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On Application of Slowly Varying Functions with Remainder
in the Theory of Galton-Watson Branching Process
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We investigate an application of slowly varying functions (in sense of Karamata) in the theory of Galton-
Watson branching processes. Consider the critical case so that the generating function of the per-capita
offspring distribution has the infinite second moment, but its tail is regularly varying with remainder. We
improve the Basic Lemma of the theory of critical Galton-Watson branching processes and refine some
well-known limit results.
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1. Introduction and preliminaries

A conception of slow variation (or more general – regular variation) was initiated first by Jovan
Karamata in [7, 8]. Zolotarev [15] one of the first demonstrated an encouraging perspective of
application of the conception of slow variation in probability theory, in particular in the theory of
stochastic branching processes. Afterwards Slack [13,14] and Seneta [9], [10,12] prove principally
new limit theorems for branching processes using slowly varying (SV) functions. Remind that
real-valued, positive and measurable function ℓ(x) is said to be SV at infinity in sense of Karamata
if ℓ(λx)/ℓ(x) → 1 as x → ∞ for each λ > 0. A function V(x) is said to be regularly varying at
infinity with index of regular variation ρ ∈ R+ if it in the form V(x) = xρℓ(x), where ℓ(x) is SV
at infinity. We refer the reader to [1, 3] and [11] for more information.

Let F (s) =
∑

j∈N0

pjs
j denote an offspring probability generating function (PGF) of Galton-

Watson (GW) branching process, where N0 = {0} ∪ N and N = {1, 2, . . .}. Supposing that
p0 > 0 we consider the case when the mean per-capita offspring number

∑
j∈N

jpj = 1, that is the
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process is critical, see [2]. Moreover we assume that PGF F (s) for 0 6 s < 1 has the following
representation:

F (s) = s+ (1− s)1+νL
(

1

1− s

)
, (1)

where 0 < ν 6 1 and L(t) is SV at infinity. By the criticality of our process the condition (1)
implies that the second moment F ′′(1−) = ∞. This includes the case F ′′(1−) < ∞ when ν = 1

and L(t) → F ′′(1−)/2 as t → ∞.
Let Zn be the population size in n-th generation. Process evolution is characterized by

transition probabilities Pij(n) := P {Zn = j |Z0 = i}. In this interpretation pj = P {Z1 = j}
provided that P{Z0 = 1} = 1. A PGF

Fn(s) =
∑
j∈N0

P1j(n)s
j

is the n-fold iteration of F (s), see [2]. Further by the symbol H = min
{
n : Zn = 0

}
we denote

a time of extinction of GW process. Write Rn(s) := 1 − Fn(s) and needless to say Qn :=

P {H > n} = Rn(0).
The following theorem is known.

Theorem S [14]. If the condition (1) holds then

lim
n→∞

P
{
QnZn 6 x

∣∣ H > n
}
= G(x),

where G(x) has the Laplace transform

Ψ(θ) = 1−
(
1 + θ−ν

)−1/ν
.

By arguments of Slack [14] one can be shown that if the condition (1) holds then

Qν
nL

(
1

Qn

)
∼ 1

νn
as n → ∞. (2)

Slack [14] also has shown that

Un(s) :=
Fn(s)− Fn(0)

Fn(0)− Fn−1(0)
−→ U(s) as n → ∞, (3)

for 0 6 s < 1, where U (F (s)) = U(s) + 1 and

U(s) =
1 + o(1)

ν (1− s)
ν L (1/(1− s))

as s ↑ 1.

Combining (1), (2) and (3) we have

Un(s) ∼ Un(s) :=

[
1− Rn(s)

Qn

]
νn as n → ∞.

So we have proved the following lemma as a generalization of the assertion (2) for all s ∈ [0, 1).

Lemma 1.1. If the condition (1) holds then

Rn(s) =
N (n)

(νn)
1/ν

·
[
1− Un(s)

νn

]
,

where the function N (x) is SV at infinity and

N (n) · L1/ν

(
(νn)1/ν

N (n)

)
−→ 1 as n → ∞,

and the function Un(s) enjoys following properties:
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(i) Un(s) = U(s) (1 + o(1)) as n → ∞,

(ii) lims↑1 Un(s) = νn for each fixed n ∈ N,

(iii) Un(0) = 0 for each fixed n ∈ N.

We obtain the Lemma 1.1 by more simple proof rather than as shown in [6]. This lemma is
called the Basic Lemma of the theory of critical GW branching process. The following lemma
established in [6] is differential analogue of Lemma 1.1

Lemma 1.2. If the condition (1) holds then

∂Rn(s)

∂s
= −

(
Rn(s)

1− s

)1+ν L (1/Rn(s))

L (1/(1− s))
.

Since L(x) is SV-function we can write

L (λx)

L(x)
= 1 + α(x) (4)

for each λ > 0, where α(x) → 0 as x → ∞. Henceforth we suppose that some positive function
g(x) is given so that g(x) → 0 and α(x) = o

(
g(x)

)
as x → ∞. In this case L(x) is called SV

with remainder, see [3, p. 185, condition SR3].
We devote this paper to improvement of the Lemma 1.1 provided that the condition (4)

holds with given α(x). Subsequently of this we will improve the Lemma 1.2 and define a speed
rate in some well-known limit theorems from the theory of critical GW branching process.

2. Improvement of the Basic Lemma and results

Everywhere in this section we suppose the condition (4) holds. Write

Λ(y) :=
F (1− y)− (1− y)

y
= yνL

(
1

y

)
.

Note that the function yΛ(y) is positive and tends to zero and has a monotone derivative for
y ∈ (0, 1] so that yΛ′(y)/Λ(y) → ν as y ↓ 0, see [3, p. 401]. Hence we can write

yΛ′(y)

Λ(y)
= ν + δ(y),

where δ(y) is continuous and δ(y) → 0 as y ↓ 0. Integrating this equality we obtain

Λ(y) = p0y
ν exp

∫ y

1

δ(u)

u
du.

We have considered that Λ(1) = L(1) = p0 in last step. Therefore we have

L
(
1

y

)
= p0 exp

∫ y

1

δ(u)

u
du.

Changing variables as u = 1/t in integrand gives

L (x) = p0 exp

∫ x

1

ε(t)

t
dt, (5)

where ε(t) is continuous and ε(t) → 0 as t → ∞.
It follows from (5) and (4) that
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L(λx)
L(x)

= exp

∫ λx

x

ε(t)

t
dt = 1 + α(x) as x → ∞

for each λ > 0. Hereof∫ λx

x

ε(t)

t
dt = ln [1 + α(x)] = α(x) +O

(
α2(x)

)
as x → ∞.

Using the mean value theorem in the left-hand side of this equality we can be convinced that

ε(x) = O
(
α(x)

)
as x → ∞. (6)

Further we will consider a case when

α(x) = o

(
L (x)

xν

)
as x → ∞. (7)

Denote
ϕ(y) := 1− F (1− y) = y − yΛ (y) .

In pursuance of reasoning from [14] we obtain the following asymptotic relation:

1

Λ
(
ϕ(y)

) − 1

Λ(y)
= ν + δ(y), (8)

where δ(y) is continuous function so that δ(y) → 0 as y ↓ 0, see also [3, p. 401].
Further discussions allow us to estimate the tail-part δ(y) in (8). At first we will prove the

following lemma.

Lemma 2.1. Let conditions (1), (4) and (7) hold. Then

L
(

1

ϕ(y)

)
= L

(
1

y

)
(1 + o (Λ(y))) as y ↓ 0. (9)

Proof. Since the function L(x) = xνΛ (1/x) is differentiable, by virtue of the mean value
theorem we have

L
(

x

1− Λ

)
− L(x) = L′

(
1− θΛ

1− Λ
x

)
· xΛ

1− Λ
, (10)

where Λ := Λ (1/x) and 0 < θ < 1. From integral representation (5) and considering (6) it
follows that

L′(u) = L(u)ε(u)
u

= o

(
L2(u)

u1+ν

)
as u → ∞. (11)

Denote u = (1− θΛ)x/(1− Λ). Since Λ (1/x) → 0 then u ∼ x and L(u) ∼ L(x) as x → ∞.
Therefore using (11) in the equality (10) and after some elementary transformations the assertion
(9) readily follows. The lemma is proved. 2

Lemma 2.2. Let conditions (1), (4) and (7) hold. Then

1

Λ
(
ϕ(y)

) − 1

Λ(y)
= ν +

ν(ν + 1)

2
Λ(y) + γ(y), (12)

where γ(y) = o
(
Λ(y)

)
as y ↓ 0.

Proof. Write

K(y) :=
1

Λ
(
ϕ(y)

) − 1

Λ(y)
=

L
(
1

y

)
− (1− Λ(y))

ν L
(

1

ϕ(y)

)
Λ(y) · (1− Λ(y))

ν L
(

1

ϕ(y)

) .
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Taking into consideration (9) the last relation becomes

K(y) =
1−

(
1− Λ(y)

)ν
Λ(y)

(
1− Λ(y)

)ν (1 + o
(
Λ(y)

))
as y ↓ 0. (13)

By the Taylor expansion the head part of (13)

1−
(
1− Λ(y)

)ν
Λ(y)

(
1− Λ(y)

)ν = ν +
ν(ν + 1)

2
Λ(y) +O

(
Λ2(y)

)
as y ↓ 0.

From here and (13) the formula (12) now easily follows. The lemma is proved. 2

The following assertion is improved analogy of the Basic Lemma.

Lemma 2.3. Let conditions (1), (4) and (7) hold. Then

1

Λ
(
Rn(s)

) − 1

Λ (1− s)
= νn+

1 + ν

2
· ln (1 + νnΛ(1− s)) + ρn(s), (14)

where ρn(s) = o
(
lnn

)
+ σn(s) and, σn(s) is bounded uniformly for s ∈ [0, 1) and converges to a

limit σ(s) as n → ∞ which is a bounded function of s ∈ [0, 1).

Proof. Note that Rk+1(s) = ϕ
(
Rk(s)

)
. It is known that Rk(s) → 0 as k → ∞ uniformly for

s ∈ [0, 1), see [2, p. 6]. Therefore putting y = Rk(s) it follows from (12) that

1

Λ
(
Rk+1(s)

) − 1

Λ
(
Rk(s)

) = ν +
ν(ν + 1)

2
Λ
(
Rk(s)

)
+ γ

(
Rk(s)

)
,

where γ(y) = o
(
Λ(y)

)
as y ↓ 0. Summing both sides of last equality on k from 1 to n we obtain

1

Λ
(
Rn(s)

) − 1

Λ
(
R0(s)

) = νn+
ν(ν + 1)

2

n−1∑
k=0

Λ
(
Rk(s)

)
+

n−1∑
k=0

γk
(
s
)
, (15)

where γk
(
s
)
= o

(
Λ
(
Rk(s)

))
. Since Λ

(
Rn(s)

)
→ 0 uniformly for s ∈ [0, 1) each of the last two

sums on the right-hand side of (15) is o(n) as n → ∞. So that considering R0(s) = 1 − s, we
have

1

Λ
(
Rn(s)

) − 1

Λ
(
1− s

) ∼ νn as n → ∞.

Thus and so νnΛ
(
Rn(s)

)
→ 1 uniformly for s ∈ [0, 1) as n → ∞. Hence

n−1∑
k=0

Λ
(
Rk(s)

)
= O

(
lnn

)

and
n−1∑
k=0

γk
(
s
)
= o

(
lnn

)
as n → ∞. Thus we obtain

1

Λ
(
Rn(s)

) − 1

Λ(1− s)
= νn+O

(
lnn

)
as n → ∞. (16)

Next, using (16), we have
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uk(s) := Λ
(
Rk(s)

)
− 1

νk + Λ−1(1− s)
=

O
(
ln k

)(
νk + Λ−1(1− s) +O

(
ln k

))(
νk + Λ−1(1− s)

) =

=
O
(
ln k

)(
νk + Λ−1(1− s)

)2
+O

((
k + Λ−1(1− s)

)
ln k

) .

Since 0 6 s < 1, the right-hand side of last equality is O
(
ln k

/
k2

)
. Hence it follows that∑

k∈N0

|uk(s)| < ∞ for all s ∈ [0, 1). Returning to (15) we see that the sum in second term in (15)

is
n−1∑
k=0

Λ(1− s)

Λ(1− s)νk + 1
+

n−1∑
k=0

uk(s). In turn by standard arguments [4, p. 544] we see that the

expression
n−1∑
k=0

Λ(1− s)

Λ(1− s)νk + 1
− ln (1 + νnΛ(1− s))

ν

is bounded uniformly for s ∈ [0, 1) and approaches a limit as n → ∞ which is a bounded function
of s ∈ [0, 1). Thus since the bound on the uk(s) is uniform for s ∈ [0, 1), the expression

1

Λ
(
Rn(s)

) − 1

Λ (1− s)
− νn− 1 + ν

2
· ln (1 + νnΛ(1− s))−

n−1∑
k=0

γk
(
s
)

converges to a bounded limit as n → ∞ uniformly for s ∈ [0, 1). Finally, since the second sum

in (15)
n−1∑
k=0

γk
(
s
)
= o

(
lnn

)
the formula (14) is fair. The lemma is proved. 2

Remark 1. The assertion (14) was proved in [5, pp. 20–21] provided that F ′′′(1−) is finite.

Now using Lemma 2.3 we can improve the assertion (2). In fact putting s = 0 and, after
elementary arguments we obtain the following results.

Theorem 2.1. Let conditions (1), (4) and (7) hold. Then

P
{
H > n

}
=

N (n)(
νn

)1/ν (
1− 1 + ν

2ν2
lnn

n
+ o

(
lnn

n

))
,

as n → ∞, where N (n) is SV-function and defined in Lemma 1.1

By the same way we obtain the following local limit theorem which is improvement of the
analogous result from the paper [6].

Theorem 2.2. If conditions (1), (4) and (7) hold, then

(
νn

)1+1/ν · P11(n) =
Nν(n)

p0

(
1− (1 + ν)2

2ν2
lnn

n
+ o

(
lnn

n

))
,

where Nν(n)N−1(n) → 1 as n → ∞.
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О применении медленно меняющихся функций с остатком
в теории ветвящихся процессов Гальтона-Ватсона

Азам А.Имомов
Государственный центр тестирования при Кабинете Министров Республики Узбекистан

Богишамол, 12, 100202, Ташкент
Каршинский государственный университет

Кучабаг, 17, Карши, 180100, Узбекистан
Эркин Э.Тухтаев

Каршинский государственный университет
Кучабаг, 17, Карши, 180100, Узбекистан

В работе мы исследуем применение медленно меняющихся функций (в смысле Карамата) в тео-
рии ветвящихся процессов Гальтона-Ватсона. Рассмотрим критический случай такой, что про-
изводящая функция распределения прямого потомка одной частицы имеет бесконечный второй
момент, но его хвост регулярно меняется с остатком. Мы уточняем основную лемму теории
критических ветвящихся процессов Гальтона-Ватсона и улучшаем некоторые известные асимп-
тотические результаты.

Ключевые слова: ветвящийся процесс Гальтона-Ватсона, медленно меняющиеся функции, произ-
водящие функции.
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