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Elasto-Plastic Bending of a Beam
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Special type of conservation laws for the equations which describe the bending of a beam is proposed in

this paper. These laws are used to determine the elastic-plastic boundary.
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It is generally agreed today that problems of solid mechanics with unknown boundaries are
very complicated. The problem with unknown boundary between the elastic and plastic regions
is an example of such problem. As a rule, problems with unknown boundaries are solved by the
semi-inverse methods. The other technique is to reduce an unknown boundary to a circle by
Legendre transformation. This approach has been developed by B.D.Annin [1]. Unfortunately
this technique allows one to prove only an existence theorem but it does not provide an algorithm
for constructing solutions.

The authors of the paper successfully use symmetries and conservation laws for solving various
problems of solid mechanics. It is well known that the symmetries admitted by the differential
equations help to find a wide class of exact solutions and they are very effective semi-inverse
methods. The conservation laws allow one to solve not only the systems of hyperbolic equations
but also the systems of elliptic equations [2, 3].

Special type of conservation laws for the equations which describe the bending of a beam
are proposed in this paper. These laws are used to obtain a method for determining the elastic-
plastic boundary. The method is suitable not only for beams with smooth cross-section contours
but also for beams with piecewise – smooth cross-section contours.

Let us consider bending of a beam with a constant cross section contour Γ. The beam is
under the influence of force P . The force is imposed to one of the beam ends and it is parallel
to one of the principal axes of the cross section (Fig. 1).

Let us take the origin of the coordinates at the center of gravity of the beam fixed end. The
Oz-axis coincides with the center line of beam. The Ox and Oy-axes coincide with the principal
axes of the cross section.
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Fig. 1

The distribution of the component of the stress tensor σz is taken as in the case of pure
bending

σz = −
p(l − z)x

l
.

Let the stress tensor components be σx = σy = σxy = 0. Then the other components of the
stress tensor are determined from the following equations

∂τxz

∂z
=

∂τyz

∂z
= 0

∂τxz

∂x
+

∂τyz

∂y
= −

px

l
. (1)

Usually equations (1) are complemented by the compatibility equations for strains

∆τxz = −
p

l(1 + ν)
, ∆τyz = 0,

where ∆ is the Laplace operator and ν is the Poisson’s ratio. The system is solved with the use
of the semi-inverse Saint–Venant method.

Let us write system (1) in terms of the displacement vector (u, v, w). Taking into account
appropriate boundary conditions, we will solve the system with the use of special conservation
laws. They will be introduced later.

In order to find the components of the displacement vector we have the following system of
equations

σx = λe + 2µ
∂u

∂x
= 0,

σy = λe + 2µ
∂v

∂y
= 0,

σz = λe + 2µ
∂w

∂z
= −

p(l − z)x

l
= σ,

τxy = µ

(

∂u

∂y
+

∂v

∂x

)

= 0,

τxz = µ

(

∂u

∂z
+

∂w

∂x

)

= τ1,

τyz = µ

(

∂v

∂z
+

∂w

∂y

)

= τ2,

(2)

where λ and µ are the constant Lame coefficients, e =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
, τ1, τ2 are unknown

function of x and y.
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From the first three equations of system (2) we obtain

∂u

∂x
= A1xz + B1x,

∂v

∂y
= A2xz + B2x,

∂w

∂z
= A3xz + B3x,

(3)

where the constants Ai and Bi can be easily determined in terms of the constants λ, µ, p and l.
Then we have the following formulas

∆ =

∣

∣

∣

∣

∣

∣

λ + 2µ λ λ
λ λ + 2µ λ
λ λ λ + 2µ

∣

∣

∣

∣

∣

∣

= (λ + 2µ)2 + 2λ3
− 3λ2(λ + 2µ) = 12λµ2 + 8µ3,

∆1 = σ(λ2
− λ(λ + 2µ)) = σ · 2µ,

∆2 = σ(λ2
− λ(λ + 2µ)) = −σ · 2µ,

∆3 = σ((λ + 2µ)2 − λ2) = −σ · (2µλ + 4µ2),

∂u

∂x
=

∆1

∆
=

σ

σλµ + 4µ2
=

1

σλµ + 4µ2

(

zx
p

l
− px

)

,

∂v

∂y
= −

2σµ

∆
=

σ

σλµ + 4µ2
= −

1

σλµ + 4µ2

(

zx
p

l
− px

)

,

∂w

∂z
=

σ(λ + 2µ)

σλµ + 4µ2

(

zx
p

l
− px

)

.

From equations (3) we obtain

w =
A3xz2

2
+ B3xz + ω(x, y),

u = −
A3z

3

σ
−

B3z
2

2
+ (τ1/µ − ωx) z + U(x, y),

v = (τ2/µ − ωy) + V (x, y),

where ω,U, V are some functions.
Taking into account that τxy = 0 we obtain

∂u

∂y
+

∂v

∂x
= (τ1y/µ − ωxy) z + Uy + (τ2x/µ − ωxy) + Vx = 0.

From the equations

∂u

∂x
= − (∂τ1x/µ − ωxx) z + Ux = A1xz + B1x,

∂v

∂y
= (∂τ2y/µ − ωyy) z + Uy = A2xz + B2x.

we obtain

τ1 = µ

(

ωx +
A1x

2

2

)

, τ2 = µ (ωy + A2xy) .

Substituting these expressions into equation (1) gives

µ (ωxx + A1x) + µ (ωyy + A2x) = −
Px

l
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or in simpler form

ωxx + ωyy = ax, a = −

(

P

l
+ A1 + A2

)

.

Boundary conditions. We assume that the lateral surface of the beam is stress-free. It means
that

τxzn2 − τyzn1 = 0, (4)

where (n1, n2) are the components of the external normal to the contour Γ. We also assume that
the plastic flow occurs on the lateral surface of the beam under the action of the force P and the
von Mises yield criterion

τ2
xz + τ2

yz = k2, (5)

is satisfied, where k is the yield stress. Solving system (4) and (5) we obtain

τxz = ±n1k, τyz = ±n2k

or

µ

(

ωx +
A1x

2

2

)

= ±n1k, µ (ωy + A2xy) = ±n2k.

Let us choose the upper sign and we obtain the following problem. It is necessary to solve
the equation

ωxx + ωyy = ax (6)

with the following boundary conditions on Γ:

ωx =

(

n1k −
A1x2

2

)

µ
ωy = −

(n2k − A2xy)

µ
. (7)

Remark. There are elastic and plastic regions in the beam. Points where inequality τ2
xz+τ2

yz < 1
is satisfied belong to the elastic zone. Other points, including points on the contour Γ, belong to
the plastic one.
Conservation laws. The relation of the form

∂xA + ∂yB = 0 (8)

will be called a conservation law for equation (6). Assume that (8) is valid by means of equa-
tion (6). Let conserved current has the form

A = α(x, y)ωx + β(x, y)ωy + γ(x, y),

B = α1(x, y)ωx + β1(x, y)ωy + γ1(x, y).

From (6) and (8) we obtain

α(a − ωyy) + αxωx + βωxy + βxωy + γx + +α1ωxy + α1
yωx + β1ωyy + β1

yωy + γ1
y = 0. (9)

Since relation (9) is valid for all solutions of equation (6) from (9) we have

α − β1 = 0 β + α1 = 0 αx + α1
y = 0, βx + β1

y = 0, αa + γx + γ1
y = 0.

or
αx − βy = 0, βx + αy = 0, αa + γx + γ1

y = 0. (10)

Then the conserved current has the form

A = αωx + βωy + γ, B = −βωx + αωy + γ1.
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Fig. 2
Thus we arrive to the following theorem.

Theorem. Equations (6) admit an infinite set of conservation laws.

Using Green’s formula, conservation law (8) can be written in the form (Fig. 2)

0 =

∫

Γ

− (αωx + βωy + γ) dy +
(

−βωx + αωy + γ1
)

dx.

Let us consider two solutions of equation (10). The first solution is

α1 =
x − x0

(x − x0)2 + (y − y0)2
, β1 = −

y − y0

(x − x0)2 + (y − y0)2
,

γx = 0, α1xa = −γ1
y , γ1 = −ax · arctg

(

y − y0

x − x0

)

.

The second solution is

α1 =
y − y0

(x − x0)2 + (y − y0)2
, β1 =

x − x0

(x − x0)2 + (y − y0)2
,

γ1
y = 0, α2xa = −γx, γ = −

a(y − y0)

2
ln

(

(x − x0)
2 + (y − y0)

2
)

− x0a · arctg

(

x − x0

y − y0

)

.

From the conservation law given above we have

∫

Γ

(αωx + βωy + γ) dy −
(

−βωx + αωy + γ1
)

dx =

= −

∫

(x−x0)2+(y−y0)2=R2

(αωx + βωy + γ) dy −
(

−βωx + αωy + γ1
)

dx.

Let us compute the second integral of the first and second solutions. For the first solution of
(10) we have

∫

(x−x0)2+(y−y0)2=R2

(αωx + βωy + γ) dy −
(

−βωx + αωy + γ1
)

dx =

=

∫ 2π

0

(

cos θ

R
ωx −

sin θ

R
ωy

)

R cos θ −

(

−

(

−
sin θ

R
ωx

)

+
cos θ

R
ωy + γ1

)

R sin θdθ =

=

∫ 2π

0

ωxdθ = 2πωx(x0, y0).
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This formula is obtained with the use of the mean value theorem and in the limit of R → 0.
Finally, we obtain

2πωx(x0, y0) = −

∫

Γ

(

α1ωx + β1ωy + γ
)

dy −
(

−β1ωx + α1ωy + γ1
)

dx =

= −

∫

Γ

(

α1

(

n1k −
A1x

2

2

)

/µ + β1 (n2k − A2xy) /µ + γ

)

dy−

−

(

−β1

(

n1k −
A1x

2

2

)

/µ + α1 (n2k − A2xy) /µ + γ1

)

dx.

(11)

For the second solution of (10) we have
∫

(x−x0)2+(y−y0)2=R2

(αωx + βωy + γ) dy −
(

−βωx + αωy + γ1
)

dx =

=

∫ 2π

0

(

sin θ

R
ωx +

cos θ

R
ωy + γ

)

R cos θ −

(

−

(

−
cos θ

R
ωx

)

+
sin θ

R
ωy

)

R sin θdθ =

=

∫ 2π

0

ωydθ = 2πωy(x0, y0).

Finally, we obtain

2πωy(x0, y0) = −

∫

Γ

(

α2

(

n1k −
A1x

2

2

)

/µ + β2 (n2k − A2xy) /µ + γ

)

dy−

−

(

−β2

(

n1k −
A1x

2

2

)

/µ + α2 (n2k − A2xy) /µ + γ1

)

dx.

(12)

Formulas (11) and (12) allow us to find the stress state at the point (x0, y0). It means that
it is possible to determine the point of cross-section in which the material is in plastic or elastic
state. Hence the position of boundary between elastic and plastic regions can be accurately
calculated. Preliminary test calculations confirm this conclusion.

This research was supported by the Ministry of education and science of the Russian Federa-
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Упруго-пластический изгиб бруса

Сергей И. Сенашов

Ольга Н. Черепанова

Александр В. Кондрин

В статье для уравнений, описывающих изгиб консоли, строятся законы сохранения специального

вида, позволяющие в аналитическом виде находить упруго-пластическую границу.

Ключевые слова: симметрии,законы сохранения, поперечное сечение, граничные условия, кусочно-

гладкая граница, упруго-пластическая граница.
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