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Elasto-Plastic Bending of a Beam
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Special type of conservation laws for the equations which describe the bending of a beam is proposed in
this paper. These laws are used to determine the elastic-plastic boundary.
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It is generally agreed today that problems of solid mechanics with unknown boundaries are
very complicated. The problem with unknown boundary between the elastic and plastic regions
is an example of such problem. As a rule, problems with unknown boundaries are solved by the
semi-inverse methods. The other technique is to reduce an unknown boundary to a circle by
Legendre transformation. This approach has been developed by B.D. Annin [1]. Unfortunately
this technique allows one to prove only an existence theorem but it does not provide an algorithm
for constructing solutions.

The authors of the paper successfully use symmetries and conservation laws for solving various
problems of solid mechanics. It is well known that the symmetries admitted by the differential
equations help to find a wide class of exact solutions and they are very effective semi-inverse
methods. The conservation laws allow one to solve not only the systems of hyperbolic equations
but also the systems of elliptic equations [2,3].

Special type of conservation laws for the equations which describe the bending of a beam
are proposed in this paper. These laws are used to obtain a method for determining the elastic-
plastic boundary. The method is suitable not only for beams with smooth cross-section contours
but also for beams with piecewise — smooth cross-section contours.

Let us consider bending of a beam with a constant cross section contour I'. The beam is
under the influence of force P. The force is imposed to one of the beam ends and it is parallel
to one of the principal axes of the cross section (Fig. 1).

Let us take the origin of the coordinates at the center of gravity of the beam fixed end. The
Oz-axis coincides with the center line of beam. The Oz and Oy-axes coincide with the principal
axes of the cross section.
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Fig. 1
The distribution of the component of the stress tensor o, is taken as in the case of pure
bending
p(l —2)x
7 .

Let the stress tensor components be 0, = 0y = 04y = 0. Then the other components of the
stress tensor are determined from the following equations

O, = —

07y 07y 0 0Ty | OTy. _px

dz 0z oz oy 1

(1)
Usually equations (1) are complemented by the compatibility equations for strains

b
A Tz = T34, o\ A z = 07
i I(1+v) Ty

where A is the Laplace operator and v is the Poisson’s ratio. The system is solved with the use
of the semi-inverse Saint—Venant method.

Let us write system (1) in terms of the displacement vector (u,v,w). Taking into account
appropriate boundary conditions, we will solve the system with the use of special conservation
laws. They will be introduced later.

In order to find the components of the displacement vector we have the following system of
equations

az:)\e+2u%:0,
gx
Uyer+2ua—z:0,
1 —
P VD WAL | Ul L
0z l @)
ou Ov
_ (0w 0w _
Tez = K 2 Oz =T1,

Tyz = @Jra—w =T
v= = H 5 oy ) >

where A and p are the constant Lame coefficients, e =

ou, o0 0w
or Oy 0z

, Ti, To are unknown

function of x and y.
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From the first three equations of system (2) we obtain

@ = Aixz + Bz,

ox

0

7= = Agwz + Box, (3)
dy

ow = Asxz + Bsz,

0z

where the constants A; and B; can be easily determined in terms of the constants A, u,p and [.
Then we have the following formulas

A2 A A
A=\ A+2u A = (A +2u)2 4+ 223 — 3AZ(\ + 2u) = 122\p? + 8u3,
A A A+2pu
Ap =N\ = XA +2p) =024,
Ay =0 (N = A\ +2u)) = 0 - 24,
Az =a((A+2p)* = N?) = =0 - (2u) + 4p?),
u A o 1 (202 — pa)
Jr A odp+4p? olp+4p? l ’
L Y S S B
Jy A oA+ 4p? o\ + 4p? l ’

Ow _ a(A+2p) ( p )
0z  olp+4p? '

zZx= — px

l

From equations (3) we obtain

A 2
= 352 + Bszz + w(z,y),
Asz3  Bgz?
U= — Z_ - 32 +(T1/M—ww)Z+U(l’7y)7

v = (7—2/:“ - wy) + V(x,y),

where w, U,V are some functions.
Taking into account that 7., = 0 we obtain

ou Ov
ey + e (My/1 — way) 2 + Uy + (1o /pt — way) + Vi = 0.
From the equations
ou
= (OT1a/ 1t — Wyy) 2 + Uy = Arxz + Bz,
ov
87y = (07ay /1t — wyy) 2 + Uy = Aszz + Bax.
we obtain A2
x
7—1:/~L<wx+ 12 >, T2 = fi (wy + A2zy) .

Substituting these expressions into equation (1) gives

Pz

P (Wee + A1z) + p1 (wyy + Agz) = — I
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or in simpler form

P
Wya + Wyy = ax, a<l+A1+A2>
Boundary conditions. We assume that the lateral surface of the beam is stress-free. It means
that
TezN2 — TyzN1 = 0, (4)

where (n1,ny) are the components of the external normal to the contour I'. We also assume that
the plastic flow occurs on the lateral surface of the beam under the action of the force P and the
von Mises yield criterion
2 2 2
Tzt Tyz = k=, (5)

is satisfied, where k is the yield stress. Solving system (4) and (5) we obtain
Trz = :l:'fllk‘, Tyz = :l:?’lgk‘

or
A1l‘2

M (Wm + ) = +mk, p(wy + Agzy) = £nok.

Let us choose the upper sign and we obtain the following problem. It is necessary to solve
the equation
Wag + Wyy = ax (6)

with the following boundary conditions on I':

B (mk - Alzzz) o - (nok — Asxy) (7)

Wy = y = .

p p

Remark. There are elastic and plastic regions in the beam. Points where inequality 72,477, < 1
is satisfied belong to the elastic zone. Other points, including points on the contour I', belong to
the plastic one.

Conservation laws. The relation of the form

0, A+0,B=0 (8)

will be called a conservation law for equation (6). Assume that (8) is valid by means of equa-
tion (6). Let conserved current has the form

A= a(z,y)ws + B, y)wy + (2, y),
B = al(z,y)w, + B (z,y)wy + 7 (2, y).
From (6) and (8) we obtain
ala — wyy) + Quwy + Pwey + Bewy + Yo + —&—ozlwxy + agllwx + ﬂlwyy + B;a)y + ’y; =0. 9)
Since relation (9) is valid for all solutions of equation (6) from (9) we have
a—p'=0 B+at=0 aw+a;=0, ﬁw—l—ﬁ;:O, aa—l—%—l—ﬁ:O.

or
agy — B, =0, B+ ay =0, aa+ 7y, +7, = 0. (10)

Then the conserved current has the form

A = awy + Pwy + 7, B:fﬁwaraquL’yl.
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Fig. 2
Thus we arrive to the following theorem.

Theorem. Equations (6) admit an infinite set of conservation laws.

Using Green’s formula, conservation law (8) can be written in the form (Fig. 2)

0= / — (awg + Bwy +7) dy + (—ﬁwz + awy + 71) dx.
r

Let us consider two solutions of equation (10). The first solution is

1 r — X9

al = /31 — _ Y—Yo
(z —20)% + (y — y0)?’ (x —x0)% + (y — y0)?’
Yz =0, olra = —n,, vt = —ax - arctg - y0> .
T — X0
The second solution is
ol = Y—Y% gl = T — Zo
(z —x0)% + (y — y0)?’ (z —20)? + (y — 90)*

aly — T —x

7; =0, a’za=—v,, ~= —w In ((gc — ZC())Q +(y— yo)Q) — Zoa - arctg (y y0> .
— Yo

From the conservation law given above we have

/ (wy + Pwy +v) dy — (—ﬂwz + awy + 71) dr =
r

(awy + Pwy + ) dy — (—ﬁwm + awy + 'yl) dx.
(z—0)2+(y—yo0)?=R?

Let us compute the second integral of the first and second solutions. For the first solution of
(10) we have

(awy + Bwy +7) dy — (—Bwy + awy, + ') do =
(z—20)2+(y—yo)?=R?

27 . .
cos sin 0 sin 0 cos 6 .
:/0 (a‘”w‘R“’QR“’SH‘(‘ (‘R%>+”y+”l>mm9d9:

R
2w
:/ wzdl = 27w, (zg, Yyo)-
0
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This formula is obtained with the use of the mean value theorem and in the limit of R — 0.
Finally, we obtain

2wy (20, yo) = —/ (ozlwx + /Blwy + fy) dy — (fﬂlwx + alwy + 71) dx =
2
= _/r (al <n1k— Al; ) [+ B (nok — Aszy) //L—l—’)’) dy— (11)
2
- (—51 (nk A ) Ju+ o (ngk — Agay) Ju + 71) dr.

For the second solution of (10) we have

(awy + Bwy +7) dy — (—Buwy + awy + ') do =
(z—20)2+(y—yo)?=R?

2m S ] i
= /02 (bl;ea& + chawy +’y> Rcosf — (— (_co};&wl) + bl;f%;) Rsin0df =

= wydf = 21wy (20, Yo)-
0

Finally, we obtain

A 2
2nwy (0, Y0) = —/F <a2 (nlk— 1; )/u+ﬁ2 (nok — Agxy) /u+7> dy—

2 141-752 2 1
~ (-8 (mak = 255 ) Ju 0 (nk — Aay) 491 )

Formulas (11) and (12) allow us to find the stress state at the point (x,yp). It means that
it is possible to determine the point of cross-section in which the material is in plastic or elastic
state. Hence the position of boundary between elastic and plastic regions can be accurately
calculated. Preliminary test calculations confirm this conclusion.

(12)
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Yipyro-mjiactudeckuii nu3rud 6pyca

Cepreit 1. Cenamion
Ouabra H. YepenanoBa
Anekcanap B. Konapun

B cmamuve das ypasHerut, onucu8aOUUL u32ub KOHCOAU, CMPOAMCA 34KOHDL COTPAHEHUSA CTEUUAADHOZO
6uda, NO3BOAANOWUE 8 GHAAUMUNECKOM 8UJe HATOOUMD YNPY20-NAACTNUNECKYIO 2DAHULY.

Karouesvie crosa: CUMMEMPUU,3AKOHD, COTPAHEHUA, NONEPEYHOE CEYEHUE, 2PAHUYHDBLE YCA0BUA, KYCOHYHO-
2na0dkas eparnuya, Yynpy20-naacmuvecras 2paHuua.
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