On Solvability of the Cauchy Problem for a Loaded System

Yuriy Ya. Belov*
Kirill V. Korshun ${ }^{\dagger}$
Institute of Mathematics and Computer Science, Siberian Federal University, Svobodny, 79, Krasnoyarsk, 660041
Russia

Received 20.01.2014, received in revised form 28.02.2014, accepted 16.03.2014
$\overline{I n}$ this work we investigated the Cauchy problem for a loaded Burgers-type system. Example of mathematical physics inverse problem leading to problem being investigated is given. Sufficient conditions for existence of solution in continuously differentiable class are obtained.

Keywords: Cauchy problem, inverse problem, Burgers' equation, non-linear system, weak approximation method.

Inverse problems of mathematical physics play important role in science and applications today [1]. Coefficient inverse problems for parabolic equations are problems of finding solutions of differential equation with one (or more) unknown coefficients. These problems often reduce to problems for loaded equations. Loaded differential equations (see [2]) are ones with functionals of solution (e.g. values of solution or its derivatives on lesser-dimensional manifolds) as coefficients or right-hand side.

Existense of solution to special class of loaded two-dimensional parabolic equations has been proved by I. V. Frolenkov and Yu. Ya. Belov (see [3]). Problem being considered in this article arises during generalization of preceding results.

1. Problem formulation

We consider the initial-value problem for loaded system

$$
\begin{align*}
& \frac{\partial \bar{u}}{\partial t}=\mu(t, \bar{\omega}(t)) \Delta \bar{u}+\nu(\bar{u} \cdot \nabla) \bar{u}+\bar{f}(t, x, \bar{u}, \bar{\omega}(t)), \tag{1}\\
& \bar{u}(0, x)=\bar{\varphi}(x) \tag{2}
\end{align*}
$$

in domain $\Pi_{[0, T]}=\left\{(t, x) \mid 0 \leqslant t \leqslant T, x \in \mathbb{R}^{n}\right\}$, where $\bar{u}=\left(u_{1}(t, x), \ldots, u_{n}(t, x)\right)$ are unknown functions. Let $\bar{\omega}(t)=\left(u_{i}\left(t, x^{j}\right), D^{\alpha} u_{i}\left(t, x^{j}\right)\right) ; i=1, \ldots, n ; j=1, \ldots, r ;|\alpha|=0, \ldots, p_{0}$ be a vector function, with traces of unknown functions and their partial derivatives with respect to spartial variables of order up to p_{0} at points $x^{1}, \ldots, x^{r} \in \mathbb{R}^{n}$ as its components.

$$
D^{\alpha}=\frac{\partial^{|\alpha|}}{\partial^{\alpha_{1}} x_{1} \cdots \cdot \partial^{\alpha_{n}} x_{n}}
$$

is partial differential operator, where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is multi-index, $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. Functions $\mu(t, \bar{\omega}(t)), \bar{f}=\left(f_{1}, \ldots, f_{n}\right), \bar{\varphi}=\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)$ are given ones, $\nu \in \mathbb{R}$ is given coefficient.

[^0]We will use following notation:

$$
\begin{aligned}
& C^{q, s}\left(\Pi_{[0, T]}\right)=\left\{\bar{u}=\left(u_{1}(t, x), \ldots, u_{n}(t, x)\right) \left\lvert\, \frac{\partial^{j} u_{i}}{\partial t^{j}}\right., D^{\alpha} u_{i}(t, x) \in C\left(\Pi_{[0, T]}\right)\right. \\
& \left.\left|\frac{\partial^{j} u_{i}}{\partial t^{j}}\right| \leqslant K,\left|D^{\alpha} u_{i}(t, x)\right| \leqslant K ; \quad i=1, \ldots, n ; j \leqslant q ;|\alpha| \leqslant s ; q, s \in \mathbb{Z} ; K \text { is const }\right\}
\end{aligned}
$$

is class of bounded, continuously differentiable functions,

$$
\begin{gathered}
U_{\alpha}^{i}(0)=\sup _{x \in \mathbb{R}^{n}}\left|D^{\alpha} \varphi_{i}(x)\right| \\
U_{\alpha}^{i}(t)=\sup _{\xi \in[0, t]} \sup _{x \in \mathbb{R}^{n}}\left|D^{\alpha} u_{i}(\xi, x)\right| \\
U^{i}(t)=\max _{|\alpha| \leqslant p+2} U_{\alpha}^{i}(t), \quad U(t)=1+\sum_{i=1}^{n} U^{i}(t)
\end{gathered}
$$

are nondecreasing nonnegative functions.
Let $p \geqslant \max \left(p_{0}, 2\right)$, function $\bar{\varphi}$ satisfies

$$
\begin{equation*}
\varphi_{i}(x) \in C^{p+2}\left(\mathbb{R}^{n}\right), \quad\left|D^{\alpha} \varphi_{i}(x)\right| \leqslant K_{1} ; \quad i=1, \ldots, n ; \quad|\alpha| \leqslant p+2 \tag{3}
\end{equation*}
$$

μ и \bar{f} are continuous in all variables and the following relations are valid for any function $\bar{u}(t, x) \in C^{1, p+2}\left(\Pi_{[0, T]}\right):$

$$
\begin{gather*}
\mu(t, \bar{\omega}(t)) \geqslant \mu_{0}>0, \quad \forall \bar{u}(t, x) \in C^{1, p+2}\left(\Pi_{[0, T]}\right) \tag{4}\\
\left|D^{\alpha} f_{i}(t, x, \bar{u}, \bar{\omega})\right| \leqslant K_{2}\left(1+U(t)+U(t)^{2}\right), \quad|\alpha| \leqslant p+2 .
\end{gather*}
$$

Here and further, K_{i} are constants depending only on the initial data. We will prove
Theorem 1.1. Let the initial data of problem (1), (2) satisfy (3), (4) for some p. Then constant t^{*} exists $\left(t^{*} \in(0, T]\right)$ for which a solution of problem (1), (2) exists and lies in $C^{1, p}\left(\Pi_{\left[0, t^{*}\right]}\right)$ class.

2. An example

We have investigated inverse problem involving finding functions $u(t, x), g(t)$ in Cauchy problem for the Burgers-type equation

$$
\begin{aligned}
& u_{t}(t, x)=\mu(t) u_{x x}+A(t) u u_{x}+B(t) u+g(t) f(t, x) \\
& u(0, x)=u_{0}(x), \quad 0 \leqslant t \leqslant T, \quad x \in \mathbb{R}
\end{aligned}
$$

which reduces (using overdetermination condition $u\left(t, x_{0}\right)=\psi(t)$) to Cauchy problem for loaded parabolic equation

$$
\begin{align*}
& u_{t}(t, x)=\mu(t) u_{x x}+A(t) u u_{x}+B(t) u+F(t, u) \tag{5}\\
& u(0, x)=u_{0}(x), \quad 0 \leqslant t \leqslant T, \quad x \in \mathbb{R} \tag{6}
\end{align*}
$$

where

$$
F(t, u)=\frac{f(t, x)}{f\left(t, x_{0}\right)}\left(\psi^{\prime}(t)-B(t) \psi(t)-\mu(t) u_{x x}\left(t, x_{0}\right)-A(t) \psi(t) u_{x}\left(t, x_{0}\right)\right)
$$

is functional depending on traces of unknown function and its derivatives at point x_{0}. The problem (5), (6) is the particular case of problem (1), (2) for $n=1, \bar{u}=u(t, x), \bar{f}=F(t, u)$, $\bar{\varphi}=u_{0}(x)$.

Let the initial data of problem the (5), (6) satisfies

$$
\begin{gather*}
u_{0}(x) \in C^{p+2}(\mathbb{R}), \quad\left|\frac{\partial^{k} u_{0}}{\partial x^{k}}\right| \leqslant K_{0}-\text { const }, \quad k=0, \ldots, p+2, \tag{7}\\
A(t), B(t) \in C([0, T]), \psi(t) \in C^{1}([0, T]),\left|f\left(t, x_{0}\right)\right| \geqslant \frac{1}{K_{0}}, \\
|A(t)|+|B(t)|+|\psi(t)|+\left|\psi^{\prime}(t)\right| \leqslant K_{0}, \tag{8}\\
\mu(t) \geqslant \mu_{0}>0, \frac{\partial^{k} f}{\partial x^{k}} \in C([0, T] \times \mathbb{R}),\left|\frac{\partial^{k} f}{\partial x^{k}}\right| \leqslant K_{0}, k=0, \ldots, p+2
\end{gather*}
$$

for some $p \geqslant 2$. Conditions (3) of Theorem 1.1 are fulfilled by (7). We can check fulfillment of (3) provided (8) are valid:

$$
\begin{array}{r}
\forall u(t, x) \in C^{1, p+2}([0, T] \times \mathbb{R}) \forall k=0, \ldots, p+2\left|\frac{\partial^{k}}{\partial x^{k}} F(t, u)\right| \leqslant \\
\leqslant K_{2}\left(1+U_{2}^{1}(t)+U_{1}^{1}(t)\right) \leqslant K_{2}(1+U(t))
\end{array}
$$

Thus in is the particular case one can use Theorem 1.1 to prove existence of solution of problem (5), (6) in $C^{1, p}\left(\Pi_{\left[0, t^{*}\right]}\right)$ class.

3. Auxiliary theorem

Theorem 3.1. Let $u(t, x)$ be solution of

$$
\begin{aligned}
& u_{t}=\sum_{i=1}^{n} b_{i}(t, x) \frac{\partial u(t, x)}{\partial x_{i}}, \\
& u(0, x)=u_{0}(x), \quad x \in E_{n}
\end{aligned}
$$

in domain $G_{[0, T]}=\left\{(t, x) \mid 0 \leqslant t \leqslant T, x \in E_{n}\right\}$ of $C^{1, p}\left(G_{[0, T]}\right)$ class. Let the conditions

$$
\begin{gathered}
\left|D^{\alpha} b_{i}(t, x)\right| \leqslant M(p), \quad|\alpha| \leqslant p, i=1, \ldots, n \\
\left|D^{\alpha} u_{0}(x)\right| \leqslant C(p), \quad|\alpha| \leqslant p
\end{gathered}
$$

are valid. Then $u(t, x)$ satisfies

$$
\begin{equation*}
\left|D^{\alpha} u(t, x)\right| \leqslant C(p) e^{l(p) M(p) T}, \quad|\alpha| \leqslant p \tag{9}
\end{equation*}
$$

where $l(p)>0$ depends only on p and does not depend on the initial data.

4. Proof of Theorem 1.1

We will prove existence of solution of problem (1), (2) using weak approximation method (see [4]). We split the problem into three fractional steps and make time shift by $\tau / 3$ in traces
of unknown functions and nonlinear terms. This leads to equation system

$$
\begin{align*}
& \frac{\partial u_{i}^{\tau}}{\partial t}=3 \mu(t, \bar{\omega}(t-\tau / 3)) \Delta u_{i}^{\tau}, \quad t \in\left(m \tau,\left(m+{ }^{1} / 3\right) \tau\right] \tag{10}\\
& \frac{\partial u_{i}^{\tau}}{\partial t}=3 \nu\left(\bar{u}^{\tau}\left(t-{ }^{\tau} / 3\right) \cdot \nabla\right) u_{i}^{\tau}, \quad t \in\left(\left(m+{ }^{1} / 3\right) \tau,\left(m+{ }^{2} / 3\right) \tau\right], \tag{11}\\
& \frac{\partial u_{i}^{\tau}}{\partial t}=3 f_{i}\left(t-{ }^{\tau} / 3, x, \bar{u}^{\tau}\left(t-{ }^{\tau} / 3, x\right), \bar{\omega}\left(t-{ }^{\tau} / 3\right)\right), \tag{12}\\
& \quad t \in\left(\left(m+^{2} / 3\right) \tau,(m+1) \tau\right], \\
& \left.u_{i}^{\tau}(t, x)\right|_{t \leqslant 0}=\varphi_{i}(x) ; \quad i=1, \ldots, n ; \quad m=0, \ldots, M-1 ; \quad M \tau=T . \tag{13}
\end{align*}
$$

Let us introduce the following notation

$$
\begin{gathered}
U_{\alpha}^{i \tau}(t)=\sup _{\xi \in[0, t]} \sup _{x \in \mathbb{R}_{n}}\left|D^{\alpha} u_{i}^{\tau}(\xi, x)\right| \\
U^{i \tau}(t)=\max _{|\alpha| \leqslant p+2} U_{\alpha}^{i \tau}(t), \quad U^{\tau}(t)=1+\sum_{i=1}^{n} U^{i \tau}(t)
\end{gathered}
$$

Zeroth whole step $(m=0)$ is considered. In first fractional step system (10), (13) is representing n Cauchy problems for parabolic equations, for which the maximum principle can be applied. We differentiate (10), (13) with respect to spartial variables up to ($p+2$) times, thus obtaining

$$
\begin{equation*}
U_{\alpha}^{i \tau}(t) \leqslant U_{\alpha}^{i}(0), \quad U^{\tau}(t) \leqslant U(0), \quad|\alpha| \leqslant p+2, \quad t \in\left(0,^{\tau} / 3\right] \tag{14}
\end{equation*}
$$

In second fractional step (11), (13) is n separate linear first-order partial differential equations

$$
\begin{aligned}
& \frac{\partial u_{i}^{\tau}}{\partial t}=3 \nu u_{1}^{\tau}(t-\tau / 3, x) \frac{\partial u_{i}^{\tau}}{\partial x_{1}}+\cdots+3 \nu u_{n}^{\tau}\left(t-{ }^{\tau} / 3, x\right) \frac{\partial u_{i}^{\tau}}{\partial x_{n}} \\
& \left.u_{i}^{\tau}\right|_{t=\frac{\tau}{3}}=u_{i}^{\tau}\left({ }^{\tau} / 3, x\right), \quad i=1, \ldots, n
\end{aligned}
$$

solutions of which satisfy Theorem 3.1, giving us estimate (with K_{3} equals to $l(p+2)$ arising in Theorem 3.1)

$$
\left|D^{\alpha} u_{i}^{\tau}(t, x)\right| \leqslant U^{i \tau}\left({ }^{\tau} / 3\right) e^{\tau K_{3} U^{\tau}(\tau / 3)}, \quad|\alpha| \leqslant p+2, \quad t \in\left(\tau^{\tau} / 3,{ }^{2 \tau} / 3\right]
$$

leading to

$$
\begin{equation*}
U^{\tau}(t) \leqslant U^{\tau}\left(\tau^{\tau} / 3\right) e^{\tau K_{3} U^{\tau}(\tau / 3)}, \quad t \in\left({ }^{\tau} / 3,{ }^{2 \tau} / 3\right] \tag{15}
\end{equation*}
$$

In third fractional step $u_{i}^{\tau}(t, x)$ are solutions to n separate Cauchy problems for ordinary differential equations with known right-hand sides. Thus $u_{i}^{\tau}(t, x)$ and their derivatives can be expressed explicitly

$$
\begin{array}{r}
D^{\alpha} u_{i}^{\tau}(t, x)=D^{\alpha} u_{i}^{\tau}\left(\frac{2 \tau}{3}, x\right)+\int_{2 \tau / 3}^{t} 3 D^{\alpha} f_{i}\left(\xi-\frac{\tau}{3}, x, \bar{u}^{\tau}\left(\xi-\frac{\tau}{3}, x\right), \bar{\omega}\left(\xi-\frac{\tau}{3}\right)\right) d \xi \\
|\alpha| \leqslant p+2, \quad t \in\left({ }^{2 \tau} / 3, \tau\right]
\end{array}
$$

and using (4) can be estimated ${ }^{\ddagger}$ by

$$
\begin{equation*}
U^{\tau}(t) \leqslant U^{\tau}\left({ }^{2 \tau} / 3\right) e^{\tau K_{4} U^{\tau}\left({ }^{2 \tau} / 3\right)}, \quad t \in\left({ }^{2 \tau} / 3, \tau\right] . \tag{16}
\end{equation*}
$$

[^1]Let t^{*} be nonnegative constant satisfying

$$
\begin{equation*}
e^{6 t^{*} K_{5} U(0)} \leqslant 2, \quad K_{5}=\max \left(K_{3}, K_{4}\right) \tag{17}
\end{equation*}
$$

We will prove that derivatives $\left\{D^{\alpha} u_{i}^{\tau}\right\},|\alpha| \leqslant p+2$ are bounded uniformly on τ in some time interval $0 \leqslant t \leqslant t^{*}$. Here and further τ be arbitrary small $\left(\tau \ll t^{*}\right)$ and for some integer $M^{\prime}=M^{\prime}(\tau)$ equality $M^{\prime} \tau=t^{*}$ is valid. From (17)

$$
\begin{equation*}
e^{(2 i-1) \cdot 3 \tau K_{5} U(0)} \leqslant 2, \quad i=1, \ldots, M^{\prime} \tag{18}
\end{equation*}
$$

Using (18) we express from (14)-(16) estimate valid in $t \in[0, \tau]$

$$
\begin{equation*}
U^{\tau}(t) \leqslant U(0) e^{3 \tau K_{5} U(0)} \tag{19}
\end{equation*}
$$

We will prove the inequality

$$
\begin{equation*}
U^{\tau}(i \tau) \leqslant U(0) \exp \left((2 i-1) 3 \tau K_{5} U(0)\right)=K_{6}, \quad i=1, \ldots, M^{\prime} \tag{20}
\end{equation*}
$$

by induction. For $i=1(20)$ is valid by (19). Let (20) be valid for some $i<M^{\prime}$. Applying our reasoning as in zeroth whole step, we deduce

$$
\begin{gathered}
U^{\tau}((i+1) \tau) \leqslant U^{\tau}(i \tau) e^{3 \tau K_{5} U^{\tau}(i \tau)} \leqslant \\
\leqslant U(0) \exp \left((2 i-1) \cdot 3 \tau K_{5} U(0)\right) \exp \left(3 \tau K_{5} U(0) e^{(2 i-1) 3 \tau K_{5} U(0)}\right) \leqslant \\
\leqslant U(0) \exp \left((2 i+1) \cdot 3 \tau K_{5} U(0)\right)=U(0) \exp \left((2(i+1)-1) \cdot 3 \tau K_{5} U(0)\right)
\end{gathered}
$$

thus validating (20) for $i+1$. It holds for all $i<M^{\prime}$ by mathematical induction principle.
Since $U^{\tau}(t)$ is monotonic, from (20) we have

$$
U^{\tau}(t) \leqslant U^{\tau}\left(M^{\prime} \tau\right)=K_{6}-\text { const }, \quad t \in\left[0, t^{*}\right]
$$

From the previous inequality it follows that uniform on τ

$$
\begin{equation*}
\left|D^{\alpha} u_{i}^{\tau}(t, x)\right| \leqslant K_{6},(t, x) \in \Pi_{\left[0, t^{*}\right]},|\alpha| \leqslant p+2 \tag{21}
\end{equation*}
$$

where $\Pi_{\left[0, t^{*}\right]}=\left\{(t, x) \mid 0 \leqslant t \leqslant t^{*}, x \in \mathbb{R}^{n}\right\}$.
Derivatives

$$
\frac{\partial}{\partial t} D^{\alpha} \bar{u}^{\tau}(t, x), \frac{\partial}{\partial x_{i}} D^{\alpha} \bar{u}^{\tau}(t, x), \quad(t, x) \in \Pi_{\left[0, t^{*}\right]}^{M_{0}}, \quad|\alpha| \leqslant p, \quad i=1, \ldots, n
$$

where $\Pi_{\left[0, t^{*}\right]}^{M_{0}}=\left\{(t, x), t \in\left[0, t^{*}\right],\left|x_{i}\right| \leqslant M_{0}\right\}$, are bounded uniformly on τ from (21) and equations (10)-(12), which implies uniform boundedness and uniform equicontinuity (for any $M_{0}>0$) of function sets $\left\{D^{\alpha} \bar{u}^{\tau}\right\},|\alpha| \leqslant p$ in $\Pi_{\left[0, t^{*}\right]}^{M_{0}}$.

Applying Arzelà-Ascoli theorem about compactness, we show existence of the subsequence $\bar{u}^{\tau_{k}}(t, x)$ of sequence $\bar{u}^{\tau}(t, x)$, which converges to some vector function $\bar{u}(t, x)$ with its derivatives $D^{\alpha} \bar{u}(t, x),|\alpha| \leqslant p$. Under the theorem about weak approximation method convergence [4] the vector function $\bar{u}(t, x)$ is a solution (of $C^{1, p}\left(\Pi_{\left[0, t^{*}\right]}^{M_{0}}\right)$ class) to (1), (2) in $\left|x_{i}\right| \leqslant M_{0}$, and

$$
\left\|D^{\alpha} \bar{u}^{\tau}-D^{\alpha} \bar{u}\right\|_{C\left(\Pi_{\left[0, t^{*}\right]}^{M_{0}}\right)} \rightarrow 0, \quad|\alpha| \leqslant p
$$

for $\tau \rightarrow 0$.
Since M_{0} is arbitrary constant, the vector function $\bar{u}(t, x)$ is a solution to (1), (2) in whole $\Pi_{\left[0, t^{*}\right]}$ domain. Theorem 1.1 proved.

5. Derivation of inequality (15)

We are given with

$$
\begin{array}{r}
D^{\alpha} u_{i}^{\tau}(t, x)=D^{\alpha} u_{i}^{\tau}\left(\frac{2 \tau}{3}, x\right)+\int_{2 \tau / 3}^{t} 3 D^{\alpha} f_{i}\left(\xi-\frac{\tau}{3}, x, \bar{u}^{\tau}\left(\xi-\frac{\tau}{3}, x\right), \bar{\omega}\left(\xi-\frac{\tau}{3}\right)\right) d \xi \\
|\alpha| \leqslant p+2, \quad t \in\left({ }^{2 \tau} / 3, \tau\right]
\end{array}
$$

Taking absolute value of both sides of the previous equality and using (4) we have

$$
\left|D^{\alpha} u_{i}^{\tau}(t, x)\right| \leqslant\left|D^{\alpha} u_{i}^{\tau}\left(\frac{2 \tau}{3}, x\right)\right|+\int_{2 \tau / 3}^{t} 3 K_{2}\left(1+U^{\tau}\left(\xi-^{\tau} / 3\right)+U^{\tau}(\xi-\tau / 3)^{2}\right) d \xi
$$

Since ${ }^{2 \tau} / 3 \leqslant \xi \leqslant t \leqslant \tau$ and $U(t)$ is nondecreasing function, it is true that $U(\xi-\tau / 3) \leqslant U\left({ }^{2 \tau} / 3\right)$:

$$
\left|D^{\alpha} u_{i}^{\tau}(t, x)\right| \leqslant\left|D^{\alpha} u_{i}^{\tau}\left({ }^{2 \tau} / 3, x\right)\right|+\int_{2 \tau / 3}^{t} 3 K_{2}\left(1+U^{\tau}\left({ }^{2 \tau} / 3\right)+U^{\tau}\left({ }^{2 \tau} / 3\right)^{2}\right) d \xi
$$

Integrand in the previous inequality does not depend on the integration variable. $\int_{2 \tau / 3}^{t} d \xi \leqslant \leqslant^{\tau} / 3$. As $U^{\tau}(t) \geqslant 1$, it is obvious that $U^{\tau}(2 \tau / 3)^{2} \geqslant U^{\tau}\left({ }^{2 \tau} / 3\right) \geqslant 1$. Thus

$$
\left|D^{\alpha} u_{i}^{\tau}(t, x)\right| \leqslant\left|D^{\alpha} u_{i}^{\tau}\left({ }^{2 \tau} / 3, x\right)\right|+3 \tau K_{2} U^{\tau}\left({ }^{2 \tau} / 3\right)^{2} .
$$

We apply $\sup _{x \in \mathbb{R}^{n}}$ first, then $\sup _{[0, t]}$ to both parts of the previous inequality:

$$
U_{\alpha}^{i \tau}(t) \leqslant U_{\alpha}^{i \tau}(2 \tau / 3)+3 \tau K_{2} U^{\tau}\left({ }^{2 \tau} / 3\right)^{2} .
$$

Taking $\max _{\alpha}$ for $|\alpha| \leqslant p+2$, and calculating sum for $i=1, \ldots, n$, we obtain

$$
U^{\tau}(t) \leqslant U^{\tau}(2 \tau / 3)+3 n \tau K_{2} U^{\tau}(2 \tau / 3)^{2} .
$$

Let K_{4} be equal $3 n K_{2}$. We factor out $U^{\tau}\left({ }^{2 \tau} / 3\right)$:

$$
U^{\tau}(t) \leqslant U^{\tau}\left({ }^{2 \tau} / 3\right) \cdot\left(1+\tau K_{4} U^{\tau}\left({ }^{2 \tau} / 3\right)\right) .
$$

Using $1+x \leqslant e^{x}$ we finally get

$$
U^{\tau}(t) \leqslant U^{\tau}(2 \tau / 3) \cdot e^{\tau K_{4} U^{\tau}\left({ }^{2 \tau} / 3\right)}
$$

References

[1] V.G.Romanov, Inverse problems of mathematical physics, V.S.P. Intl Science, 1986.
[2] A.I.Kozhanov, Nonlinear loaded equations and inverse problems, Computational Mathematics and Mathematical Physics, 44(2004), no. 4, 657-675.
[3] I.V.Frolenkov, Yu.Ya.Belov, On existence of solution to loaded two-dimensional parabloic equations class with Cauchy data, Nonclassic mathematical physics equations (article collection), 2012, 262-279 (in Russian).
[4] Yu.Ya.Belov, S.A.Cantor, Weak approximation method, Krasnoyarskii gosudarstvennyi universitet, 1999 (in Russian).

О разрешимости задачи Коши для системы нагруженных уравнений

Юрий Я. Белов
 Кирилл В. Коршун

[^2]
[^0]: *YBelov@sfu-kras.ru
 \dagger korshun007@inbox.ru
 (c) Siberian Federal University. All rights reserved

[^1]: ${ }^{\ddagger}$ For detailed derivation of (16), see Appendix 5.

[^2]: В работе рассмотрена задача Коши для системъ нагружснных уравнений типа Бюргерса. Приведен пример обратной задачи математической физики, сводящейся к рассматриваемой задаче. Получены достаточные условия существования решения задачи в классе гладких ограниченных функций.

 Ключевье слова: задача Коши, обратнье задачи, уравнение Бюргерса, система нелинейньх уравнений, метод слабой аппроксимачии.

