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Introduction

Quantum Informatics is a new branch of science arising at the junction of quantum mechan-
ics, algorithms and information theory. General principles and laws managing the dynamics of
complex quantum systems are studied in quantum computer science. Quantum computer is a
computing device based on the principles of quantum mechanics.

The idea of building a quantum computer was proposed in 1980 by the Soviet mathematician
Yu. I. Manin [1]. This idea was supported by physicists, in particular, by P.Benioff [2] and a
Nobel laureate R. Feynman [3].

The necessity for a quantum computer arises when we try to study difficult multiparticle
systems, e.g. biological, using physical methods.

High hopes are placed on the perfection of this device, and active work is underway in this
direction. In order to develop and apply the principles of quantum physics new research tools are
required. It is a quantum computer that has become a modern device that makes it possible to
study various phenomena and calculate the necessary data. So far, only a limited computer has
been built, but this was enough to make sure that a full-fledged quantum computer is needed.

A quantum computer uses non-classical algorithms for computing that are realized by non-
classical logical elements.

A logical element is a computer device that performs one specific operation on input signals
according to the rules of the algebra of logic. For example, a logical element reflecting transition
to the negation is represented by the following scheme (Fig. 1):
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Fig. 1. A scheme of the logical element representing the negation

Since in logic the negation of a statement is formed with the help of the particle ”not”, the
depicted element will be denoted by the symbol NOT .

Within the framework of the real analysis it is impossible to build a logical element
√
NOT ,

i.e. such an element, for which
√
NOT ×

√
NOT = NOT , where multiplication means the

successive application of elements. In other words, even within the framework of the classical
multi-valued logic based on classical probability theory, the equation is unsolvable. Let us show
this.

A technical scheme reflecting this equation is presented in Fig. 2.

Fig. 2. A technical scheme for equation
√
NOT ×

√
NOT = NOT

Here on the left there are two copies of one (unknown) logical element X. It is assumed that
transitions 0 → 0, 0 → 1, 1 → 0, 1 → 1 occur with probabilities P00, P01, P10, P11 respectively
(see Fig. 3).

Fig. 3. A scheme of the logical element X

For the element «NOT» we have: P00 = P11 = 0; P01 = P10 = 1. Therefore, to satisfy the
equality X ×X = NOT we obtain the system of equations

P00P00 + P01P10 = 0,

P00P01 + P01P11 = 1,

P10P00 + P11P10 = 1,

P11P11 + P10P01 = 0.

Since Pij > 0, then from the first and fourth equations we obtain P00 = P11 = 0, therefore,
the second and third equations are reduced to 0 = 1. Thus, this scheme is unrealizable for real
non-negative values Pij .

The way to the realization of the considered equality is suggested by quantum mechanics,
in which the amplitude of the transition probability i → j is a complex number cij , for which
Pij = |cij |2. Thus, if in the given system of equations we replace Pij by complex numbers cij ,
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then one should consider the equations:

P (0 → 0) = |c00c00 + c01c10|2,
P (0 → 1) = |c00c01 + c01c11|2,
P (1 → 0) = |c10c00 + c11c10|2,
P (1 → 1) = |c11c11 + c10c01|2.

Now consider the system of equations:
0 = |c00c00 + c01c10|2,
1 = |c00c01 + c01c11|2,
1 = |c10c00 + c11c10|2,
0 = |c11c11 + c10c01|2.

(1)

Some examples of the roots of this system of equations were presented in the book of Guts [4]:
c00 = c11 = i/

√
2; c01 = e−iα/

√
2; c10 = eiα/

√
2.

From the main results of this article, it follows that all complex solutions of the system (1)
are parametrized in the following form with 2 parameters α, β ∈ [0, 2π] :

c00 = c11 = eiα/
√
2; c01 = eiβ/

√
2; c10 = ei(π+2α−β)/

√
2.

In fact, the problem of finding a logical element
√
NOT is reduced to finding a matrix whose

square is equal to

NOT =

(
0 ei(α−β)

ei(α+β) 0

)
, where α, β ∈ R .

This way of representing the matrix NOT allows us to write the equation X2 = NOT as a
matrix equation:(

c00 c01
c10 c11

)2

=

(
c00c00 + c01c10 c00c01 + c01c11

c10c00 + c11c10 c11c11 + c10c01

)
=

(
0 ei(α−β)

ei(α+β) 0

)
.

The aim of this paper is to find new non-classical logical elements. Namely, we investigate
the problem of finding n

√
NOT , that is, the problem of finding all solutions of the equation

Xn = NOT .
First, we note that the successive application n times of a non-classical element X corresponds

to raising to the n-th degree of a complex matrix C =

(
c00 c01
c10 c11

)
, that is Xn corresponds Cn.

Theorem 1. All solutions of the matrix equation Xn = NOT are given by matrices

(
c00 c01
c10 c11

)
=


tje

iα+2πk
n

1 + tj

ei(
α+2πk

n −β)

1 + tj

ei(
α+2πk

n +β)

1 + tj

tje
iα+2πk

n

1 + tj

 , α, β ∈ R , (2)

where k, j = 0, . . . , n− 1, and tj are the solutions of the following algebraic equation:

⌊n
2 ⌋∑

k=0

C2k
n tn−2k = 0. (3)

In Section 2 we calculate all roots tj of the equation (3) involved in the formulation of this
theorem.
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1. Proof of Theorem 1
We write the matrix X in the form

X =

(
c00 c01
c10 c11

)
.

In order to raise X to n-th degree, we reduce it to the diagonal form. The characteristic roots
of the matrix X are the following:

λ1 =
c00 + c11 +

√
D

2
, λ2 =

c00 + c11 −
√
D

2
,

where D is the discriminant of the characteristic equation, equal to

D = (c00 + c11)
2 − 4(c00c11 − c01c10).

The diagonal matrix

V =

(
λ1 0
0 λ2

)
is related to X by the equality V S = SX, where S =

(
s00 s01
s10 s11

)
is a transform matrix. This

leads to the following result:

S =


c11 − c00 +

√
D

2
√
D

−c01√
D

c00 − c11 +
√
D

2c01
1

 , S−1 =

 1
c01√
D

c11 − c00 −
√
D

2c01

c11 − c00 +
√
D

2
√
D

 .

Consider the matrix Xn first for even n, writing it as

Xn =

(
x00 x01

x10 x11

)
.

From the relationship Xn = S−1V nS we get the expressions for xij :

x00 =
1

2n

(
n
2 −1∑
k=0

[
(c00 + c11)

n−2k−1Dk(C2k+1
n (c00 − c11) + C2k

n (c00 + c11))
]
+D

n
2

)
,

x01 =
c01
2n−1

n
2∑

k=1

[
C2k−1

n (c00 + c11)
n−2k+1Dk−1

]
,

x10 =
c10
2n−1

n
2∑

k=1

[
C2k−1

n (c00 + c11)
n−2k+1Dk−1

]
,

x11 =
1

2n

(
n
2 −1∑
k=0

[
(c00 + c11)

n−2k−1Dk(C2k+1
n (c11 − c00) + C2k

n (c00 + c11))
]
+D

n
2

)
.

Considering the equality Xn = NOT , we arrive at the following system of equations:

1

2n

(
n
2 −1∑
k=0

[
(c00 + c11)

n−2k−1Dk(C2k+1
n (c00 − c11) + C2k

n (c00 + c11))
]
+D

n
2

)
= 0,

c01
2n−1

n
2∑

k=1

[
C2k−1

n (c00 + c11)
n−2k+1Dk−1

]
= ei(α−β),

c10
2n−1

n
2∑

k=1

[
C2k−1

n (c00 + c11)
n−2k+1Dk−1

]
= ei(α+β),

1

2n

(
n
2 −1∑
k=0

[
(c00 + c11)

n−2k−1Dk(C2k+1
n (c11 − c00) + C2k

n (c00 + c11))
]
+D

n
2

)
= 0.
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Subtracting the fourth equation from the first one, we get:

(c00 − c11)
1

2n−1

n
2∑

k=1

[
C2k−1

n (c00 + c11)
n−2k+1Dk−1

]
= 0.

Since the multiplier represented as a sum is not equal to zero (in view of the second equation of
the system), we obtain c00 = c11. Note that in this case D = 4c01c10. Making the appropriate
substitution, our system will take the form:

n
2∑

k=0

C2k
n cn−2k

00 (c01c10)
k = 0,

c01

n
2∑

k=1

C2k−1
n cn−2k+1

00 (c01c10)
k−1 = ei(α−β),

c10

n
2∑

k=1

C2k−1
n cn−2k+1

00 (c01c10)
k−1 = ei(α+β),

n
2∑

k=0

C2k
n cn−2k

00 (c01c10)
k = 0.

Here, the first and fourth equations are the same, so we should consider a system of three
equations. Dividing the third equation by the second, we obtain the relation c10 = c01e

2iβ ,
according to which the system look like:

n
2∑

k=0

C2k
n cn−2k

00 (c01e
iβ)2k = 0,

c01

n
2∑

k=1

C2k−1
n cn−2k+1

00 (c01e
iβ)2k−2 = ei(α−β),

n
2∑

k=1

C2k−1
n cn−2k+1

00 (c01e
iβ)2k−1 = eiα.

Note that the third equation is the second one multiplied by eiβ , so the second equation can be
ignored. Adding the left parts of the remaining equation, we get

n
2∑

k=1

C2k−1
n cn−2k+1

00 (c01e
iβ)2k−1 +

n
2∑

k=0

C2k
n cn−2k

00 (c01e
iβ)2k = (c00 + c01e

iβ)n.

As a result, we obtain a system of two equations:
(c00 + c01e

iβ)n = eiα,
n
2∑

k=0

C2k
n cn−2k

00 (c01e
iβ)2k = 0.

For convenience, rewrite this system in the following form, making replacements z = c00 and
w = c01e

iβ : 
(z + w)n = eiα,

n
2∑

k=0

C2k
n zn−2kw2k = 0.

After another notation t =
z

w
, it is written as

(w(1 + t))n = eiα,
n
2∑

k=0

C2k
n tn−2k = 0.
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From the first equation we get that w =
ei

α+2πk
n

1 + t
and, therefore, z =

tei
α+2πk

n

1 + t
. Thus, we get:

c00 = c11 = z =
tje

iα+2πk
n

1 + tj
, c01 =

w

eiβ
=

ei
α+2πk

n −β

1 + tj
, c10 =

w

eiβ
e2iβ =

ei
α+2πk

n +β

1 + tj
.

Similar reasoning for odd n leads to the following system:
(w(1 + t))n = eiα,

n−1
2∑

k=0

C2k
n tn−2k = 0.

Since ⌊n
2

⌋
=


n

2
if n is even,

n− 1

2
if n is odd

one gets the system: 
(w(1 + t))n = eiα, n ∈ N,
⌊n−1

2 ⌋∑
k=0

C2k
n tn−2k = 0, n ∈ N.

That is what we wanted to prove.

2. Roots of the equation (3)

Theorem 2. All roots t = tj of the equation

⌊n
2 ⌋∑

k=0

C2k
n tn−2k = 0

are exhausted by the set:
{
i ctg

(
π + 2πj

2n

)}n−1

j=0

.

Proof. Note that the original equation is equivalent to

(t+ 1)n + (t− 1)n

2
= 0. (4)

Indeed, the left part of the original equality can be represented by Newton’s binomial formula
for (t+1)n with missing monomials

{
C1

n t
n−1, C3

n t
n−3, . . .

}
, that arise with a minus sign in the

binomial decomposition for (t− 1)n.
Obviously, the solutions t of the equation (4) satisfy the condition |t + 1| = |t − 1|, and

therefore they are purely imaginary: t = ib. By substituting in (4) we arrive at the equation for
b: (

ib+ 1

ib− 1

)n

= −1,

whence
ib+ 1

ib− 1
= ei

π+2πj
n , j = 0, 1, . . . , n− 1.
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Solving each equation with respect to b, we obtain:

b = bj = i
1 + ei

π+2πj
n

1− ei
π+2πj

n

= i
e−iπ+2πj

2n + ei
π+2πj

2n

e−iπ+2πj
2n − ei

π+2πj
2n

= − ctg

(
π + 2πj

2n

)
.

Note that the function − ctg ϕ is odd with respect to the center ϕ = π
2 of the interval (0, π).

Because the values
π + 2πj

2n
are symmetrically located relative to ϕ =

π

2
, we obtain that the set

of numbers
bj = −ctg

(
π + 2πj

2n

)
, j = 0, 1, . . . , n− 1

coincides with the set

bj = ctg

(
π + 2πj

2n

)
=: ctg ϕj , j = 0, 1, . . . , n− 1.

As a result tj = ibj = i ctg

(
π + 2πj

2n

)
, j = 0, . . . , n − 1, and by the fundamental theorem of

algebra, these roots exhaust all zeros of the original polynomial of degree n.

Corollary. All solutions of the matrix equation Xn = NOT are exhausted by the following set
of n2 matrices: 

i ctg
(
π+2πj

2n

)
ei

α+2πk
n

1 + i ctg
(
π+2πj

2n

) ei(
α+2πk

n −β)

1 + i ctg
(
π+2πj

2n

)
ei(

α+2πk
n +β)

1 + i ctg
(
π+2πj

2n

) i ctg
(
π+2πj

2n

)
ei

α+2πk
n

1 + i ctg
(
π+2πj

2n

)

 ,

where k, j = 0, . . . , n− 1.

3. Distribution of matrices n
√
NOT on the Reinhardt

diagram
Consider the absolute values of the matrix elements described in the corollary:

|c01| = |c10| =
∣∣∣∣ 1

1 + tj

∣∣∣∣ = ∣∣∣∣ 1

1 + i ctg ϕj

∣∣∣∣ = 1√
1 + ctg2 ϕj

=
1√
1

sin2 ϕj

= | sinϕj |,

|c00| = |c11| =
∣∣∣∣ tj
1 + tj

∣∣∣∣ = ∣∣∣∣ i ctg ϕj

1 + i ctg ϕj

∣∣∣∣ = |ctg ϕj |√
1

sin2 ϕj

= |ctg ϕj || sinϕj | = | cosϕj |.

This shows that if one puts the modules |c01| = |c10| on the ordinate axis, and the modules
|c00| = |c11| on the abscissa axis, then these modules will be uniformly distributed on the arc of
the unit circle. The specified coordinate system for the modules is called the Reinhardt diagram
(see [5]).

The Reinhardt diagram (Fig. 4) shows the modules for values n = 5 and n = 50.
Given the formula (2), for each n ∈ N the set of solutions of the equation Xn = NOT is a

family of ⌈n
2

⌉
=


n

2
if n is even,

n+ 1

2
if n is odd
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real two-dimensional tori. These tori are embedded in a 5-dimensional variety:{
|c00| = |c11| =

√
1− s2, s ∈ [0, 1]

|c01| = |c10| = s, s ∈ [0, 1].

This variety coincides with the closure of the set of solutions of all equations Xn = NOT,
n = 2, 3, . . . .

Fig. 4. Reinhardt diagram

4. Comparison with the method described in the book
of Gantmacher

The Gantmacher book [6] presents an algorithm for finding all roots of n-th degree of a non-
degenerate matrix. We shall apply it to our matrix NOT and compare the results.

Following [6], we reduce this matrix to the Jordan normal form J , find the transformation
matrix S and the inverse S−1, that is, we represent our matrix as NOT = SJS−1. We have:

NOT =

(
0 ei(α−β)

ei(α+β) 0

)
; J =

(
eiα 0
0 −eiα

)
, S =

(
1 −1
eiβ eiβ

)
, S−1=

(
1/2 e−iβ/2
−1/2 e−iβ/2

)
.

Now find the root of n-th degree of the matrix J

n
√
J =

(
e

i(α+2πk)
n 0

0 e
i(α+π+2πk)

n

)
.

Then all solutions of the original equation are the following n2 matrices:

X = S
n
√
JS−1 =


ei

α
n

(
ei

2πk
n + ei

π+2πj
n

)
2

ei(
α
n−β)

(
ei

2πk
n − ei

π+2πj
n

)
2

ei(
α
n+β)

(
ei

2πk
n − ei

π+2πj
n

)
2

ei
α
n

(
ei

2πk
n + ei

π+2πj
n

)
2

 ,

where k, j = 0, . . . , n− 1.
To see the equivalence of these results with the results obtained above, it is sufficient to use

the equality: ctg(x) =
cos(x)

sin(x)
= i

eix + e−ix

eix − e−ix
.
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О квантовом логическом элементе, ассоциированным
с радикалом комплексной матрицы
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Россия

В работе найдены новые квантовые логические элементы, реализуемые в виде радикалов комплекс-
ных матриц, а также изучена их геометрия на диаграмме Рейнхардта.
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