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Two problems are considered in this paper. First problem is the Cauchy problem for a two-dimensional
loaded parabolic equation with coefficients dependent on unknown function and its derivatives. Second
problem is the Cauchy problem for one-dimensional equation of the Burgers-type. The sufficient condi-
tions of the existence of solutions of these problems in classes of smooth bounded functions are presented
in the paper. The method of weak approximation is used for the purpose of obtaining the proof.
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Introduction

This paper is devoted to an attempt to generalize the method of studying solvability of broad
class of auxiliary direct problems for one- and two-dimensional coefficient inverse problems for
parabolic equations in unbounded domains with Cauchy data.

Two problems are constructed in this work: special type of the loaded (containing traces of
unknown function and its derivatives) two-dimensional parabolic equation and one-dimensional
equation of the Burgers-type.

The solution existence of the Cauchy problems for the mentioned above equations was inves-
tigated. Coeflicient inverse problems with Cauchy data can be reduced to these auxiliary direct
problems with the use of overdetermination conditions (some additional information on the so-
lution) assigned at fixed hyperplanes or hypersurfaces. Examples of such methods of studying
of inverse problems can be found in [1]. There are also other approaches that reduce an inverse
problem to non-linear unloaded equation or to integro-differential equation.

It is necessary to know under what conditions the auxiliary problems are solvable. It is
also necessary to know the properties of solutions. The sufficient conditions for the existence
of solutions of the problems are obtained in this paper. The method of weak approximation is
used to prove the existence of solutions of the given problems. This method is also known as the
method of splitting on differential level [2, 3].
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1. On the special form of two-dimensional loaded semilinear
parabolic equation

Let us choose r different points ax, k = 1,7 of variable = defined on space ;. We also choose
s different points z = f3,,, m = 1, s of variables z defined on space E;.

Let us consider in the strip Gjo. 1) = {(¢,7,2)[0 <t < T,z € Ey, 2z € £y} the Cauchy problem
for loaded (containing traces of unknown function and its derivatives) non-classical parabolic
equation

%u(t,x, z) = a1 (t, 2, Wo(t)) Uz + az(t, 2, Wo(t))u..+
+ b1 (t, @, 2,Wo(t))ug + ba(t, x, 2, Wo () u, + f(¢, x, z,u,Wo(t), w1 (¢, x), Wa(t, 2)), (1)
u(0,z,2) = ug(x, 2). (2)
The components of vector—function

HIrtiz
EO(t) = (u(tvakaﬁm)v u(tvakvﬂm)> 9 k= 1a’rv m = 1383

OxirHziz
jl :0717'°'7p17 j2 :0117"'7(]17
are traces of function u(¢,x, z) and all its derivatives with respect to « up to order p; and with

respect to z up to order g;. All traces depend only on variable t.
The vector—function

o )
wl(t7x) = (U(t,l‘,ﬂml), az]u(tvxaﬂm)> ) m = 1757 J = Oa 17 <o 41,

consists of the traces of function u(¢, z, z) and all its derivatives with respect to z up to order ¢;.
All traces depend only on variables ¢ and x.
Similarly, the vector—function

o7

wg(t,Z) = (u(t,ak,z), WU(t,O&k,Z)) B} k = 1,7‘, ,7 = Oa la <5 P11y

consists of the traces of function u(¢, x, z) and all its derivatives with respect to = up to order p;.
All traces depend only on variables ¢ and z.

Let us consider a simple example. The following inverse problem for the heat equation is
reduced to the direct problem of type (1), (2).

We have the following equation in domain G = {(t,2,2) |0 <t <T, z € R, z € R}

ut(t, @, 2) = U (t,, 2) + uyy (b, 2, 2) + At 2) f (£, 2, 2), (3)

with initial data
u(0,z, 2) = up(x, 2), (x,2) € R (4)

Coefficient (¢, ) should be determined simultaneously with the solution u(¢, z, z) of problem
(3), (4). The solution satisfies the overdetermination condition

u(t,z,y(t)) =pt,z), 0<t<T, z€R. (5)
Let the consistency conditions be fulfilled

UQ(Z',’Y(OD = 50(075(:)? z eR.
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We assume that all input data for the problem are real-valued functions. The functions and
all necessary derivatives of these functions are sufficiently smooth and bounded in Gg 7y
Let the following condition be true

|ft,z,y(@)] =6 >0, 0<t<T, zeR

The problem (3)—(5) is reduced to the auxiliary direct problem

¢(t’ l‘) — uz(tv L, 'y(t))’y/(t)— uzz(t’ €, V(t))
[t z,7(t))

ut(ta 'Tvz): uzx<ta x,z)—i— uzz(taxv Z)+ f(t,{);‘7 2)7 (6)

u(0,,2) = uo(x, 2), (z,2) € R? (7)

where ¥(t,z) = ¢} (t, z) — @l (t,x) is the known function.

In this example, in direct problem (6), (7) the functions as(t,x,Wo(t)), aa(t,z, Wo(t)),
by (t, z, z,Wo(t)), ba(t,x, z,Wo(t)) and f(t,x, z,u,Wo(t), w1 (¢, z), Wa(t, z)) from equation (1) have
the following forms:

al(t,x,wo(t)) = ag(t,z,wo(t)) =1,
bl(taxaz7ﬁ()(t)) = bZ(tava7E0(t)) = Oa

w(f'a Z‘) — U'Z(ta xv’y(t))’yl(t) — uzz(t7 L, 'Y(t))
[t z,9(1))

In what follows we assume that p > max{2,p1}, ¢ > max{2,q; }.

ft,z, z,u,wo(t), wy(t, x), Walt, 2)) =

ft,z, 2).

Definition 1.1. Z2:4([0,t*]) denotes the set of functions u(t,z,z) that are defined in Gy 4+ and
belong to the class

ou 8j1 +j2u

Cg,’f,’f(G[O,t*]) = {u(t,x,z) ‘ Ot Ozii0aiz € C(G[o,t*])> J1=0,p, jo = Qq} )

that is, functions and all their derivatives appearing in equation (1) are bounded at
(t,iC,Z) € G[O,t*]

> 2 auir gz

J1=0j2=0

p g §irtiz
t,x,z)| < C.

Definition 1.2. A classical solution of problem (1), (2) in Go s is the function u(t,z,z) €
Z24([0,t*]) which satisfies (1), (2) in Gio -

Here 0 < t* < T is a fixed constant. If t* depends on the constants that bounds the input
data and t* < T then u(t, x, z) is a solution of problem (1), (2) on a small time interval. If t* =T
for any set of input data that satisfies the condition of solvability then wu(t,z, z) is a solution of
problem (1), (2) in the whole time interval (or we will use the term "global solvability").

Suppose that the following conditions are true.

Condition 1.1. The functions a1, as, by, by are real-valued functions that are defined for all val-
ues of their arguments and they are continuous functions. The functions ay, as satisfy conditions
a1 = ag >0, ag > ag > 0. For anyty € (0,T] and any function u(t,z,z) € ZEL21T2([0,41]) these
functions, as functions of variables (t,z,z) € Gioy,), are continuous and they have continuous
derivatives that enter into the following inequality
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b2 o a+2 o572
jlz::O e (t,x,wo(t))‘ +j22::0 9272 ag(t,z,wo(t))' +
p+2 g+2 Hir-+io Bi1-+ia
+ Z Z (‘axﬂlazh (t,x,z,wo(t))’ + ‘ng(t,m,z,wo(t))‘) <P, (U®); (8)

Jj1=0j2=0
Condition 1.2. The function ug is a real-valued function that satisfies the following inequality

p+2 q+2

2.2,

j1=072=0

6]1 +J2

81;]1 8232 < C.

uo(, 2)

The function has continuous derivatives that enter into the inequality.

Condition 1.3. The function f is a real-valued function that is defined for all values of its
arguments and it is continuous function. For all t1 € (0,T] and any function u(t,z,z) €
Z§;2’q+2([07t1]) this function, as function of variables (t,x,z) € Gioy,], is continuous and it
has continuous derivatives that enter into the following inequality

p+2 q+2

2.,

Jj1=072=0

8]1 +Jj2

aajjl 62;]2

it z7u7wo<t>,w1<t,x>,w2<t,z>>\ <P, (UD). ©)

In conditions 1.1 u 1.3, 71, 72 = 0 are some fixed integers,
Ply)=C(l+y+--+y°,

C > 1 is a constant that is independent of the function u(t, x, z) and its derivatives,

pt2 q+2 HIrtiz 242
=300 e e | ()| ulte2) € 220,
—0 x,z)EEs

J1=0j2
The following theorem is proved in [6].
Theorem 1.1. Let us assume that conditions 1.1-1.3 are fulfilled.
la. If in equation (1) the coefficients a;, b; are independent of the space variables:
a; = a1 (t,wo(t)), as = as(t,Wo(t)), by = by (t,Wo(t)), ba = ba(t, wWp(t)),

and conditions 1.1, 1.8 are fulfilled for v1 > 0, 0 < v2 < 1 then the classical solution
u(t, =, z) of problem (1), (2) exists in class Z24([0,T7]).

1b. If the coefficients a;, b; have the same form as in the case 1a and conditions 1.1, 1.8 are
fulfilled for v1 = 0, v9 > 1 then there is a such constant t*, 0 < t* < T dependent on the
constant C' from (8), (9) that the classical solution u(t,z,z) of problem (1), (2) exists in
class Z1([0,t*]).

2a. If in equation (1) the coefficients a;, b; have the forms:
a; = al(t,.’E,wo(t)), ag = ag(t,z,ﬁo(t)),
by = bi(t, 2, 2,W0(t)), b2 = ba(t, z, 2,Wo(t)),
and conditions 1.1, 1.3 are fulfilled for v1 = 0, 0 < v2 < 1 then the classical solution
u(t,z, z) of problem (1), (2) exists in class Z24([0,T7]).
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2b. If the coefficients a;, b; have the same forms as in the case 2a and conditions 1.1, 1.8 are
fulfilled for v1 = 0 but vo > 1 then there is a such constant t*, 0 < t* < T, dependent on
the constant C' from (8), (9) that the classical solution u(t,x,z) of problem (1), (2) exists
in class ZP2([0,t*]).

The fulfillment of the conditions of Theorem 1.1 can be proved for the given above example
(direct problem (6), (7)), assuming that input data are sufficiently smooth and bounded functions.
For example, the conditions of Theorem 1.1 are fulfilled for the constants p = ¢ =4, v; =0 and
72 = 1. Hence, the classical solution u(t, z, z) of problem (6), (7) exists in the class Z;2([0, 7).

2.  On one-dimensional loaded Burgers type equation of the
special form

Let us consider the proof of a similar result for the one-dimensional Burgers-type equation.
In this equation the coefficient of the first order derivative with respect to space variable depends
on the solution and its traces of the specified form.

Let us choose r different points aq, ..., a, in space Ej.

The following Cauchy problem is considered in the strip G 7 = {(t,2)|0 <t < T,z € E1 }:

up = a(t)uge + 0(t, z,u(t, z), w(t))u, + (&, x,ult, z),w(t)), (10)

U(O,I) - UO(x)7 (11)
Y

here w(t) = (u(t, ax), Wu(t,ak)), j=0,p1, k=1,r is a vector—function. The components
x

of this function are the traces of function u(t,z) and all its derivatives with respect to  up to
order p;. The traces depend only on variable t.

Definition 2.1. ZZ([0,t*]) denotes the set of functions u(t,x) defined in Gy 4+ and they belong
to the class _
ou u

Ctl,f(G[o,t*]) = {U(tal") | ot 007 € C(Gpu), J= QP}

The functions are bounded at (t,x) € Go4-) together with the following derivatives

and p > max{2,p; }.

Definition 2.2. A classical solution of problem (10), (11) in G4 is the function
u(t,x) € ZE([0,t*]) which satisfies (10) in Gio4+. Here 0 < t* < T is a fized constant dependent
on the input data.

Suppose that the following conditions are fulfilled.

Condition 2.1. The functions b(t,z,u(t,x),w(t)), f(t, z,u(t,z),w(t)), uo(z) are real-valued
functions that are defined and continuous for all values of their arguments. For all t; € (0,T]
and for any u(t,x) € ZPT2([0,t1]) these functions, as functions of variables (t,x) € Glo,i,), are
continuous and they have continuous derivatives that enter into inequalities (12), (13). The
function a(t) = ag > 0 is a continuous bounded function on the interval [0,T]. The function
uo(x) has continuous derivatives and satisfies the following inequalitie

=177 —



Igor V. Frolenkov, Maria A.Darzhaa On the Existence of Solution of Some Problems ...

p+2

D

Jj=0

iuo(x)

<C.
dx?

Condition 2.2. Let us introduce the following notations

di ,
Uj(O)ZSIip @uo(m) , 7=0,1,....,p+2,
U (1) O e, j=01 2
i(t) = sup |=—u(t,z)|, 7=0,1,...,p+ 2,
! 0<£2t Oz’ J P
p+2 p+2
U0) =3 Uj(0), U(t)= Uj(t).
§=0 §=0

Let us assume that for all t1 € (0,T), for all t € [0,t1] and for any function u(t,x) €
ZP+2([0,t1]) the following estimates are hold:

p+2

7=0
p+2 8j
7=0

where v1, v2 = 0 are some fized integers, P:(y) = Cl+y+y*>+...4+y%) and C > 1 is some
constant independent of the function u(t,x) and its derivatives.

Theorem 2.1. Assume that conditions 2.1 and 2.2 are fulfilled for v1 > 0 and 0 < v < 1. Then
a constant t*, 0 < t* < T exists and it depends on the constants ag and C from condition 2.1
and inequalities (12), (13), such that the classical solution u(t,x) of problem (10), (11) exists in
class ZE([0,t*]).

Proof. To prove the existence of a solution of the Cauchy problem (10), (11) we use the
method of weak approximation. The original problem is split into three fractional steps on
differential level and time shift by (t — g) is done in the traces of unknown functions and in
nonlinear terms:

uy (t,x) = 3a(t)ul, (t,x), nT <t< (n + ;) T; (14)

1 2
ul (t, ) = 3b (t - g,x,uT(t - %,z), M(t - %)) ur(t, @), (n+ 3) r<t< (n+ 3) o (15)
2
ug (t,x) = 3f (t— Z,x,uT (t— z,x) ,w’ (t— Z)) , (n+z)r<t<(n+ D1 (16)
3 3 3 3
u™(0,z) = up(x). (17)
Let us prove a priori estimates that ensure compactness of the family of solutions u(t, ) of

problem (14)—(17) in the class C’tl,f(G[w*]) for some constant 0 < t* < T
Let us introduce the following notations

U;(0) = sup

T

7j:07]‘7"‘7p+2, (18)

a7
’dxju()(x)
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o7

Uj(t)= sup |s—u(t,z)|, t€(nr,(n+1)7], j=0,1,...,p+2, (19)
nT<E{E O’
p+2 p+2
U0)=>_0;(0), U(t)=> Uj). (20)
j=0 §=0
Consider the first fractional step when n = 0. On the interval 0 < t < % we have the Cauchy

problem (14), (17).
According to the maximum principle we obtain

|u” (¢, )| < sup fug ()]
x

Upon differentiating problem (14) j times with respect to x, j = 0,1,...,p + 2 we obtain

o o
a7 (t,x) = 3a(t)@um(ta z),

o &

Then, according to the maximum principle, we have the following estimate

o7
< sup %Uo(l’)

99
Oxi

Taking into account (18)—(20), we obtain

u” (t,x)

UT(t) <U©), 0<t< . (21)

Wl

2
Consider the second fractional step when % <t< ?T Then, due to the time shift, the

equation (15), is a linear one-dimensional homogeneous partial differential equation.
In this case, the first characteristic equation ( [5], m. 2.6) is t’(¢) = 1. The solution of this
equation can be taken in the form ¢ = 0. The second characteristic equation can be written as

%:—%(t—%,x,ﬁ (t—;x),uf (t—%)) (22)

Considering the assumptions of the theorem and properties of the solution obtained in the
first fractional step, assume that ¢7(¢,&,7n) is a characteristic function of equation (22), i.e.
x =" (t,&,n) is the integral curve of the equation that goes through the point (£, 7).

T

T

Initial data for equation (15) can be written in parametric form as ¢t = r=mn u =

gv
u” (g, n) (the function u™ (g,n) is taken from the previous fractional step). The solution to
this problem exists and can be represented in parametric form

(= (gn) e = (g)
u (t,z) =u" (= r = =
) 3’7]7 90 ’35777

or in the form

T T T T T
u(t,x) =u <§,g0 (g,t,x))
Hence it follows that
- (T T 2T
Uz (t) < U; (g) <U©), $<t<T (23)
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Let us differentiate equation (15) with respect to = and introduce the following notations
Z7(t, x) = ug(t, ),
T T T
=9 (0= o (1= o) (7).
o (t,x) 3T U 3:%)w 3

bl (t, ) :3% (b (t— %,x,uT (t— ;x) ,w’ (t— %)))

Then we obtain equation

2 (t,x) = by (¢, x)z; + b1 (¢, 2)2"

2
T} can be written in the parametric form ( [5], p. 43)

The solution of this equation for t € (;, 3

G (Fa), e (1)
27 (tx) =e 31) T=¢" (65
where

F§ = F§(1.6m) = /bT (t€m)) dt
and z = 7 (t,&,n) is the characteristic function of the equation

Lji—f = —bl(t,z) = —3b (t— g,x,uT (t— g,m> ,wh (t— g))v

i.e. it is the integral curve of the equation passing through the point (&, 7).
Taking into account that conditions 2.1-2.2 are fulfilled and taking also into account estimate
(23) and notations (18)—(20), we obtain

s <01 (o (a0 (- D)) <1 (e e

where P (y) = 6’(1 +y+y 4.+, C>1is polynomial from condition 2.2.
Let us differentiate equation (15) twice with respect to = and introduce the following notation

v (t,x) = ul, (¢, x),
cj(t,z) = 3b (t— %,x,uT (t— %,m) sw’ (t— g)) ,

)= (1= G (1= 52) o (- ).

00825 (0 o (- 5) o (- )

Then we obtain equation

vf (t,x) = e (t,x)vl (t,x) + cf (¢, 2)v" (t,x) + ¢ (¢, x)ul(t, x). (25)

2
The solution of this equation for t € <;, ;} can be written in the following parametric form

(5], p. 43)

t
o () = e~ B E ) ( (3on) + [ bt (e pom) e (b 5on))eci 03 dt) ,
3
z=¢ (t.3.m)
_QO 33777 )
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t
where GF = Gi(t.¢.n) = = [ (b7 (&) de
3
Taking into account that conditions 2.1-2.2 are fulfilled and taking into account estimate (23)

2
and notations (18)—(20), we obtain for % <tg ?T the following inequality
t
U5 (1) < 2P VO (Ug (5) +3P W) O / U7 (t) dt) <
5

< eC1Pn (UO)r <UT ( ) +Ci1Py,( (0))/; U (t) dt) . (26)

Here and further C; > 1 are constants (generally they are different) independent of the
parameter 7.

It follows from (23) and (24) that

U3 (£) < PO (U7 (2) 4+ CoP, (UO)UT () P T )

U3 (t) < e@Pa O (U7 () + CorPy, (UO)UT () (27)

U3 () < (U{ (%) Ul (g)) CaPnUONT (1 4 0yr P, (U(0))) <

<(Er (5 () e o (s ()

If we differentiate equation (15) j times with respect to x, j = 3,4,...,p + 2 and use the
Leibnitz formula for the j-th derivative of the product of two functions then we obtain w;] (t,z) =

j
dy (t, x)w;T +di (t, x)w;™ + kZQ di.(t, x)wi_; ., (t, @), where

dg(t,xz) = 3b (t— %,x,u’r (t— g,x> ,w’ (t— %)),

di.(t, ) —SCJkaak (t—%,x,uT (t—g,x) ,w' (t— %))

By the arguments used to obtain equation (25) we arrive to the following inequality

1

z

3 k=1

tJi—
UT(t) < eCoPnUOT (UT ( ) + CPy, ( / Ui ( > . J=34,....p+2. (29

It follows from (24), (26) and (29) that

t

.
Ug(t) < SCGP’H(U(O))T <U:):r (g) +C6P'y1 (U(O))/T

< (U5 (5) + CorPuwion (7 (5) e+ (U (5) + 2 (5)) ")) <

<O WO (g7 () 4 Corpy, (UO) (U7 () + 05 (3))) - 30)

U (t) + U3 (¢) dt) < eGP (U(O)T

Hence we have
U7(t) < (UT(5) + U3 (5) + U (3) ) %P (0O, (31)
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We continue our arguments for j = 4,...,p+ 2 and obtain

tJj—1

) e
X (U]T (§> + CeTP,, (U (Z (l_l U’ ( )) eA”“P“(U(O))T>> <
j—1
< PP WO (y; (5) + BP0 () (; Uy (;))) . (3

U] (t) < eCanl(U(O (UT< )+06 "/1(U( ))

\

Hence we have
J
B < (; Uy (Q)) eI (O, (33)

here A, Bj, D; are positive constants independent of the parameter 7.
Now we add up inequalities (23), (27) (30) and (32) for p =4, ..., p+ 2. Taking into account
notations (18)—(20), we obtain

UT(t) < eCo Py (U(0))7 (UT (g) + Cor P, (U(0)U” (%)) <UT (g) C10Py, (U(0)7

2T
On the third fractional step 3 < t < 7 we consider equation (16) with initial data at the

2T 2T
point 3 (the value of function u” (3, a:) from the previous fractional step). Upon integrating

equation (16) with respect to the time, we get

wen = (Fa)vs [L 1= (1-5a) o (- 5))n

Taking into account this equation, the Theorem condition 2.2 and the previously introduced
notations, we arrive to the following inequality

Ug(t) < U3 (237) +Cur (1 L Ug (237» . (34)

Let us differentiate (16) j times with respect to z, j = 1,2,...,p 4+ 2. Taking into account
condition 2.2 and the notations (18)—(20), we obtain the following estimates

2 2
ur<vr () +cur (1407 (3)). (35)
2 2
st <05 () s cur (1453 (2)). -
After combining estimates (34), (35) and (36) on the third fractional step, we obtain
2 2
UT(t) <U" <g)+cm< +U<3T>> (37)
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Now considering relation (21), (28) and (37) on the time interval ¢ € (0,7] we obtain the
following estimate (constant C' > 0 does not depend on 7)

UT(t) < U(O)erchﬁ(U(o)) + Cy57(1+ U(O)e‘rC’lsP.yl(U(O)))
< U(O)ercu-,Pﬂ(U(o)) +1 =14 Cis7(1+U(0)e™Cr5Pn U(O))) <
< (U(O)6T015P'Y1(U(O)) +1)(Crs7 + 1) — 1 < (U(0) + 1)67010 21 (U(0) ,CasT _ <
< (U(0) 4 1)em@Pn @O+ _ 1. (38)

Consider the next whole step (n = 1). By the given above arguments we obtain the estimate
(because constant C' does not depend on 7 we change U(0) for U7 (7))

U™(t) < (U (1) + D)e™CPn WM+ _ 1+ <t < 27 (39)

It follows from (38) that U7 () < (U(0) 4 1)e™¢Pn WO+ _ 1,
Considering this inequality, estimate (39) takes the form

UT(t) < (U(0) +1)e™@Pn WO+ _q 4 1)
X exp (TCP.Yl ((U(o) + 1)eTCPﬂ<U<0)+1>)) —1<
< (U(0) + 1) P WO+ oy (TC’P%(U(O) +1)e™CPn <U<0>+1>) —1. (40)

Let us take some constant ¢t* that satisfies the inequality

ezt*C'YlP’u (U(0)+1) < 2. (41)

Constant t* depends on the input data and does not depend on 7. It follow from inequality
(41) that _
ZmNTENPR WO o i = Tk, kr =t". (42)

Taking into consideration (42), we rewrite estimate (40) U7 (t) < (U(0) + 1)e”¢Pn (UO)+1)
27 CPn U0+ _ 1 < (U(0) + 1) 37¢Pn U041 _ 1, Repeating our arguments, after a finite
number of steps we obtain in the interval ((k — 1)1, k7]

UT(t) < (U(0) + 1)ePk=D7CPu WO+ 1 < (U(0) + 1)e2 CPnUO+F) 1 = g

This implies in the strip G|g ¢+ the uniform on 7 boundedness of the function ™ and its derivatives
with respect to x up to order p + 2 inclusive.

From the above estimates it also follows the uniform in 7 boundedness of the derivatives
0 du™ 0 dPuT . e .
——,———, j =0,1,...,p. It presents sufficient condition in order for sets of functions
ot 0z~ Jx OxI

oPu”

R -y
constant N.

By Arzela’s theorem, there is some subsequence u™ of sequence u” that converges in GIY

u”, ul, ul to be equicontinuous in Gfg’t*] = {(t,z)|t € [0,t*],|z| < N} for any fixed

[0,¢%]
with its derivatives to order p to certain function u(t,z). By the convergence theorem of the
method of weak approximation, the function u(t,z) = limg_ o u™ (¢,2). By virtue of the arbi-
trariness of N it belongs to the class

8u 6 :
J
and it is a solution of (10), (11). (t,x)| < C, is true, i.e. u(t,x) €
Z2([0, 7). O
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3. Example

As an example, we consider the inverse problem for the Burgers-type equation which has
been studied earlier by Belov and Korshun.
In strip Ip ) = {(t,2)[0 <t < T,—0c0 < x < oo} we consider the following Burgers-type
equation
ug(t, ) = p(t)uze + Alt)uug + Bt)u + C(t) + g(t) f (¢, x), (44)

where A(t), B(t), C(t) and f(t,x) are given functions and initial condition is
u(0,2) =up(x), —oo <z < o0. (45)

The functions u(t, z)and g(t) are unknown. Let us assume that the overdetermination con-
ditions are

u(t, o) = ¢(t), o = const, (46)

and consistency condition is ¢(0) = ug(zo).
We also suggest that input data satisfy the following conditions

dk UO
dxk

1
D LA BOFCO O] < K. |f(t20)] > 70 I = const >0,

ey |24
k=0
where ¥(t) = ¢/'(t) — B(t)¢(t) — C(1).
With the use of the overdetermination conditions (46) problem (44), (45) is reduced to the
auxiliary direct problem of the form

up(t, ) = p(t)uge + A(t)uu, + Bt)u + C(t)+

+ PO = pure(t, 7o) + ABSOU(t T0) 1y 3 (47
f(t, iL'o)

u(0, ) = up(x). (48)

In this example the functions b(¢, x, u(t, z),w(t)) and f(¢,z,u(t,z),w(t)) from equation (10)
have the form b(¢, z, u(t, z),w(t)) = A(t)u(t, z),

'(/J(t> - M(t>u$$ (ta 370) + A(t)(b(t)uw (ta 1‘0)
f(t7 IO)

Conditions 2.1 and 2.2 are fulfilled. Parameter 7; = 1 in condition 2.2 and we have

ft, @, ult, x),w(t)) = B(t)u + C(t) + f(t, ).

! $(t) = (b taa(t 70) + AM)S()us (¢, 20) -
2 b (P -c0 + 7t fe)
w(t) — u(t)um(t,f gig) ;;)A(t)fﬁ(t)uz(ta o) ai; flt2)] <
<crou@+ &F CUS? Uhe < ontuw).
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Therefore, parameter v, = 1 in condition 2.2. The conditions of Theorem 2 are fulfilled.
Thus, there is such constant t*: 0 < t* < T (it depends on the constants that bound the input
data) that the classical solution u(t, ) of direct problem (47), (48) exists in class Z2([0,t*]).

This research was supported by the Russian Foundation for Basic Research under project no.
12-01-31053.
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O cymiecTBOBaHUM peIeHnii HEKOTOPBIX 33a/1a4
JJI HeJIMHENHBIX HArpy2KEeHHBIX MapadoImIecKmx
ypaBHeHuii ¢ JaHHBIMU Kormm

HUrops B. ®@posieHkoB
Mapus A. lap>kaa

B dannoti cmamuve npuseders, docmamoutble YCA08USA CYULLCTNBOBAHUSA PEWEHUSA 8 KAACCE 2AA0KUT 02Pa-
HUverHor Pynryul 3adavu Kowu 0an 08YmepHo20 Ha2pystcennozo napabosuieckozo YpasHeRUs Cney-
aAbHO20 6U0A (KOIPPUUUEHMDBL NPU CAPUWUT, MAGOUUT YAEHAT U NPABOT YACTU 3ABUCAN OM CALI08
HeudsecmHol PYHKUUU U ee NPOU3BOIHBIT), 0 MAKIICE NOAYHEH AHAA02UNHBT PE3YALMAM 0% 00HOMED-
H020 Ha2pYoIcennoz0 ypasherus muna Biopzepca (ypasnenue 0onosnumesvho codeporcum HesuHedHoCmb
OMHOCUMENLHO PeWeHUA NPU MAGOWET NPOU3EoIHOT No Npocmpancmeerhol nepemernot,) ¢ daHHbLMU
Kowu. /[as dokazamesbemsa ucnoav3yemces memod caaboli GnnpoKkcuMayu.

Karoueswie caosa: obpamnas 3adaua, npamas 3a0a4ua, HA2PYHCEHHOE YPAGHENUE, NAPAOOAUMECKOE YPas-
Henue, ypasrenue muna Biropzepca, memod caaboli annpokcumayu.
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