions on
interval exchange maps and define a renormalization map related to Rauzy-Veech induction. In
Section 3 we define a sequence of dynamical partition associated with renormalization map and
formulate statements on asymptotic lengths of the elements of dynamical partition. Finally, in
Section 4 we define a martingale, and using its properties, prove our main theorem.

2. Background on the interval exchange maps

In this section we describe combinatorial assumptions on the class BX?. Let I be an open
bounded interval and A be an alphabet with d > 2 symbols. Let us consider the partition of I
into d subintervals indexed by A, that is, P = {I,, « € A}. Let f : I — I be a bijection. We say
that the triple (f, A, P) is a generalized interval exchange map with d intervals (for short g.i.e.m.)
if f|7, is an orientation-preserving homeomorphism for all o € A. If f|; is a translation then f
is called a standard interval exchange map (for short s.i.e.m.).
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Let f: I — I be a g.i.e.m. with alphabet A and 7, 71 : A — {1,...,d}, be bijections such
that mo(a) < mo(B) iff I, < Iz and m1(a) < m1(B) if f(Ia) < f(I5).

Pair m = (mg, m1) is called the combinatorial data associated with g.i.e.m. f. The notation 7 =
(m(1), m(2),...,7(d)) is also used for the combinatorial data of f. It is always assumed that pair
T = (mo, m1) is irreducible, that is, for all j € {1,...,d—1} we have my *(1,...,5) # 7y *(1,...,4).
It is assumed that g.i.e.m. f has cyclic permutation if 79({1,2,...,d}) ={j+1,...,d,1,...,5}
for some 1 < j<d—1.

Let m = (mp, m1) be the combinatorial data associated with g.i.e.m f. For each € € {0, 1} the
last symbol in the expression of 7. is denoted by «a(e) = 7= 1(d).

Let us assume that intervals I, ) and f(I,(1)) have different lengths. Then giem. f is
called Rauzy-Veech renormalizable(renormalizable, for short). If [I,) > [f(Ia(1))| then f is
renormalizable of type 0. When |I,y| < [f(Ia(1))| then f is renormalizable of type 1. In either
case, the letter corresponding to the largest of these intervals is called winner and the letter
corresponding to the shortest of these intervals is called loser of m. Let I") be the subinterval
of I obtained by removing the loser, that is, the shortest of these two intervals:

7 — I\ f(Is)), if typeO,
I'\ o0y, if type 1.

Since the loser is the last subinterval on the right of I, the intervals I and 1) have the same
left endpoint.

The Rauzy-Veech induction of f is the first return map R(f) to the subinterval (V). Let us
assume that R(f) is again g.i.e.m. with the same alphabet 4. For this one need to associate

with this map an A - indexed partition of its domain. Subintervals of I(!) are denoted by I&l).
Let f be renormalizable of type 0. Then interval 1) = I'\ f(Is(1y) is the domain of R(f) and

we have
I(l) _ { I, for « 7é 04(0), (2)
o Ia(O) \f(Ia(l))7 for a= 04(0)

These intervals form a partition of the interval 1) and they are denoted by P(!) = {1&1)7 a € A}
Since f(Iq(1)) is the last interval on the right of f(P) we have f( ((11)) C I for every o # a(1).
This means that R(f) := f is restricted to these I&”. On the other hand, because Iél()l) = la)
we have

7 (150) = 1 (Ta) € Ty, andso 2 (150)) €  (Tag) € 1.

Then R(f) = f? is restricted to I\, Thus

f(z), if eIV and a# a(l),

1) (3)

R(f)(z) = { -
), if eIl

If f is renormalizable of type 1 then interval I) =TI\ I, () is the domain of R(f), we have
Lo, for o # a(0), a(1),
19 =4 7 a@); for o= a(0), (4)
Loy \ [ Taqo)), for a=a(l).

Then f (L(ll)) C IM for every a # a(0), and so R(f) = f is restricted to these IV, On the
other hand,

2 (1) = I oo < 1
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and R(f) = f? is restricted to Iél(%). Thus,
flx), if ze 1Y and o # «(0),

2 : 1)
f@), it zely.

R(f)(z) = { ()

It is easy to see that R(f) is a bijection on I)) and an orientation-preserving homeomorphisms
on each Iél). Moreover, the alphabet A for f and R(f)is the same.

The triple (R(f),.A, P!) is called the Rauzy- Veech renormalization of f. If f is renormalizable
of type € € {0, 1} then combinatorial data 7! = (7§, 7}) of R(f) are given by

T _e(@), if m_c(a) <m_c(ale)),
ali=7., and 7__(a)={ m_.(a)+1, if m_e(a(e)) < m_e(a) < d,
mi—c(a(e) +1, if m_.(a)=d.

We say that g.i.em. [ is infinitely renormalizable if R™(f) is well defined for every n € N. Let
I™ be the domain of R™(f). It is clear that R™(f) is the first return map for f to the interval
I Similarly, R*(f)~' = R"(f~') is the first return map for f to the interval (™).

For every interval of the form J = [a,b) we put 0J := {a}.

Definition 1. We say that g.i.e.m. f has no connection if
f™(01,) #0Ig, forall m>=1 and «, €A with mo(B) # 1. (6)

It is clear that f(9I,) = 0I5 for a = m; *(1) in the case m(3) = 1. Condition (6) is called the
Keane condition. Keane [13]| showed that no connection condition is a necessary and sufficient
condition for f to be infinitely renormalizable. Condition (6) means that the orbits of the left
end point of subintervals I, a € A are disjoint whenever they can be.

Let &, be the type of the n-th renormalization and let «, (e, ) be the winner and o, (1 — &)
be the loser of the n-th renormalization.

Definition 2. We say that g.i.e.m. f has k-bounded combinatorics if for each n € N and
B, v € A there exist ni,p > 0 with |n —ny1| < k and |n —ny —p| < k such that

Ay (Eny) = By any1p(1 = €ny1p) =7, and

ny+i(1 —€ni1p) = nytit1(Eny+i),  for every 0<i<p.

We say that g.i.em. f: I — I has genus one (or belongs to the rotation class) if f has at
most two discontinuities. Let us note that every g.i.e.m. with either two or three intervals has
genus one, and the genus of g.i.e.m. is invariant under renormalization.

3. Dynamical partitions associated with interval exchange
map

Let (f, A, P) be a giem. with d intervals, and P = {I, : a € A} be the initial A-
indexed partition of I. Interval I = [0, 1) is taken for definiteness. Suppose that f is infinitely
renormalizable. Let 1(™ be the domain of R™(f). Let us note that I(™ is the nested sequence
of subintervals, and it has the same left endpoint of I. We want to construct the dynamical
partition of I associated with the domain of R™(f).

As mentioned above, R(f) is g.i.e.m. with d intervals and intervals Lgl) generate an A-
indexed partition of I") denoted by P'. One can verify by induction that R™(f) is g.i.e.m. with
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d intervals. Let P" = {I(S") : a € A} be the A- indexed partition of (™) generated by R"(f).
P is called the fundamental partition and Ién) is called the fundamental segments of rank n.
Since R™(f) is the first return map for f to the interval I(™, each fundamental segment
Ié") € P returns to I(™ under certain iterates of the map f. Prior to returning, these intervals
are in the interval I\ I () for some time. Consequently the system of intervals (their interiors

are mutually disjoint)

&= { 1), 0<i<qi -1, aeA]

covers the whole interval and forms a partition of I.

The system of intervals &, is called the n-th dynamical partition of I. The dynamical partitions
&, are refined with increasing n, where £,11 D &, means that any element of the preceding
partition is a union of a number of elements of the next partition or belongs to the next partition.
Let us denote by 523_1 the system of preserved intervals of &,. More precisely, if R™ f has type 0

1 = {fz(fén ), 0<i<qg,—1, fora# a(O)} ,
and if R™f has type 1

1 = {JM(I&”), <i<q,—1, fora;éoz(l)}.

Let &%) i= &t \ &7 1 be the set of elements of &,y which are properly contained in some
element of &,,. Therefore, if R™f has type 0
Er = {f (ISEJ)”), 0<i< QZ(O)} U {f (I((;(Lfr)l))a 0<i< qg(o)} =
a0y~ 1 a1 ta0)—1
U T U o)
=0 =450

and if R™f has type 1

gny = {ralig?), o<i<q3(1)}u{ﬂ< (;;f)”x 0<i<qliy} =
a5y —1
= U {fz (f qa(l) I(n )}U U { (a )\f qau)( 75))))}
=0

So, the partition £,1 consists of preserm’ng elements of &, and images of two (new) intervals
for defining R™(f), that is, &ny1 = &5 UL . Let us also note that for the first return time
g we have:

(1) if a=a™(e), then ¢"F1 = Uiy ()5

an(e)
(2) if a=a™(1—¢), then ¢ =ah o+ @i

Bounded geometry. Let us denote the set of g.i.e.m f: I — I by B!+ It satisfies conditions
(i) — (i7) which are piecewise C''- smooth and have bounded variation of the first derivative.

The norm of the dynamical partition &, is ||&,| = max{|fi(I")|}, where the maximum is
taken over alla € Aand 0 <7 < ¢y — 1.

Lemma 1. (see [2]) Let f € B, Then for sufficiently large n there is A € (0,1) such that
1€ntll < Allnll-
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The following corollary follows from Lemma 1 and states that intervals of the dynamical
partition &, have exponentially small length.

Corollary 1. Let f € B . Then for sufficiently large n and m with m —n > k there is
A € (0,1) such that

€nll < AETY and [|&m]l < AT

[ (7)
We need the following lemma which can be easily verified.

Lemma 2. For given a, b, ¢, d > 0 the following inequalities hold

{3 £} 2% < 3.5}

Now the well-known Doob’s theorem on martingales is formulated.

Doob’s Theorem ([14]). Let {®,} be a sequence of random variables on a probability space
(X, F, P). If supE|®,? < oo for some p > 1 and {®,} is a martingale then there exists an
integrable ® € Ly (X, F) such that

lim @, = ® (a.e. P), &, > ® in L; —norm.

n—0o0

4. Proof of the main result

Let us consider the dynamical partition &, (f;). For simplicity L(™) is use to denote an interval
fi(Lg")) of the dynamical partition &,(f1). Let us define a sequence of random variables {®,,}
on the interval I as

)
= if ze L™, (8)

Lemma 3. The sequence of piecewise functions {®,(x), n = 1} generates a finite martingale
with respect to the dynamical partition &,.

Proof. Since conjugate map h is a homeomorphism ®,,(z) is a step function which takes constant
values on each element L(™) of the partition &,. Then ®,, () is &,- measurable. Therefore, suffice
it to show that

E(®,11/&) = ®,, forall n > 1,
where E(®,,4+1/&,) is a conditional expectation of the random variable ®,,41 with respect to

the partition &,. Let us denote the indicator function of the interval fi(Ié")) by X g"z) (z) . By
definition of conditional expectation with respect to the partition we have

B/ = 3 5 B (00 U)X )

acA =0

Let us recall that the partition &,,1 consists of the preserving elements of &, and images of two
(new) intervals for defining R"*'(f), that is, &1 = &7, UEL . Spliting sum (9) in two sums
corresponding to £, | and &\ |, we obtain

B@un/G) = 3 E@ua/H)XT @)+ 3 E@un/T) X)) (10)

J; P J;egtn

n+1 n+1

where J; = fi(I&n)) Consider the first sum that corresponds to &', ; in (10). Then

1 1
E(®pq/)J;) = ———— / By (2)de = ———— / &, (z)dx. (11)
|FiIS) i) |FiI8)) Jpiaem)
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Next we consider the sum that corresponds to &%, in (10). Let J; := [ Iénﬂ), where I&nﬂ) €

. Then we obtain

1
E(@pa/1) =~ [ @ua(e)de
L)) i)

1 / 1
= ——— D, 41 (x)dr = 7/ D, (x)dx.
(18] 2 10+ TR

[((1”+1)€]i

This and equations in (10), (11) imply the result. O
Let us introduce O,,(z) = &, (x) — ®,_1(z), n > 1, and put &o(z) :=0, z € I.

Lemma 4. For all n > 1 the following inequality holds

|9, (2)] < 6,|Pp ()|, z €I, with §, € ls. (12)
Proof. Tt is clear that
@ ()]
On(2)] = [®n(@)| - |57 — 1|+
@1 ()]
Let ®,(L™) := ®,(z), x € L. Then we have
kn
L0 @ (LD) = 3 (L ()] @4 (L1 (s)), (13)
s=1
where L(")(s) ¢ L("~Y. Using Lemma 2, we obtain
min ®,, (L™ (s5)) < ®,,_1 (L") < max ,, (L™ (s)). (14)

It is clear that for any 0 < s < k,, the following is true

min ®,, (L™ (s)) < ®,,_1 (L) < max ®,, (L™ (s))
max @, (LM (s)) = ®,(LM(s)) ~ min®, (LM (s))’

(15)

Since each pair of adjacent intervals of &, (f1) are comparable, by assumption of Theorem 1.1 we

obtain
<I>n(L(”)(s +1))

O, (L) (s))

Hence, our map has bounded combinatorics we have

N

On. (16)

max ®,, (L") (s))

—— " (14 Cy0,) K <1+ Cub.

One can show that lower bound holds true for the ratio min ®,,(L(™(s)) : max &, (L (s)).
Then, for all 0 < s < k,,, we have

(I)nfl (L(nfl))

— <

This completes the proof of Lemma 4.
Proof of Theorem 1.1. Note that sequence {®,} of random variables is a martingale with
respect to &, (f1) by lemma 3. Let us show that ®,, converges to Dh in Li-norm as n — oco. One
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can show that ©,(x) and ®,_;(x) are orthogonal, that is, [, O, (x)®,_1(z)dz = 0. Then using
Lemma 4, we have

Hq)n”%g < ”q)n—l”%Q + H@n||2L2 < (1 —|—O4572L)”¢)n—1”2L2' (18>

o0
Iterating the the last relation, we have [|®,[7, < [T (1 + C46%). Since the series 21 63
J:
converges then the sequence of random variables {®,,} is bounded in Ly norm. Doob’s theorem
implies that the sequence {®,,} converges to some function ® in L; norm.
Next we prove that the sequence of random variables {®,,} converges to Dh. Let us denote
the left end point of the interval L™ by +,. By definition of ®, we have

‘ (n)
)~ [ @@ < nte) - no)| + B o = 5] < 20z

Using the last inequality, we obtain

‘h(m) - /O B(z)da +

< ’h(x) _ /Ox B, (z)dz

+/%@uo—@mmux<2mwmwww@nf¢my (19)
0

In the limit n — oo, we obtain h(z) = [ ®(z)dz. Since, ® € L;i(I) then h is an absolutely
0

continuous function and Dh(z) = ®(z) almost everywhere on I. Theorem 1.1 is completely
proved. O
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V3bekucran

Paccmompen kaacc monoso2uvecky IK6UBAAEHMNHBIL 0006UEHHBLT NEPEKAAIDBAHUT UHMEPBALA NEPEO-
20 poda ¢ 00uNHGKOB0T O2paHuMEHHOl Kombunamopukold. B cmamve npusedeno docmamouroe ycaosue
ab6COMOMMHOT HEMPEPLIGHOCTNY CONPANCEHUA MEHCAY 08YMA 0MOOPAHCEHUAMU U3 IMO20 KAGCCA.

Kmouesvie caosa: conpazarouuti 20MeomopPuam, nepexsadnearue urmepsana, uhdykyus Paysu-Buva,
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