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In this article we construct all kinds of elementary Prym differentials for arbitrary characters on a

variable torus with a finite numbers of punctures and find the dimensions of two important quotient
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Introduction

The theory of multiplicative functions and Prym differentials in the case of special charac-
ters on a compact Riemann surface has found applications in the geometric function theory of
complex variable, the analytic number theory and in the mathematical physics [1–7]. In [1–3]
the development of the general theory of multiplicative functions and Prym differentials on a
compact Riemann surface of genus g > 2 for arbitrary characters has been started. The function
theory on compact Riemann surfaces differs substantially from that on finite Riemann surfaces
even for the class of single-valued meromorphic functions and abelian differentials. A number
of basic spaces of functions and differentials on a finite Riemann surface F ′ of type (g,m), with
g > 1,m > 0, are infinite-dimensional.

In this article we start constructing the general function theory on a variable torus with a finite
numbers of punctures for multiplicative meromorphic functions and differentials with arbitrary
characters. We construct all kinds of elementary Prym differentials for arbitrary characters on
such surfaces and find the dimensions of two important quotient spaces. As a consequence, this
yields the dimension of the first holomorphic de Rham cohomology group of Prym differentials
for arbitrary characters on torus. Also, we construct explicit bases in these quotient spaces.

1. Preliminaries

Fix a smooth compact oriented surface F of genus g = 1, with a marking {a, b}, which is
an ordered tuple of generators for π1(F ). Let F0 be a fixed complex analytic structure on F .
From now on, for brevity, the Riemann surface (F ;F0) will be denoted by F0. Fix distinct
points P1, . . . , Pm ∈ F. Suppose that F ′ = F\{P1, . . . , Pm} is a surface of type (1,m), with
m ≥ 1. Denote by Γ′ the Fuchsian group of the first kind that acts invariantly on the disk
U = {z ∈ C : |z| < 1} and uniformizes the surface F ′

0, i.e. F ′
0 is conformally equivalent to

U/Γ′. This group has the representation Γ′ = 〈A,B, γ1, . . . , γm : [A,B]γ1 . . . γm = I〉, where
[A,B] = ABA−1B−1 for A,B ∈ Γ′, and I is the identity mapping [6].
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Every complex analytic structure on F ′ is determined by some Beltrami differential µ on
F ′

0; i. e., an expression of the form µ(z)dz/dz independent of the choice of a local parameter
on F ′

0, where µ(z) is a complex function on F ′
0 and ‖µ‖L∞(F ′

0
) < 1. Denote this structure on

F ′ by F ′
µ. It is clear that µ = 0 corresponds to F ′

0. Let M(F ′) be the set of all complex ana-
lytic structures on F ′ endowed with the topology of C∞ convergence on F ′

0, Diff
+(F ′) be the

group of all orientation-preserving smooth diffeomorphisms of F ′ leaving all punctures fixed, and
Diff0(F

′) be the normal subgroup of Diff+(F ′) consisting of all diffeomorphisms homotopic
to the identity diffeomorphism of F ′

0. The group Diff+(F ′) acts on M(F ′) as µ → f∗µ, where
f ∈ Diff+(F ′), µ ∈ M(F ′). Then the Teichmuller space T1,m(F ′) = T1,m(F ′

0) is the quotient
space M(F ′)/Diff0(F

′) [6].

Since the mapping U → F ′
0 = U/Γ′ is a local diffeomorphism, every Beltrami differential µ

on F ′
0 lifts to a Beltrami Γ′-differential µ on U ; thus, µ ∈ L∞(U), ‖µ‖L∞(U) = esssup

z∈U

|µ(z)| < 1,

and µ(T (z))T ′(z)/T
′

(z) = µ(z), z ∈ U, T ∈ Γ′.

Extend the Γ′-differential µ on U to C\U by putting µ = 0. Then there exists a unique
quasiconformal homeomorphism wµ : C → C with fixed points +1,−1, i, which is a solution
to the Beltrami equation wz = µ(z)wz. The mapping T → Tµ = wµT (wµ)−1 determines an
isomorphism of Γ′ onto the quasi-Fuchsian group Γ′

µ = wµΓ′(wµ)−1 = 〈Aµ, Bµ, γµ
1 , . . . , γ

µ
m :

[Aµ, Bµ]γµ
1 . . . γ

µ
m = I〉.

The classical results of Ahlfors and Bers [6], and other authors assert that

1) T1,m(F ′) is a complex manifold of dimension m for m > 1; 2) T1,m(F ′) carries a unique
complex analytic structure such that the natural mapping Ψ : M(F ′) → T1,m(F ′) is holomorphic;
furthermore, Ψ has only local holomorphic sections; 3) the elements of Γ′

µ depend holomorphically
on the moduli [µ] of finite Riemann surfaces F ′

µ.

Two Beltrami Γ′-differentials µ and ν are conformally equivalent if and only if wµT (wµ)−1 =
wνT (wν)−1, with T ∈ Γ′. It is natural that the choice of generators {a, b} ∪ {γ1, . . . , γm}
in π1(F

′) is equivalent to the choice of a systems of generators {aµ, bµ} ∪ {γµ
1 , . . . , γ

µ
m} in

π1(F
′
µ), and {Aµ, Bµ}∪{γµ

1 , . . . , γ
µ
m} in Γ′

µ for every [µ] in T1,m. This implies the identifications
M(F ′)/Diff0(F

′) = T1,m(F ′) = T1,m(Γ′). Furthermore, there is a bijective correspondence be-
tween the classes of Beltrami differentials [µ], the classes of conformally equivalent marked finite
Riemann surfaces [F ′

µ; {aµ, bµ} ∪ {γµ
1 , . . . , γ

µ
m}] and marked quasi-Fuchsian groups Γ′

µ [5, 6].

In [6, p. 99] Bers constructed a holomorphic abelian differential ζ[µ] = dz on Fµ for ev-

ery [µ] ∈ T1, with the condition

∫ Aµ(ξ)

ξ

ζ([µ], w)dw = 1, ξ ∈ C, and it depends holomor-

phically on the moduli [µ] for Fµ. Moreover, the b-period on Fµ is the complex number

µ =

∫ Bµ(ξ)

ξ

ζ([µ], w)dw, ξ ∈ C, and it depends holomorphically on the moduli [µ].

Define for arbitrary fixed [µ] ∈ T1 and ξ0 ∈ C the classical Jacobi mapping ϕ : C → C

by ϕ(ξ) =

∫ ξ

ξ0

ζ([µ], w)dw. The quotient space J(Fµ) = C/L(Fµ) is called the marked Jacobian

variety for Fµ, where L(Fµ) is the lattice over Z generated by the elements 1 and µ. The universal
Jacobian variety for torus is a fibration over T1, whose fiber over [µ] ∈ T1 is the Jacobian J(Fµ)
of the surface Fµ [5, 7].

Next, given an integer n > 1, there exists a fibration over T1 whose fiber over [µ] ∈ T1 is the
space of all degree n integer divisors on Fµ. The holomorphic sections of this bundle determine
on every Fµ a degree n integer divisor Dµ, which holomorphically depends on [µ]. Also there
exists a holomorphic mapping ϕn from this bundle into the universal Jacobian bundle, n > 1,
whose restriction to the fibres extends the Jacobi mapping ϕ : Fµ → J(Fµ) ∼= Fµ. We can obtain
local holomorphic sections of these bundles over a neighborhood U([µ0]) ⊂ T1 (for every n > 1)
from local holomorphic Earle sections s of Ψ : M(F ) → T1 over U([µ0]) [7].
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A character ρ for F ′
µ is every homomorphism ρ : (π1(F

′
µ), ·) → (C∗, ·), C

∗ = C \ {0}. Each
character is uniquely determined by an ordered tuple (ρ(aµ), ρ(bµ), ρ(γµ

1 ), . . . , ρ(γµ
m)) ∈ (C∗)2+m.

Definition 1.1. A multiplicative function f on F ′
µ for a character ρ is a meromorphic function

f on wµ(U) such that f(Tz) = ρ(T )f(z), z ∈ wµ(U), T ∈ Γ′
µ.

Definition 1.2. A Prym q-differential with respect to a Fuchsian group Γ′ for ρ, or (ρ, q)-
differential, is a differential ω(z)dzq such that ω(Tz)(T ′z)q = ρ(T )ω(z), z ∈ U, T ∈ Γ′, ρ :
Γ′ → C

∗, q ∈ N.

If f0 is a multiplicative function on Fµ for ρ without zeros and poles then f0(P ) =

f0(P0) exp

∫ P

P0[µ]

2πic([µ], ρ)ζ([µ]), where P0[µ] = fs[µ](P0) ∈ Fµ, c([µ], ρ) ∈ C, c depend holo-

morphically on [µ] and ρ. Furthermore, integration is performed from a fixed point P0[µ] to the
current point P on the variable surface Fµ, and s[µ] is the Earle section [7] over U([µ0]) ⊂ T1.
We deduce that the character ρ for f0 is of the form ρ(aµ) = exp 2πic([µ], ρ), ρ(bµ) =
exp(2πic([µ], ρ)µ). Refer to these characters ρ as unessential, while to f0 with this charac-
ter, as a unit. The characters which are not unessential we call essential on π1(Fµ). Denote by
Hom(Γ,C∗) the group of all characters on Γ with the natural multiplication. The unessential
characters constitute a subgroup L1 of Hom(Γ,C∗) [1].

Definition 1.3. φ on F ′ = U/Γ′ for ρ is called multiplicatively exact, whenever φ = df(z) and
f(Tz) = ρ(T )f(z), T ∈ Γ′, z ∈ U ; thus, f is a multiplicative function on F ′ for ρ.

Given ρ ∈ Hom(Γ′
µ,C

∗), denote by Z1(Γ′
µ, ρ) the set of all mappings φ : Γ′

µ → C such that
φ(ST ) = φ(S) + ρ(S)φ(T ), S, T ∈ Γ′

µ [1].
Let φ be a closed Prym differential on F ′

0 for ρ. Integrating this differential, we obtain
f(Tz) − f(Tz0) = ρ(T )(f(z) − f(z0)), where φ = df(z), z ∈ U, f(z) is a Prym integral
on the disk U for φ, which is determined up to an additive term. Hence, T ∈ Γ′ satisfies
f(Tz) = ρ(T )f(z) + φf,z0

(T ), where φf,z0
(T ) = f(Tz0) − ρ(T )f(z0). Therefore, the period

mapping φf,z0
: Γ′ → C for φ is defined. It depends on the choice of a Prym integral f(z)

on U and a base point z0. Given another Prym integral f1(z) = f(z) + c for φ, we have
φf1,z0

(T ) = φf,z0
(T ) + cσ(T ), σ(T ) = 1 − ρ(T ), T ∈ Γ′. It is easy to verify that both mappings

φf,z0
and φf1,z0

satisfy the cocycle relation φ(ST ) = φ(S)+ρ(S)φ(T ), S, T ∈ Γ′. They belong to
the space Z1(Γ′, ρ) and represent the same class of periods [φ] in H1(Γ′, ρ) = Z1(Γ′, ρ)/B1(Γ′, ρ)
for the Prym differential φ for ρ on F ′, where B1(Γ′, ρ) is generated by σ.

For a closed Prym differential φ we can determine the classical periods. For T ∈ Γ′ the

corresponding classical period φz0
(T ) =

∫ Tz0

z0

φ and we have the equality φz0
(T ) = φf,z0

(T ) −

f(z0)σ(T ).
Consequently, the mappings of the form T → φf,z0

(T ) (periods in the sense of Gunning) and
of the form T → φz0

(T ) (the classical periods) determine the same class of periods [φ] ∈ H1(Γ′, ρ)
for a Prym differential φ on F ′ for ρ. Thus, we have a well-defined C-linear mapping p : φ→ [φ]
from the vector space of closed Prym differentials φ on F ′ for ρ in the vector space H1(Γ′, ρ).

Denote by Ω2,ρ(F
′
µ) the space of Prym differentials of the second kind with finitely many

poles on F ′
µ for character ρ [5, 2]. The space A1(ρ) consists of Prym differentials for ρ on F ′ that

have finitely many poles on F ′ and extend meromorphically on F.

Lemma 1.1. If the differential ω ∈ Ω2,ρ(F
′
µ)∩A1(ρ) has the class of periods [ω] = 0 in H1(Γ′

µ, ρ),
then ω is a multiplicatively exact differential on F ′

µ for ρ.

Proof. It suffices to verify this for a fixed surface and a fixed character. We obtain the classical
periods γ̃1, . . . , γ̃k while going separately around the poles Q1, . . . , Qk of the differential ω. They
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all vanish, being equal to the residues at the poles of second or higher order for the branches of
our multivalued differential ω the second kind.

If the class of periods [ω] = 0, then the classical period ωz0
(T ) = cσ(T ), c 6= 0 for every

T , where ωz0
(T ) = f(Tz0) − f(z0) = c(1 − ρ(T )), while f is some Prym integral for ω. Then

f̃ = (f − c) is a multiplicative function for ρ and ω = df̃ = d(f − c). Thus, the periods
ω̃

z0,f̃0
(a), ω̃

z0,f̃0
(b), ω̃

z0,f̃0
(γ1), . . . , ω̃z0,f̃0

(γm) in the sense of Gunning all vanish for some repre-

sentative of class [ω]. Consequently, ω is a multiplicatively exact differential for ρ on F ′
µ. The

proof of Lemma 1.1 is complete. 2

A divisor on Fµ is a formal product D = Pm1

1 . . . Pmk

k , Pj ∈ Fµ, mj ∈ Z, j = 1, . . . , k.

Theorem (Riemann-Roch’s theorem for characters [5, 2]). Let F be a compact Riemann surface
of genus one. Then for every divisor D on F and every character ρ the equality rρ(D

−1) =
degD + iρ−1(D) holds.

Theorem (Abel’s theorem for characters [5, 2]). Let D be a divisor on a marked variable compact
Riemann surface [Fµ, {a

µ, bµ}] of genus one and ρ a character on π1(Fµ). Then D is a divisor
of a multiplicative function f on Fµ for ρ ⇔ degD = 0 and

ϕ(D) =
1

2πi
log ρ(bµ) −

1

2πi
µ log ρ(aµ)(≡ ψ(ρ, [µ]))

in C modulo the integer lattice L(Fµ) generated by the complex numbers 1 and µ.

Observe that by a theorem of Bers [6, p. 99], the mapping ψ depends locally holomorphically
on ρ and [µ].

Every element φ ∈ Z1(Γ′, ρ) is unique determined by the ordered tuple of complex numbers
φ(A), φ(B), φ(γ1), . . . , φ(γm).

Lemma 1.2 ( [8]). For every φ ∈ Z1(Γ′, ρ) there holds the equality

σ(B)φ(A) − σ(A)φ(B) + φ(γ1) +

m−1∑

j=1

ρ(γ1 . . . γj)φ(γj+1) = 0. (1)

Lemma 1.3 ( [8]). The holomorphic principal Hom(Γ′,C∗)-bundle E =
⋃
[µ]

Hom(Γ′
µ,C

∗) is

analytically equivalent to the trivial bundle T1,m(F ′) ×Hom(Γ′,C∗) over the base T1,m(F ′).

The set G′ =
⋃

[µ],ρ6=1

H1(Γ′
µ, ρ) is called the Gunning cohomological bundle over the base

T1,m × Hom(Γ′,C∗)\{1} [1]. For G′ and ρ 6= 1 we use Gunning’s isomorphism [1] between
the complex vector space H1(Γ′

µ, ρ) and the vector space Homρ([Γ
′
µ,Γ

′
µ],C), that consists of

homomorphisms φ0 : [Γ′
µ,Γ

′
µ] → (C,+) with the condition φ0(STS

−1) = ρ(S)φ0(T ), T ∈
[Γ′

µ,Γ
′
µ], S ∈ Γ′

µ. Here [Γ′
µ,Γ

′
µ] is the commutant group Γ′

µ. Thus, the bundle G′ is isomorphic
to the vector bundle

⋃
[µ],ρ6=1

Homρ([Γ
′
µ,Γ

′
µ],C).

Moreover, we can determine the transition matrices of this bundle in terms of two coor-
dinate neighborhoods U1 = {ρ : ρ(A) 6= 1}, U2 = {ρ : ρ(B) 6= 1}, which cover the base
Hom(Γ′,C∗)\{1} provided that ρ(γj) = 1, j = 1, . . . ,m. For the neighborhood U1 we have
σ(Aµ) 6= 0. Every element φ0 ∈ Homρ([Γ

′
µ,Γ

′
µ],C) for ρ ∈ U1 can be defined as φ0 = φµ

1 |[Γ′

µ,Γ′

µ]

for φµ
1 ∈ Z1(Γ′

µ, ρ) such that φ1(A
µ) = 0 and φ1(T ) = σ(Aµ)−1φ0([T,A

µ]), T ∈ Γ′
µ [1].

Theorem ( [1, 8]). The Gunning cohomological bundle G′ over T1,m(F ′) × (Hom(Γ′,C∗)\{1})
is a holomorphic vector bundle of rank m for m > 1.

– 165 –



Olga A.Chuesheva The Spaces of Meromorphic Prym Differentials on Finite Tori

2. Elementary Prym differentials

In the construction of a general theory of single-valued and multiplicative differentials, an
important role is played by the elementary differentials [3, 5] of arbitrary order with the minimal
number of poles, either one pole of order > 1, or two simple poles, depending holomorphically
on the character ρ and the moduli [µ] of Riemann surfaces. In this section we find the general
form of elementary (ρ, q)-differentials on F ′

µ.

Proposition 2.1 ( [2]). A degree 0 divisor D is a divisor of a meromorphic (ρ, q)-differential
ω on a compact Riemann surface F of genus g = 1 for a character ρ with q > 1 if and only if
ϕ(D) = ψ(ρ) in J(F ).

The proof proceeds as in the case q = 1 considered in [3, 5], taking into account that −2K = 0
in J(F ) for the torus F.

Theorem 2.1. Given a point Q, a character ρ on F ′
µ of type (1,m), m > 1, and natural

numbers n > 2, q > 1 there exists an elementary (ρ, q)-differential τ
(n)
ρ,q;Q of the class A1(ρ)

with a unique pole Q of order exactly n on F ′
µ. The general form of its divisor is (τ

(n)
ρ,q;Q) =

R1...RN

Qn
1

P
k1
1

...P
km
m

, where ϕ(R1) = ϕ(Qn)−ϕ(R2 . . . RN )+ϕ(P k1

1 )+ · · ·+ϕ(P km
m )+ψ(ρ), kj > 0,

kj ∈ N, j = 1, . . . ,m. The points R2, . . . , RN are chosen as a local holomorphic section of
divisors of degree N − 1 on F ′

µ\{Q}, and N = n + k1 + · · · + km. Moreover, these differentials

depend locally holomorphically on [µ] and ρ, and for an essential character we have τ
(n)
ρ,q;Q =(

1
zn +O(1)

)
dzq, z(Q) = 0.

Proof. Given q > 1, find the general form of (ρ, q)-differentials of the second kind with a
unique pole at the point Q of order exactly n > 1 on F ′

µ.

The Riemann-Roch theorem for (ρ, q)-differentials on Fµ [3] yields the dimension

iρ,q

(
1

QnP
k1
1

...P
km
m

)
= dimC Ωq

ρ

(
1

QnP
k1
1

...P
km
m

)
, where kj > 0, j = 1, . . . ,m. We have iρ,q(D) =

−degD + r
(

(f [µ])
D

)
, where D = 1

QnP
k1
1

...P
km
m

, f [µ] is an arbitrary multiplicative function for ρ

on Fµ, which locally holomorphically depends on [µ] and ρ [3]. Hence iρ,q

(
1

QnP
k1
1

...P
km
m

)
=

n + k1 + · · · + km > 1. Here r
(

(f [µ])
D

)
= 0, since deg

(
(f [µ])

D

)
> 0 under our assump-

tions. Indeed, deg(f [µ]) = 0 and deg
(

1
D

)
> m > 0. We can prove this fact in a different

way. If there exists a function g 6= 0 for ρ on Fµ satisfying (g) > QnP k1

1 . . . P km
m (f [µ]), then

0 = deg(g) > deg(QnP k1

1 . . . P km
m (f [µ])) > 2; this is a contradiction.

It is clear that iρ,q

(
1

QnP
k1
1

...P
km
m

)
= iρ,q

(
1

Qn−1P
k1
1

...P
km
m

)
+ 1. Consequently, there exists

a (ρ, q)-differential τ
(n)
ρ,q;Q with a pole of order exactly n at the point Q on Fµ. Therefore,

(τ
(n)
ρ,q;Q) = R1...RN

QnP
k1
1

...P
km
m

on Fµ. Thus (τ
(n)
ρ,q;Q) = R1...RN

Qn on F ′
µ.

These (ρ, q)-differentials ω = τ
(n)
ρ,q;Q from A1(ρ) onto F ′

µ are determined non uniquely on F ′
µ

because of their zeros and poles: (ω) = R1...RN

Qn
1

P
k1
1

...P
km
m

, kj > 0, j = 1, . . . ,m. Fix k1, . . . , km,

as the orders of possible poles at the points P1, . . . , Pm. Furthermore, deg(ω) = 0 on Fµ. This
implies that N = n+ k1 + · · · + km.

Proposition 2.1 yields the equation ϕP0
(R1 . . . RN ) − ϕP0

(Qn) −ϕP0
(P k1

1 . . . P km
m ) = ψ(ρ) in

the Jacobian variety J(Fµ). Consequently, ϕ(R1 . . . RN ) = ϕ(Qn) + k1ϕ(P1) + · · ·+ kmϕ(Pm) +
ψ(ρ) = M or ϕ(R1) = M − ϕ(R2 . . . RN ). Therefore, to specify the zeros of the differential we
have N −1 = n−1+k1 + · · ·+km > 1, for k1 > 1, free parameters which can choose arbitrarily
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on F ′
µ. Solving the Jacobi inversion problem, we find R1, which is the unique holomorphic

solution to the equation.
Show now that the point Q is a pole of order exactly n on F

′

µ. The proof is by contradiction.

Assume that only first points R1, ..., Rk, k 6 n, coincide with Q on F
′

µ. Then we have the equality

ϕ(Rk+1) = ϕ(Qn−k) + ψ(ρ) + k1ϕ(P1) + · · · + kmϕ(Pm) − ϕ(Rk+2...RN ) = M̃. (∗)

Choosing the point Rk+1 ∈ F
′

µ such that ϕ(Rk+1) is not equal to the constant M̃ and the point
Rk+1 is not Q, we have the contradiction. Thus, the point Q is indeed a pole of order exactly n
on Fµ.

Consequently, the divisor (τ
(n)
ρ,q;Q) = R1

Qn
R2...RN

P
k1
1

...P
km
m

has the most general form for the (ρ, q)-

differentials τ
(n)
ρ,q;Q of class A1(ρ) with a unique pole Q ∈ F ′

µ exactly of order n > 2 on F ′
µ =

Fµ\{P1, . . . , Pm}. By induction on n, taking into account the case n = 1 and an essential

character ρ [8], we have τ
(n)
ρ,q;Q =

(
1

zn +O(1)
)
dzq.

The proof of Theorem 2.1 is complete. 2

We can prove the next statement in the same fashion.

Theorem 2.2. Given distinct points Q1, Q2 on a surface F ′
µ of type (1,m),m > 1, a character

ρ on F ′
µ and a natural number q > 1, there exists an elementary (ρ, q)−differential τρ,q;Q1Q2

of
the third kind and class A1(ρ), with exactly simple poles Q1 and Q2 on F ′

µ, with the general form

of divisor (τρ,q;Q1Q2
) = R1...RN

Q1Q2

1

P
k1
1

...P
km
m

, where ϕ(R1) = ϕ(Q1Q2) − ϕ(R2 . . . RN ) + ϕ(P k1

1 ) +

· · · + ϕ(P km
m ) + ψ(ρ), kj > 0, j = 1, . . . ,m. Furthermore, we choose the points R2, . . . , RN as

locally holomorphic section of divisors of degree N − 1 on F ′
µ\{Q1, Q2}, N = 2 + k1 + · · ·+ km.

Also, these differentials depend locally holomorphically on [µ] and ρ.

3. Prym differentials for an unessential characters

Given a character ρ, denote by Ω2,ρ(F
′
µ) the space of meromorphic differentials of the second

kind with finitely many poles on F ′
µ, and by Ωe,ρ(F

′
µ), the subspace of all multiplicatively exact

Prym differentials for ρ on F ′
µ. Let τ

(n)

P̃1

be an abelian differential of the second kind on Fµ with

a unique pole of order exactly n > 2 at the point P̃1, and with zero a-periods [5]. The point P̃1

is chosen using the condition rρ(
1

P̃1

) = 1.

For every character ρ 6= 1 define the mapping from Ω2,ρ(F
′
µ) into H1(Γ′

µ, ρ), associating to a
differential ω its class of periods [ω].

Suppose that ω ∈ Ω2,ρ(F
′
µ) lifts to U , where F ′

µ = U/Γ̃, and Γ̃ is the Fuchsian group of the

first kind uniformizing F ′
µ on U [2, 6]. Find the classical periods ωz0

(T ) =

∫ Tz0

z0

ω+nm+1

∫

γm+1

ω+

· · · + nm+k

∫

γm+k

ω, where nj ∈ Z, j = m + 1, . . . ,m + k. Here γm+1, . . . , γm+k stand for loops

enclosing only the poles Q1, . . . , Qk of ω on F ′
µ respectively. We take the integral

∫ Tz0

z0

ω along

some fixed particular path in the disk U avoiding the poles of ω.
Since ω is a differential of the second kind, all residues at its poles vanish. Thus, there exists

a global primitive, a meromorphic function f(z) on U satisfying ω = df on F ′
µ\{Q1, ..., Qk}.

Lifting now ω = df to U, relative to
˜̃
Γ, we obtain ωz0

(T ) =

∫ Tz0

z0

df(z) for every T ∈
˜̃
Γ, where

˜̃
Γ
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is the Fuchsian group of the first kind on U uniformizing the surface F ′′
µ , which results from F ′

µ

by removing all k poles Q1, . . . , Qk of the differentials ω.
Define the mapping

Ω2,ρ(F
′
µ) ∋ ω → [ω] = {ωz0

(A), ωz0
(B), ωz0

(γ1), . . . ,

ωz0
(γm−1), ωz0

(γm+1), . . . , ωz0
(γm+k)} ∈ H1(

˜̃
Γ, ρ′),

where ρ′(γs) = 1, s = m + 1, . . . ,m + k and ρ′ = ρ on Γ′
µ
∼= Γ̃. Since all ωz0

(γs), for s =
m+1, . . . ,m+k, vanish, [ω] is expressed in terms of only ωz0

(A), ωz0
(B), ωz0

(γ1), . . . , ωz0
(γm−1),

satisfying (1), while for ρ 6= 1 we have ωz0
(A) = 0 for ρ(A) 6= 1, and ωz0

(B) = 0 for ρ(B) 6= 1.
Hence, the mapping Ω2,ρ(F

′
µ) ∋ ω → [ω] ∈ H1(Γ′

µ, ρ) is well-defined.
If the class of periods [ω] = 0 in H1(Γ′

µ, ρ) for ω ∈ Ω2,ρ(F
′
µ), then the differential ω is

multiplicatively exact for ρ on F ′
µ, and so ω ∈ Ωe,ρ(F

′
µ). If ω ∈ Ωe,ρ(F

′
µ), then, as above,

ωz0
(γs) = 0 for s = m + 1, . . . ,m + k, where γs is a loop enclosing only the pole Qs of ω. By

assumption, ω = df , where f is a multiplicative meromorphic function on F ′
µ, and so all periods

in the sense of Gunning of ω on F ′
µ vanish. So, [ω] = 0 in H1(Γ′

µ, ρ).
Thus, for every ρ 6= 1 the period mapping from Ω2,ρ(F

′
µ)/Ωe,ρ(F

′
µ) into H1(Γ′

µ, ρ) determined
by the rule ω+Ωe,ρ(F

′
µ) → [ω+Ωe,ρ(F

′
µ)] = [ω] is well-defined, bijective, and linear. Consequently,

dimC Ω2,ρ(F
′
µ)/Ωe,ρ(F

′
µ) 6 m for every ρ 6= 1.

Theorem 3.1. The vector bundle E1 =
⋃

Ω2,ρ(F
′
µ)/Ωe,ρ(F

′
µ) is holomorphic of rank m over the

base T1,m × (L1\{1}) for m > 2. Furthermore, the tuples

f0τ
(2)

P̃1

, f0τP2P1
, . . . , f0τPmP1

, (2)

of cosets of Prym differentials constitute bases of locally holomorphic sections of this bundle,
where f0 is a multiplicative unit on Fµ for ρ, rρ(P̃

−1
1 ) = 1 on Fµ and point P̃1 ∈ F ′

µ.

Proof. This bundle is well-defined over this base by Lemma 1.3. Let us establish the reverse
inequality dimC Ω2,ρ(F

′
µ)/Ωe,ρ(F

′
µ) > m and construct a basis for this quotient space.

Verify that for ρ 6= 1, ρ(A) 6= 1, the differentials in the tuples (2) represent cosets in our
quotient space which are linearly independent over C. For ρ0 6= 1 on π1(F

′
µ0

) there exists A ∈ Γ′
µ0

satisfying ρ0(A) = exp 2πic 6= 1. Thus, c 6= 0 for every ρ in a sufficiently small neighborhood
U(ρ0) ⊂ L1\{1} and every [µ] ∈ U [µ0]. Since df0 = 2πicf0ζ on Fµ, we can express f0ζ linearly
via df0. Consequently, instead of the differential f0ζ we can take df0, which represents the zero
coset. Suppose that there exists a linear combination with nonzero coefficients

c̃1f0τ
(2)

P̃1

+ ˜̃c1f0τP2P1
+ · · · + ˜̃cm−1f0τPmP1

= df,

where f is multiplicative function for an unessential character ρ on F ′
µ with ρ0(A) 6= 1.

Go around the point P2 along a small loop γ2, starting from P̃2,0 on F ′
µ. Then the expression

on the left-hand side has the residue ˜̃c1f0(P̃2,0)ρ(γ2), while this residue on the right-hand side

vanishes. But f0(P̃2,0) 6= 0, ρ(γ2) = 1, so ˜̃c1 = 0. In the same fashion we calculate the residues

along small loops enclosing the points P3, . . . , Pm and obtain ˜̃c2 = · · · = ˜̃cm−1 = 0. Then we are

left with the sum c̃1f0τ
(2)

P̃1

= df.

Consider the coefficient c̃1.
1) If df has removable singularities at all punctures, then this equality on F ′

µ implies that

there exists a meromorphic multiplicative function on Fµ with simple pole at P̃1. But this is
impossible by the choice of this point and the condition rρ

(
1

P̃1

)
= 1;

– 168 –



Olga A.Chuesheva The Spaces of Meromorphic Prym Differentials on Finite Tori

2) If the continuation of df to Fµ has at least one pole or essential singularity at the punctures,
then for the combination on the left-hand side this point (puncture) is not singular, while for df
it is singular. This is a contradiction. Therefore, c̃1 = 0.

Thus, the differentials in the tuple (2) represent cosets in our quotient space which are linearly
independent over C.

The case ρ0(B) 6= 1 can be proved analogously. The proof of Theorem 3.1 is complete. 2

Denote by Ωρ

(
1

Q1...Qs
;F ′

µ

)
the space of the differentials for ρ, which are multiples of the

divisor 1
Q1...Qs

on F ′
µ, and by Ωe,ρ(1;F ′

µ), the subspace of the holomorphic multiplicatively exact

differentials for ρ on F ′
µ.

Theorem 3.2. The vector bundle E2 =
⋃

Ωρ

(
1

Q1...Qs
;F ′

µ

)
/Ωe,ρ(1;F ′

µ) is holomorphic of rank

m+ s with the base T1,m × (L1\{1}) for m > 2, s > 1. Furthermore, the tuple

f0τ
(2)
P1
, f0τP2P1

, . . . , f0τPmP1
, f0τQ1P1

, . . . , f0τQsP1
, (3)

of cosets of differentials constitutes a basis for locally holomorphic sections of this bundle, where
Q1, . . . , Qs are distinct points on F ′

µ, depending holomorphically on [µ].

Proof. Consider the period mapping Ωρ

(
1

Q1...Qs
;F ′

µ

)
∋ ω → [ω] ∈ H1(Γ′′, ρ). The

class of [ω] is determined by the tuple of classical periods (ω(A) = 0, ω(B), ω(γ1), . . . ,
ω(γm−1), ω(γ̃1), . . . , ω(γ̃s)). Here the period ω(γm) is expressed via the remaining m + s of
periods, F ′′

µ = F ′
µ\{Q1, . . . , Qs} = Fµ\{P1, . . . , Pm} ∪ {Q1, . . . , Qs}, and F ′′

µ = U/Γ′′.

If Ω
(

1
Q1...Qs

;F ′
µ

)
∋ ω → [ω] = 0 in H1(Γ′′, ρ), then the differential ω is multiplicatively

exact on F ′
µ. The points Q1, . . . , Qs are removable singularities for ω since 2πi(resQj

ω) =∫

γ̃j

ω = 0, for j = 1, . . . , s. Thus, ω ∈ Ωe,ρ(1;F ′
µ). Consequently, the period mapping

is well-defined, bijective, and takes Ωρ

(
1

Q1...Qs
;F ′

µ

)
/Ωe,ρ(1;F ′

µ) linearly into H1(Γ′′, ρ). Thus,

dim Ωρ

(
1

Q1...Qs
;F ′

µ

)
/Ωe,ρ(1;F ′

µ) 6 m+ s.
Let us establish the reverse inequality for the dimension and construct a basis. The tuple of

cosets of differentials in (3) is linearly independent over C. Indeed, if

C1f0τ
(2)
P1

+ ˜̃c1f0τP2P1
+ · · · + ˜̃cm−1f0τPmP1

+ c
′

1f0τQ1P1
+ · · · + c

′

sf0τQsP1
= df,

then ˜̃c1 = · · · = ˜̃cm−1 = c
′

1 = · · · = c
′

s = 0 since f is a multiplicative meromorphic function for ρ
on F ′

µ and its residues at the points P2, . . . , Qs vanish.

This yields the equality C1f0τ
(2)
P1

= df. If the continuation f has in the punctures a unique

pole P1, then (f) >
1

P1
on Fµ. But this is impossible because of the condition rρ

(
1

P1

)
= 1, since

we have the inequality (f) > 1 >
1

P1
. This is a contradiction. Hence, the dimension of the

quotient space is at least m + s and we have constructed a basis. The proof of Theorem 3.2 is
complete. 2

By Grauert’s theorem, since the base is simply connected, we obtain

Corollary 3.1. The holomorphic vector bundle (with fibers consisting of the first holomorphic
de Rham cohomology groups for ρ on F ′

µ) E′
2 =

⋃
[µ],ρ6=1

H1
hol,ρ(F

′
µ) =

⋃
Ωρ(1;F ′

µ)/Ωe,ρ(1;F ′
µ) is

analytically equivalent to the trivial rank m vector bundle with the base T1,m × (L1\{1}) for
m > 2.

Define the period mapping χ from Ωρ(1;F ′) onto H1(Γ′, ρ), associating to ω its class of

periods [ω], which is determined by the tuple of classical periods

(∫

a

ω,

∫

b

ω,

∫

γ1

ω, ...,

∫

γm−1

ω

)
.

Choose a representative for [ω] satisfying

∫

a

ω = ω(A) = 0.
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Corollary 3.2. On every surface F ′
µ of type (1,m), m > 2, given an unessential character ρ, we

have an isomorphism Ωρ(1;F ′
µ) ∼= Kerχ ⊕H1

hol,ρ(F
′
µ), where Kerχ = Ωe,ρ(1;F ′

µ) is an infinite

dimensional vector space and dimCH
1
hol,ρ(F

′
µ) = m.

4. Prym differentials for an essential character

Lemma 4.1. On a surface F ′
µ of type (1,m), m > 1, given an essential character ρ, there

exists a (ρ, 1)-differential τ = τρ;Q2P1
, where Q ∈ F ′

µ, and (τ) = R1...RN

Q2P1P
k2
2

...P
km
m

on Fµ, where

kj ∈ N, j = 2, . . . ,m, and Rk 6= P1, Q, k = 1, . . . , N, N = 3 + k2 + · · ·+ km, depending locally
holomorphically on [µ] and ρ.

Proof. Proceed as in Section 3.

Theorem 4.1. The vector bundle E3 =
⋃

Ω2,ρ(F
′
µ)/Ωe,ρ(F

′
µ) is holomorphic of rank m with the

base T1,m ×Hom(Γ′,C∗)\L1 for m > 2. Furthermore, the tuples : either

τρ;P2P1
, . . . , τρ;PmP1

, τρ;Q2P1
(4)

or
τρ;P1

, . . . , τρ;Pm
, (5)

of cosets of differentials constitute a basis for locally holomorphic sections of this bundle, where
Q ∈ F ′

µ.

Proof. Take an essential character ρ on F ′
µ. Define a mapping Φ from Ω2,ρ(F

′
µ) into H1(Γ′

µ, ρ),
by associating to a differential ω its class of periods [ω] ∈ H1(Γ′

µ, ρ).
If ω ∈ Ω2,ρ(F

′
µ) satisfies [ω] = 0 in H1(Γ′

µ, ρ), then ω is multiplicatively exact for ρ on F ′
µ,

and hence ω ∈ Ωe,ρ(F
′
µ). It is clear also that every differential ω in Ωe,ρ(F

′
µ) has the vanishing

class of periods. Therefore, the kernel of Φ coincides with Ωe,ρ(F
′
µ). Consequently, this mapping

is well-defined on the quotient space Ω2,ρ(F
′
µ)/Ωe,ρ(F

′
µ). Furthermore, Φ is bijective and linear.

This implies that dimC Ω2,ρ(F
′
µ)/Ωe,ρ(F

′
µ) 6 m.

Let us establish the reverse inequality for the dimension and construct two forms of basis for
our quotient space.

By Theorem 2.2, there exists a tuple τρ;P2P1
, . . . , τρ;PmP1

of elementary Prym differentials of
third kind with simple poles at the points Pj and P1, j = 2, . . . ,m, on F ′

µ respectively.
Suppose that the tuple (4) represents linearly dependent cosets in our quotient space for

the essential character ρ; therefore, there exists a nontrivial linear combination with nonzero
coefficients :

˜̃c1τρ;P2P1
+ · · · + ˜̃cm−1τρ;PmP1

+ ˜̃cmτρ;Q2P1
= df,

for fixed Q ∈ F ′
µ, where f is multiplicative function on F ′

µ, (possibly, with poles of arbitrary
orders and essential singularities in punctures for the branches of this function on Fµ.)

Consider the coefficients ˜̃cj , j = 1, . . . ,m−1. For j = 2, . . . ,m, take a loop γj enclosing only

the point Pj . Then the classical period

∫

γj

df = cσ(γj) and, choosing instead of f the function

(f − c), we obtain

∫

γj

d(f − c) = 0. Consequently, all coefficients ˜̃c1 = · · · = ˜̃cm−1 = 0.

What’s left to prove is the equality ˜̃cmτρ;Q2P1
= df . Go along γ̃1 around the point P1 and

calculate residue at point, we obtain that ˜̃cm = 0.
We can prove the same statement for tuple (5) in same fashion.
The theorem 4.1 is proved. 2
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Theorem 4.2. The vector bundle E4 =
⋃

Ωρ

(
1

Q1...Qs
;F ′

µ

)
/Ωe,ρ(1, F

′
µ) is holomorphic of rank

m+s with the base T1,m×Hom(Γ′,C∗)\L1 for distinct points Q1, . . . , Qs, s > 1, on the surface
F ′

µ of type (1,m), m > 2. Furthermore, the tuple : either

τρ;P2P1
, . . . , τρ;PmP1

, τρ;Q1P1
, . . . , τρ;QsP1

, τρ;P 2
2

P1
, (6)

or

τρ;P1
, . . . , τρ;Pm

; τρ;Q1
, . . . , τρ;Qs

, (7)

of cosets of Prym differentials constitutes a basis for locally holomorphic sections of this bundle.

Proof. It suffices to verify only the linear independence of the cosets of differentials in (6).
Suppose that there exists a nontrivial linear combination :

˜̃c2τρ;P2P1
+ · · · + ˜̃cmτρ;PmP1

+ ˜̃cm+1τρ;Q1P1
+ · · · + ˜̃cm+sτρ;QsP1

+ c′τρ;P 2
2

P1
= df.

If f has essential singularities at the punctures, then we immediately obtain a contradiction
since the left-hand side lacks those. Using the residues and periods, as in the proof of the

previous theorem, we infer that ˜̃cj = 0, for j = 2, . . . ,m+ s. It remains to consider the equality
c′τρ;P 2

2
P1

= df.
The residue at P1 is a multiple of c′, it has the form Mc′,M 6= 0, while on the right-hand

side, since df is multiplicatively exact, we can make the classical period around only point P1

vanish. Hence, c′ = 0. Thus the cosets of differentials in (6) constitute a basis for our quotient
space.

Analogously we can prove this statement for tuple (7).
The proof of Theorem 4.2 is complete. 2

Corollary 4.1. The vector bundle E′
4 =

⋃
H1

hol,ρ(F
′
µ) =

⋃
Ωρ(1;F ′

µ)/Ωe,ρ(1;F ′
µ) is holomorphic

of rank m with the base T1,m × (Hom(Γ′,C∗)\L1) for m > 2.

Remark 1. The vector bundles E1 and E3 are analytically equivalent to the Gunning cohomo-
logical bundle G′ over their respective bases.

Remark 2. Theorems 3.2 and 4.2, taking into account theorems 2.1 and 2.2, can be generalized
for vector bundles with fibers Ωq

ρ

(
1

Q
α1
1

...Q
αs
s

;F ′
µ

)
, over the products T1,m ×Hom(Γ′,C∗)\L1 and

T1,m × L1\1 for s > 1, α1, . . . , αs ∈ N, q > 1.
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Пространства мероморфных дифференциалов Прима на
конечных торах

Ольга А. Чуешева

В данной статье построены все виды элементарных дифференциалов Прима для любых харак-

теров на переменных торах с конечным числом проколов и найдены размерности двух важных

фактор-пространств мероморфных дифференциалов Прима. Как следствие, находится размер-

ность первой голоморфной группы когомологий де Рама дифференциалов Прима для любых харак-

теров на торе. В этих фактор-пространствах построены явные базисы.

Ключевые слова: дифференциалы Прима для произвольных характеров, когомологическое расслое-

ние Ганнинга над пространством Тейхмюллера для тора с конечным числом проколов.
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