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Two problems are considered in this paper. First problem is the Cauchy problem for a two-dimensional

loaded parabolic equation with coefficients dependent on unknown function and its derivatives. Second

problem is the Cauchy problem for one-dimensional equation of the Burgers-type. The sufficient condi-

tions of the existence of solutions of these problems in classes of smooth bounded functions are presented

in the paper. The method of weak approximation is used for the purpose of obtaining the proof.
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Introduction

This paper is devoted to an attempt to generalize the method of studying solvability of broad
class of auxiliary direct problems for one- and two-dimensional coefficient inverse problems for
parabolic equations in unbounded domains with Cauchy data.

Two problems are constructed in this work: special type of the loaded (containing traces of
unknown function and its derivatives) two-dimensional parabolic equation and one-dimensional
equation of the Burgers-type.

The solution existence of the Cauchy problems for the mentioned above equations was inves-
tigated. Coefficient inverse problems with Cauchy data can be reduced to these auxiliary direct
problems with the use of overdetermination conditions (some additional information on the so-
lution) assigned at fixed hyperplanes or hypersurfaces. Examples of such methods of studying
of inverse problems can be found in [1]. There are also other approaches that reduce an inverse
problem to non-linear unloaded equation or to integro-differential equation.

It is necessary to know under what conditions the auxiliary problems are solvable. It is
also necessary to know the properties of solutions. The sufficient conditions for the existence
of solutions of the problems are obtained in this paper. The method of weak approximation is
used to prove the existence of solutions of the given problems. This method is also known as the
method of splitting on differential level [2, 3].
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1. On the special form of two-dimensional loaded semilinear

parabolic equation

Let us choose r different points ak, k = 1, r of variable x defined on space E1. We also choose
s different points z = βm, m = 1, s of variables z defined on space E1.

Let us consider in the strip G[0,T ] = {(t, x, z)|0 6 t 6 T, x ∈ E1, z ∈ E1} the Cauchy problem
for loaded (containing traces of unknown function and its derivatives) non-classical parabolic
equation

∂

∂t
u(t, x, z) = a1(t, x, w0(t))uxx + a2(t, z, w0(t))uzz+

+ b1(t, x, z, w0(t))ux + b2(t, x, z, w0(t))uz + f(t, x, z, u, w0(t), w1(t, x), w2(t, z)), (1)

u(0, x, z) = u0(x, z). (2)

The components of vector–function

w0(t) =

(
u(t, αk, βm),

∂j1+j2

∂xj1∂zj2
u(t, αk, βm)

)
, k = 1, r, m = 1, s,

j1 = 0, 1, . . . , p1, j2 = 0, 1, . . . , q1,

are traces of function u(t, x, z) and all its derivatives with respect to x up to order p1 and with
respect to z up to order q1. All traces depend only on variable t.

The vector–function

w1(t, x) =

(
u(t, x, βm),

∂j

∂zj
u(t, x, βm)

)
, m = 1, s, j = 0, 1, . . . , q1,

consists of the traces of function u(t, x, z) and all its derivatives with respect to z up to order q1.
All traces depend only on variables t and x.

Similarly, the vector–function

w2(t, z) =

(
u(t, αk, z),

∂j

∂xj
u(t, αk, z)

)
, k = 1, r, j = 0, 1, . . . , p1,

consists of the traces of function u(t, x, z) and all its derivatives with respect to x up to order p1.
All traces depend only on variables t and z.

Let us consider a simple example. The following inverse problem for the heat equation is
reduced to the direct problem of type (1), (2).

We have the following equation in domain G[0,T ] = {(t, x, z) | 0 < t < T, x ∈ R, z ∈ R}

ut(t, x, z) = uxx(t, x, z) + uzz(t, x, z) + λ(t, x)f(t, x, z), (3)

with initial data
u(0, x, z) = u0(x, z), (x, z) ∈ R

2. (4)

Coefficient λ(t, x) should be determined simultaneously with the solution u(t, x, z) of problem
(3), (4). The solution satisfies the overdetermination condition

u(t, x, γ(t)) = ϕ(t, x), 0 6 t 6 T, x ∈ R. (5)

Let the consistency conditions be fulfilled

u0(x, γ(0)) = ϕ(0, x), x ∈ R.
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We assume that all input data for the problem are real-valued functions. The functions and
all necessary derivatives of these functions are sufficiently smooth and bounded in G[0,T ].

Let the following condition be true

|f(t, x, γ(t))| > δ > 0, 0 6 t 6 T, x ∈ R.

The problem (3)–(5) is reduced to the auxiliary direct problem

ut(t, x, z)= uxx(t, x, z)+uzz(t, x, z)+
ψ(t, x)− uz(t, x, γ(t))γ

′(t)− uzz(t, x, γ(t))

f(t, x, γ(t))
f(t, x, z), (6)

u(0, x, z) = u0(x, z), (x, z) ∈ R
2, (7)

where ψ(t, x) = ϕ′

t(t, x) − ϕ′′

xx(t, x) is the known function.

In this example, in direct problem (6), (7) the functions a1(t, x, w0(t)), a2(t, z, w0(t)),
b1(t, x, z, w0(t)), b2(t, x, z, w0(t)) and f(t, x, z, u, w0(t), w1(t, x), w2(t, z)) from equation (1) have
the following forms:

a1(t, x, w0(t)) = a2(t, z, w0(t)) = 1,

b1(t, x, z, w0(t)) = b2(t, x, z, w0(t)) = 0,

f(t, x, z, u, w0(t), w1(t, x), w2(t, z)) =
ψ(t, x) − uz(t, x, γ(t))γ

′(t) − uzz(t, x, γ(t))

f(t, x, γ(t))
f(t, x, z).

In what follows we assume that p > max{2, p1}, q > max{2, q1}.

Definition 1.1. Zp,q
x,z([0, t

∗]) denotes the set of functions u(t, x, z) that are defined in G[0,t∗] and

belong to the class

C1,p,q
t,x,z (G[0,t∗]) =

{
u(t, x, z) |

∂u

∂t
,
∂j1+j2u

∂xj1∂zj2
∈ C(G[0,t∗]), j1 = 0, p, j2 = 0, q

}
,

that is, functions and all their derivatives appearing in equation (1) are bounded at

(t, x, z) ∈ G[0,t∗]

p∑

j1=0

q∑

j2=0

∣∣∣∣
∂j1+j2

∂xj1∂zj2
u(t, x, z)

∣∣∣∣ 6 C.

Definition 1.2. A classical solution of problem (1), (2) in G[0,t∗] is the function u(t, x, z) ∈
Zp,q

x,z([0, t
∗]) which satisfies (1), (2) in G[0,t∗].

Here 0 < t∗ 6 T is a fixed constant. If t∗ depends on the constants that bounds the input
data and t∗ 6 T then u(t, x, z) is a solution of problem (1), (2) on a small time interval. If t∗ = T
for any set of input data that satisfies the condition of solvability then u(t, x, z) is a solution of
problem (1), (2) in the whole time interval (or we will use the term "global solvability").

Suppose that the following conditions are true.

Condition 1.1. The functions a1, a2, b1, b2 are real-valued functions that are defined for all val-

ues of their arguments and they are continuous functions. The functions a1, a2 satisfy conditions

a1 > a0 > 0, a2 > a0 > 0. For any t1 ∈ (0, T ] and any function u(t, x, z) ∈ Zp+2,q+2
x,z ([0, t1]) these

functions, as functions of variables (t, x, z) ∈ G[0,t1], are continuous and they have continuous

derivatives that enter into the following inequality
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p+2∑

j1=0

∣∣∣∣
∂j1

∂xj1
a1

(
t, x, w0(t)

)∣∣∣∣+
q+2∑

j2=0

∣∣∣∣
∂j2

∂zj2
a2

(
t, z, w0(t)

)∣∣∣∣+

+

p+2∑

j1=0

q+2∑

j2=0

(∣∣∣∣
∂j1+j2

∂xj1∂zj2
b1
(
t, x, z, w0(t)

)∣∣∣∣+
∣∣∣∣
∂j1+j2

∂xj1∂zj2
b2
(
t, x, z, w0(t)

)∣∣∣∣
)

6 Pγ1
(U(t)) ; (8)

Condition 1.2. The function u0 is a real-valued function that satisfies the following inequality

p+2∑

j1=0

q+2∑

j2=0

∣∣∣∣
∂j1+j2

∂xj1∂zj2
u0(x, z)

∣∣∣∣ 6 C.

The function has continuous derivatives that enter into the inequality.

Condition 1.3. The function f is a real-valued function that is defined for all values of its

arguments and it is continuous function. For all t1 ∈ (0, T ] and any function u(t, x, z) ∈
Zp+2,q+2

x,z ([0, t1]) this function, as function of variables (t, x, z) ∈ G[0,t1], is continuous and it

has continuous derivatives that enter into the following inequality

p+2∑

j1=0

q+2∑

j2=0

∣∣∣∣
∂j1+j2

∂xj1∂zj2
f
(
t, x, z, u, w0(t), w1(t, x), w2(t, z)

)∣∣∣∣ 6 Pγ2
(U(t)) . (9)

In conditions 1.1 и 1.3, γ1, γ2 > 0 are some fixed integers,

Pζ(y) = C̃(1 + y + · · · + yζ),

C̃ > 1 is a constant that is independent of the function u(t, x, z) and its derivatives,

U(t) =

p+2∑

j1=0

q+2∑

j2=0

sup
0<ξ6t

sup
(x,z)∈E2

∣∣∣∣
∂j1+j2

∂xj1∂zj2
u(ξ, x, z)

∣∣∣∣ , u(t, x, z) ∈ Zp+2,q+2
x,z ([0, t1]).

The following theorem is proved in [6].

Theorem 1.1. Let us assume that conditions 1.1–1.3 are fulfilled.

1a. If in equation (1) the coefficients ai, bi are independent of the space variables:

a1 = a1(t, w0(t)), a2 = a2(t, w0(t)), b1 = b1(t, w0(t)), b2 = b2(t, w0(t)),

and conditions 1.1, 1.3 are fulfilled for γ1 > 0, 0 6 γ2 6 1 then the classical solution

u(t, x, z) of problem (1), (2) exists in class Zp,q
x,z([0, T ]).

1b. If the coefficients ai, bi have the same form as in the case 1a and conditions 1.1, 1.3 are

fulfilled for γ1 > 0, γ2 > 1 then there is a such constant t∗, 0 < t∗ 6 T dependent on the

constant C̃ from (8), (9) that the classical solution u(t, x, z) of problem (1), (2) exists in

class Zp,q
x,z([0, t

∗]).

2a. If in equation (1) the coefficients ai, bi have the forms:

a1 = a1(t, x, w0(t)), a2 = a2(t, z, w0(t)),

b1 = b1(t, x, z, w0(t)), b2 = b2(t, x, z, w0(t)),

and conditions 1.1, 1.3 are fulfilled for γ1 = 0, 0 6 γ2 6 1 then the classical solution

u(t, x, z) of problem (1), (2) exists in class Zp,q
x,z([0, T ]).
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2b. If the coefficients ai, bi have the same forms as in the case 2a and conditions 1.1, 1.3 are

fulfilled for γ1 = 0 but γ2 > 1 then there is a such constant t∗, 0 < t∗ 6 T , dependent on

the constant C̃ from (8), (9) that the classical solution u(t, x, z) of problem (1), (2) exists

in class Zp,q
x,z([0, t

∗]).

The fulfillment of the conditions of Theorem 1.1 can be proved for the given above example
(direct problem (6), (7)), assuming that input data are sufficiently smooth and bounded functions.
For example, the conditions of Theorem 1.1 are fulfilled for the constants p = q = 4, γ1 = 0 and
γ2 = 1. Hence, the classical solution u(t, x, z) of problem (6), (7) exists in the class Z4,4

x,z([0, T ]).

2. On one-dimensional loaded Burgers type equation of the

special form

Let us consider the proof of a similar result for the one-dimensional Burgers-type equation.
In this equation the coefficient of the first order derivative with respect to space variable depends
on the solution and its traces of the specified form.

Let us choose r different points α1, . . . , αr in space E1.
The following Cauchy problem is considered in the strip G[0,T ] = {(t, x)|0 6 t 6 T, x ∈ E1}:

ut = a(t)uxx + b(t, x, u(t, x), ω(t))ux + f(t, x, u(t, x), ω(t)), (10)

u(0, x) = u0(x), (11)

here ω(t) = (u(t, αk),
∂j

∂xj
u(t, αk)), j = 0, p1 , k = 1, r is a vector–function. The components

of this function are the traces of function u(t, x) and all its derivatives with respect to x up to
order p1. The traces depend only on variable t.

Definition 2.1. Zp
x([0, t∗]) denotes the set of functions u(t, x) defined in G[0,t∗] and they belong

to the class

C1,p
t,x (G[0,t∗]) =

{
u(t, x) |

∂u

∂t
,
∂ju

∂xj
∈ C(G[0,t∗]), j = 0, p

}

The functions are bounded at (t, x) ∈ G[0,t∗] together with the following derivatives

p∑

j=0

∣∣∣∣
∂j

∂xj
u(t, x)

∣∣∣∣ 6 C,

and p > max{2, p1}.

Definition 2.2. A classical solution of problem (10), (11) in G[0,t∗] is the function

u(t, x) ∈ Zp
x([0, t∗]) which satisfies (10) in G[0,t∗]. Here 0 < t∗ 6 T is a fixed constant dependent

on the input data.

Suppose that the following conditions are fulfilled.

Condition 2.1. The functions b(t, x, u(t, x), ω(t)), f(t, x, u(t, x), ω(t)), u0(x) are real-valued

functions that are defined and continuous for all values of their arguments. For all t1 ∈ (0, T ]
and for any u(t, x) ∈ Zp+2

x ([0, t1]) these functions, as functions of variables (t, x) ∈ G[0,t1], are

continuous and they have continuous derivatives that enter into inequalities (12), (13). The

function a(t) > a0 > 0 is a continuous bounded function on the interval [0, T ]. The function

u0(x) has continuous derivatives and satisfies the following inequalitie
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p+2∑

j=0

∣∣∣∣
dj

dxj
u0(x)

∣∣∣∣ 6 C̃.

Condition 2.2. Let us introduce the following notations

Uj(0) = sup
x

∣∣∣∣
dj

dxj
u0(x)

∣∣∣∣ , j = 0, 1, . . . , p+ 2,

Uj(t) = sup
0<ξ6t

∣∣∣∣
∂j

∂xj
u(t, x)

∣∣∣∣ , j = 0, 1, . . . , p+ 2,

U(0) =

p+2∑

j=0

Uj(0), U(t) =

p+2∑

j=0

Uj(t).

Let us assume that for all t1 ∈ (0, T ], for all t ∈ [0, t1] and for any function u(t, x) ∈
Zp+2

x ([0, t1]) the following estimates are hold:

p+2∑

j=0

∣∣∣∣
∂j

∂xj
b(t, x, u(t, x), ω(t))

∣∣∣∣ 6 Pγ1
(U(t)), (12)

p+2∑

j=0

∣∣∣∣
∂j

∂xj
f(t, x, u(t, x), ω(t))

∣∣∣∣ 6 Pγ2
(U(t)), (13)

where γ1, γ2 > 0 are some fixed integers, Pζ(y) = C̃(1 + y + y2 + . . . + yζ) and C̃ > 1 is some

constant independent of the function u(t, x) and its derivatives.

Theorem 2.1. Assume that conditions 2.1 and 2.2 are fulfilled for γ1 > 0 and 0 6 γ2 6 1. Then

a constant t∗, 0 < t∗ 6 T exists and it depends on the constants a0 and C̃ from condition 2.1

and inequalities (12), (13), such that the classical solution u(t, x) of problem (10), (11) exists in

class Zp
x([0, t∗]).

Proof. To prove the existence of a solution of the Cauchy problem (10), (11) we use the
method of weak approximation. The original problem is split into three fractional steps on

differential level and time shift by
(
t−

τ

3

)
is done in the traces of unknown functions and in

nonlinear terms:

uτ
t (t, x) = 3a(t)uτ

xx(t, x), nτ < t 6

(
n+

1

3

)
τ ; (14)

uτ
t (t, x) = 3b

(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

))
uτ

x(t, x),

(
n+

1

3

)
τ < t6

(
n+

2

3

)
τ ; (15)

uτ
t (t, x) = 3f

(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

))
,

(
n+

2

3

)
τ < t 6 (n+ 1)τ ; (16)

uτ (0, x) = u0(x). (17)

Let us prove a priori estimates that ensure compactness of the family of solutions u(t, x) of
problem (14)–(17) in the class C1,p

t,x (G[0,t∗]) for some constant 0 < t∗ 6 T .
Let us introduce the following notations

Uj(0) = sup
x

∣∣∣∣
dj

dxj
u0(x)

∣∣∣∣ , j = 0, 1, . . . , p+ 2, (18)
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Uτ
j (t) = sup

nτ<ξ6t

∣∣∣∣
∂j

∂xj
u(t, x)

∣∣∣∣ , t ∈ (nτ, (n+ 1)τ ], j = 0, 1, . . . , p+ 2, (19)

U(0) =

p+2∑

j=0

Uj(0), Uτ (t) =

p+2∑

j=0

Uτ
j (t). (20)

Consider the first fractional step when n = 0. On the interval 0 < t 6
τ

3
we have the Cauchy

problem (14), (17).
According to the maximum principle we obtain

|uτ (t, x)| 6 sup
x

|u0(x)|.

Upon differentiating problem (14) j times with respect to x, j = 0, 1, . . . , p+ 2 we obtain

∂j

∂xj
uτ

t (t, x) = 3a(t)
∂j

∂xj
uτ

xx(t, x),

∂j

∂xj
uτ (0, x) =

dj

dxj
u0(x).

Then, according to the maximum principle, we have the following estimate

∣∣∣∣
∂j

∂xj
uτ (t, x)

∣∣∣∣ 6 sup
x

∣∣∣∣
∂j

∂xj
u0(x)

∣∣∣∣ .

Taking into account (18)–(20), we obtain

Uτ (t) 6 U(0), 0 < t 6
τ

3
. (21)

Consider the second fractional step when
τ

3
< t 6

2τ

3
. Then, due to the time shift, the

equation (15), is a linear one-dimensional homogeneous partial differential equation.
In this case, the first characteristic equation ( [5], п. 2.6) is t′(σ) = 1. The solution of this

equation can be taken in the form t = σ. The second characteristic equation can be written as

dx

dt
= −3b

(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

))
. (22)

Considering the assumptions of the theorem and properties of the solution obtained in the
first fractional step, assume that ϕτ (t, ξ, η) is a characteristic function of equation (22), i.e.
x = ϕτ (t, ξ, η) is the integral curve of the equation that goes through the point (ξ, η).

Initial data for equation (15) can be written in parametric form as t =
τ

3
, x = η, uτ =

uτ
(τ

3
, η
)

(the function uτ
(τ

3
, η
)

is taken from the previous fractional step). The solution to

this problem exists and can be represented in parametric form

uτ (t, x) = uτ
(τ

3
, η
)
, x = ϕτ

(
t,
τ

3
, η
)
,

or in the form
uτ (t, x) = uτ

(τ
3
, ϕτ

(τ
3
, t, x

))
.

Hence it follows that

Uτ
0 (t) 6 Uτ

0

(τ
3

)
6 U(0),

τ

3
< t 6

2τ

3
. (23)
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Let us differentiate equation (15) with respect to x and introduce the following notations
zτ (t, x) = uτ

x(t, x),

bτ0(t, x) = 3b
(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

))
,

bτ1(t, x) = 3
∂

∂x

(
b
(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

)))
.

Then we obtain equation

zτ
t (t, x) = bτ0(t, x)zτ

x + bτ1(t, x)zτ .

The solution of this equation for t ∈

(
τ

3
,
2τ

3

]
can be written in the parametric form ( [5], p. 43)

zτ (t, x) = e−F τ
0 (t, τ

3
,η)zτ

(τ
3
, η
)
, x = ϕτ

(
t,
τ

3
, η
)
,

where

F τ
0 = F τ

0 (t, ξ, η) = −

∫ t

ξ

bτ1(t, ϕτ (t, ξ, η)) dt,

and x = ϕτ (t, ξ, η) is the characteristic function of the equation

dx

dt
= −bτ0(t, x) = −3b

(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

))
,

i.e. it is the integral curve of the equation passing through the point (ξ, η).
Taking into account that conditions 2.1–2.2 are fulfilled and taking also into account estimate

(23) and notations (18)–(20), we obtain

Uτ
1 (t) 6 Uτ

1

(τ
3

)
exp

(
Pγ1

(
Uτ
(
t−

τ

3

))
τ
)

6 Uτ
1

(τ
3

)
ePγ1

(U(0))τ , (24)

where Pζ(y) = C̃(1 + y + y2 + . . .+ yζ), C̃ > 1 is polynomial from condition 2.2.
Let us differentiate equation (15) twice with respect to x and introduce the following notation

vτ (t, x) = uτ
xx(t, x),

cτ0(t, x) = 3b
(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

))
,

cτ1(t, x) = 6
∂

∂x

(
b
(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

)))
,

cτ2(t, x) = 3
∂2

∂x2

(
b
(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

)))
,

Then we obtain equation

vτ
t (t, x) = cτ0(t, x)vτ

x(t, x) + cτ1(t, x)vτ (t, x) + cτ2(t, x)uτ
x(t, x). (25)

The solution of this equation for t ∈

(
τ

3
,
2τ

3

]
can be written in the following parametric form

( [5], p. 43)

vτ (t, x) = e−Gτ
0
(t, τ

3
,η)

(
vτ
(τ

3
, η
)

+

∫ t

τ
3

cτ2(t, ϕτ
(
t,
τ

3
, η
)
)uτ

x(t, ϕτ
(
t,
τ

3
, η
)
)eGτ

0(t, τ
3

,η) dt

)
,

x = ϕτ
(
t,
τ

3
, η
)
,
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where Gτ
0 = Gτ

0(t, ξ, η) = −

∫ t

ξ

cτ1(t, ϕτ (t, ξ, η)) dt.

Taking into account that conditions 2.1–2.2 are fulfilled and taking into account estimate (23)

and notations (18)–(20), we obtain for
τ

3
< t 6

2τ

3
the following inequality

Uτ
2 (t) 6 e2Pγ1

(U(0))τ

(
Uτ

2

(τ
3

)
+ 3Pγ1

(U(0))e2Pγ1
(U(0))τ

∫ t

τ
3

Uτ
1 (t) dt

)
6

6 eC1Pγ1
(U(0))τ

(
Uτ

2

(τ
3

)
+ C1Pγ1

(U(0))

∫ t

τ
3

Uτ
1 (t) dt

)
. (26)

Here and further Cj > 1 are constants (generally they are different) independent of the
parameter τ .

It follows from (23) and (24) that

Uτ
2 (t) 6 eC2Pγ1

(U(0))τ
(
Uτ

2

(τ
3

)
+ C2Pγ1

(U(0))Uτ
1

(τ
3

)
ePγ1

(U(0))ττ
)
,

Uτ
2 (t) 6 eC3Pγ1

(U(0))τ
(
Uτ

2

(τ
3

)
+ C3τPγ1

(U(0))Uτ
1

(τ
3

))
, (27)

Uτ
2 (t) 6

(
Uτ

1

(τ
3

)
+ Uτ

2

(τ
3

))
eC4Pγ1

(U(0))τ (1 + C4τPγ1
(U(0))) 6

6

(
Uτ

1

(τ
3

)
+ Uτ

2

(τ
3

))
eC4Pγ1

(U(0))τeC4Pγ1
(U(0))τ

6

(
Uτ

1

(τ
3

)
+ Uτ

2

(τ
3

))
eC5Pγ1

(U(0))τ . (28)

If we differentiate equation (15) j times with respect to x, j = 3, 4, . . . , p + 2 and use the
Leibnitz formula for the j-th derivative of the product of two functions then we obtain wj

τ
t
(t, x) =

dτ
0(t, x)wj

τ
x

+ dτ
1(t, x)wj

τ +
j∑

k=2

dτ
k(t, x)wτ

j−k+1(t, x), where

dτ
0(t, x) = 3b

(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

))
,

dτ
k(t, x) = 3Ck

j

∂k

∂xk
b
(
t−

τ

3
, x, uτ

(
t−

τ

3
, x
)
, ωτ

(
t−

τ

3

))
.

By the arguments used to obtain equation (25) we arrive to the following inequality

Uτ
j (t) 6 eC6Pγ1

(U(0))τ

(
Uτ

j

(τ
3

)
+ C6Pγ1

(U(0))

∫ t

τ
3

j−1∑

k=1

Uτ
k (t) dt

)
, j = 3, 4, . . . , p+ 2. (29)

It follows from (24), (26) and (29) that

Uτ
3 (t) 6 eC6Pγ1

(U(0))τ

(
Uτ

3

(τ
3

)
+ C6Pγ1

(U(0))

∫ t

τ
3

Uτ
1 (t) + Uτ

2 (t) dt

)
6 eC6Pγ1

(U(0))τ×

×
(
Uτ

3

(τ
3

)
+ C6τPγ1

(U(0))
(
Uτ

1

(τ
3

)
ePγ1

(U(0))τ +
(
Uτ

1

(τ
3

)
+ Uτ

2

(τ
3

))
eC5Pγ1

(U(0))τ
))

6

6 eC7Pγ1
(U(0))τ

(
Uτ

3

(τ
3

)
+ C7τPγ1

(U(0))
(
Uτ

1

(τ
3

)
+ Uτ

2

(τ
3

)))
. (30)

Hence we have
Uτ

3 (t) 6

(
Uτ

1 (
τ

3
) + Uτ

2 (
τ

3
) + Uτ

3 (
τ

3
)
)
eC8Pγ1

(U(0))τ . (31)
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We continue our arguments for j = 4, . . . , p+ 2 and obtain

Uτ
j (t) 6 eC6Pγ1

(U(0))τ

(
Uτ

j

(τ
3

)
+ C6Pγ1

(U(0))

∫ t

τ
3

j−1∑

k=1

Uτ
k (t) dt

)
6 eC6Pγ1

(U(0))τ×

×

(
Uτ

j

(τ
3

)
+ C6τPγ1

(U(0))

(
j−1∑

k=1

(
k∑

l=1

Uτ
l

(τ
3

))
eAlkPγ1

(U(0))τ

))
6

6 eBjPγ1
(U(0))τ

(
Uτ

j

(τ
3

)
+BjτPγ1

(U(0))

(
j−1∑

k=1

Uτ
j

(τ
3

)))
, (32)

Hence we have

Uτ
j (t) 6

(
j∑

k=1

Uτ
j (
τ

3
)

)
eDjPγ1

(U(0))τ , (33)

here Alk, Bj ,Dj are positive constants independent of the parameter τ .

Now we add up inequalities (23), (27) (30) and (32) for p = 4, . . . , p+2. Taking into account
notations (18)–(20), we obtain

Uτ (t) 6 eC9Pγ1
(U(0))τ

(
Uτ
(τ

3

)
+ C9τPγ1

(U(0))Uτ
(τ

3

))
6 Uτ

(τ
3

)
eC10Pγ1

(U(0))τ .

On the third fractional step
2τ

3
< t 6 τ we consider equation (16) with initial data at the

point
2τ

3
(the value of function uτ

(
2τ

3
, x

)
from the previous fractional step). Upon integrating

equation (16) with respect to the time, we get

uτ (t, x) = uτ

(
2τ

3
, x

)
+ 3

∫ t

2τ
3

f
(
η −

τ

3
, x, uτ

(
η −

τ

3
, x
)
, ωτ

(
η −

τ

3

))
dη.

Taking into account this equation, the Theorem condition 2.2 and the previously introduced
notations, we arrive to the following inequality

Uτ
0 (t) 6 Uτ

0

(
2τ

3

)
+ C11τ

(
1 + Uτ

0

(
2τ

3

))
. (34)

Let us differentiate (16) j times with respect to x, j = 1, 2, . . . , p + 2. Taking into account
condition 2.2 and the notations (18)–(20), we obtain the following estimates

Uτ
1 (t) 6 Uτ

1

(
2τ

3

)
+ C12τ

(
1 + Uτ

1

(
2τ

3

))
, (35)

Uτ
2 (t) 6 Uτ

2

(
2τ

3

)
+ C13τ

(
1 + Uτ

2

(
2τ

3

))
. (36)

After combining estimates (34), (35) and (36) on the third fractional step, we obtain

Uτ (t) 6 Uτ

(
2τ

3

)
+ C14τ

(
1 + Uτ

(
2τ

3

))
. (37)
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Now considering relation (21), (28) and (37) on the time interval t ∈ (0, τ ] we obtain the
following estimate (constant C > 0 does not depend on τ)

Uτ (t) 6 U(0)eτC15Pγ1
(U(0)) + C15τ(1 + U(0)eτC15Pγ1

(U(0))) 6

6 U(0)eτC15Pγ1
(U(0)) + 1 − 1 + C15τ(1 + U(0)eτC15Pγ1

(U(0))) 6

6 (U(0)eτC15Pγ1
(U(0)) + 1)(C15τ + 1) − 1 6 (U(0) + 1)eτC15Pγ1

(U(0))eC15τ − 1 6

6 (U(0) + 1)eτCPγ1
(U(0)+1) − 1. (38)

Consider the next whole step (n = 1). By the given above arguments we obtain the estimate
(because constant C does not depend on τ we change U(0) for Uτ (τ))

Uτ (t) 6 (Uτ (τ) + 1)eτCPγ1
(Uτ (τ)+1) − 1, τ < t 6 2τ. (39)

It follows from (38) that Uτ (τ) 6 (U(0) + 1)eτCPγ1
(U(0)+1) − 1.

Considering this inequality, estimate (39) takes the form

Uτ (t) 6 ((U(0) + 1)eτCPγ1
(U(0)+1) − 1 + 1)×

× exp
(
τCPγ1

(
(U(0) + 1)eτCPγ1

(U(0)+1)
))

− 1 6

6 (U(0) + 1)eτCPγ1
(U(0)+1) exp

(
τCPγ1

(U(0) + 1)eτγ1CPγ1
(U(0)+1)

)
− 1. (40)

Let us take some constant t∗ that satisfies the inequality

e2t∗Cγ1Pγ1
(U(0)+1)

6 2. (41)

Constant t∗ depends on the input data and does not depend on τ . It follow from inequality
(41) that

e(2i−1)τCγ1Pγ1
(U(0)+1)

6 2, i = 1, k, kτ = t∗. (42)

Taking into consideration (42), we rewrite estimate (40) Uτ (t) 6 (U(0) + 1)eτCPγ1
(U(0)+1)

e2τCPγ1
(U(0)+1) − 1 6 (U(0) + 1) e3τCPγ1

(U(0)+1) − 1. Repeating our arguments, after a finite
number of steps we obtain in the interval ((k − 1)τ, kτ ]

Uτ (t) 6 (U(0) + 1)e(2k−1)τCPγ1
(U(0)+1) − 1 6 (U(0) + 1)e2t∗CPγ1

(U(0)+1) − 1 = K.

This implies in the stripG[0,t∗] the uniform on τ boundedness of the function uτ and its derivatives
with respect to x up to order p+ 2 inclusive.

From the above estimates it also follows the uniform in τ boundedness of the derivatives
∂

∂t

∂juτ

∂xj
,
∂

∂x

∂juτ

∂xj
, j = 0, 1, . . . , p. It presents sufficient condition in order for sets of functions

uτ , uτ
x, uτ

xx, . . . ,
∂ puτ

∂xp
to be equicontinuous in GN

[0,t∗] = {(t, x)|t ∈ [0, t∗], |x| 6 N} for any fixed

constant N .
By Arzela’s theorem, there is some subsequence uτk of sequence uτ that converges in GN

[0,t∗]

with its derivatives to order p to certain function u(t, x). By the convergence theorem of the
method of weak approximation, the function u(t, x) = limk→∞ uτk(t, x). By virtue of the arbi-
trariness of N it belongs to the class

C1,p
t,x (G[0,t∗]) = {u(t, x)|

∂u

∂t
,
∂j

∂xj
u(t, x) ∈ C(G[0,t∗]), j = 0, 1, . . . , p}, (43)

and it is a solution of (10), (11). The inequality
p∑

j=0

∣∣∣∣
∂j

∂xj
u(t, x)

∣∣∣∣ 6 C, is true, i.e. u(t, x) ∈

Zp
x([0, t∗]). 2
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3. Example

As an example, we consider the inverse problem for the Burgers-type equation which has
been studied earlier by Belov and Korshun.

In strip Π[0,T ] = {(t, x)|0 6 t 6 T,−∞ < x < ∞} we consider the following Burgers-type
equation

ut(t, x) = µ(t)uxx +A(t)uux +B(t)u+ C(t) + g(t)f(t, x), (44)

where A(t), B(t), C(t) and f(t, x) are given functions and initial condition is

u(0, x) = u0(x), −∞ < x <∞. (45)

The functions u(t, x)and g(t) are unknown. Let us assume that the overdetermination con-
ditions are

u(t, x0) = φ(t), x0 = const, (46)

and consistency condition is φ(0) = u0(x0).
We also suggest that input data satisfy the following conditions

6∑

k=0

∣∣∣∣
dku0(x)

dxk

∣∣∣∣+
6∑

k=0

∣∣∣∣
∂kf(t, x)

∂xk

∣∣∣∣+|A(t)|+|B(t)|+|C(t)|+|ψ(t)| 6 K, |f(t, x0)| >
1

K
, K = const > 0,

where ψ(t) = φ′(t) −B(t)φ(t) − C(t).
With the use of the overdetermination conditions (46) problem (44), (45) is reduced to the

auxiliary direct problem of the form

ut(t, x) = µ(t)uxx +A(t)uux +B(t)u+ C(t)+

+
ψ(t) − µ(t)uxx(t, x0) +A(t)φ(t)ux(t, x0)

f(t, x0)
f(t, x), (47)

u(0, x) = u0(x). (48)

In this example the functions b(t, x, u(t, x), ω(t)) and f(t, x, u(t, x), ω(t)) from equation (10)
have the form b(t, x, u(t, x), ω(t)) = A(t)u(t, x),

f(t, x, u(t, x), ω(t)) = B(t)u+ C(t) +
ψ(t) − µ(t)uxx(t, x0) +A(t)φ(t)ux(t, x0)

f(t, x0)
f(t, x).

Conditions 2.1 and 2.2 are fulfilled. Parameter γ1 = 1 in condition 2.2 and we have

4∑

k=0

∣∣∣∣
∂k

∂xk

(
B(t)u+ C(t) +

ψ(t) − µ(t)uxx(t, x0) +A(t)φ(t)ux(t, x0)

f(t, x0)
f(t, x)

)∣∣∣∣ =

= |C(t)| +
4∑

k=0

∣∣∣∣B(t)
∂k

∂xk
u+

ψ(t) − µ(t)uxx(t, x0) +A(t)φ(t)ux(t, x0)

f(t, x0)

∂k

∂xk
f(t, x)

∣∣∣∣ 6

6 C + CU(t) +
C + CU(t) + CU(t)

1/K
C 6 C(1 + U(t)).
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Therefore, parameter γ2 = 1 in condition 2.2. The conditions of Theorem 2 are fulfilled.
Thus, there is such constant t∗: 0 < t∗ 6 T (it depends on the constants that bound the input
data) that the classical solution u(t, x) of direct problem (47), (48) exists in class Z4

x([0, t∗]).

This research was supported by the Russian Foundation for Basic Research under project no.

12-01-31033.
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О существовании решений некоторых задач
для нелинейных нагруженных параболических
уравнений с данными Коши

Игорь В. Фроленков

Мария А. Даржаа

В данной статье приведены достаточные условия существования решения в классе гладких огра-

ниченных функций задачи Коши для двумерного нагруженного параболического уравнения специ-

ального вида (коэффициенты при старших, младших членах и правой части зависят от следов

неизвестной функции и ее производных), а также получен аналогичный результат для одномер-

ного нагруженного уравнения типа Бюргерса (уравнение дополнительно содержит нелинейность

относительно решения при младшей производной по пространственной переменной) с данными

Коши. Для доказательства используется метод слабой аппроксимации.

Ключевые слова: обратная задача, прямая задача, нагруженное уравнение, параболическое урав-

нение, уравнение типа Бюргерса, метод слабой аппроксимации.

– 185 –


