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In this work we investigated the Cauchy problem for a loaded Burgers-type system. Example of mathe-

matical physics inverse problem leading to problem being investigated is given. Sufficient conditions for

existence of solution in continuously differentiable class are obtained.
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Inverse problems of mathematical physics play important role in science and applications
today [1]. Coefficient inverse problems for parabolic equations are problems of finding solutions
of differential equation with one (or more) unknown coefficients. These problems often reduce to
problems for loaded equations. Loaded differential equations (see [2]) are ones with functionals of
solution (e.g. values of solution or its derivatives on lesser-dimensional manifolds) as coefficients
or right-hand side.

Existense of solution to special class of loaded two-dimensional parabolic equations has been
proved by I.V. Frolenkov and Yu.Ya.Belov (see [3]). Problem being considered in this article
arises during generalization of preceding results.

1. Problem formulation

We consider the initial-value problem for loaded system

∂ū

∂t
= µ(t, ω̄(t))∆ū+ ν(ū · ∇)ū+ f̄(t, x, ū, ω̄(t)), (1)

ū(0, x) = ϕ̄(x) (2)

in domain Π[0,T ] = {(t, x)|0 6 t 6 T, x ∈ R
n}, where ū =

(

u1(t, x), . . . , un(t, x)
)

are unknown

functions. Let ω̄(t) =
(

ui(t, x
j),Dαui(t, x

j)
)

; i = 1, . . . , n; j = 1, . . . , r; |α| = 0, . . . , p0 be a
vector function, with traces of unknown functions and their partial derivatives with respect to
spartial variables of order up to p0 at points x1, . . . , xr ∈ R

n as its components.

Dα =
∂|α|

∂α1x1 · · · · · ∂αnxn

is partial differential operator, where α = (α1, . . . , αn) is multi-index, |α| = α1 + · · · + αn.
Functions µ(t, ω̄(t)), f̄ =

(

f1, . . . , fn), ϕ̄ =
(

ϕ1(x), . . . , ϕn(x)
)

are given ones, ν ∈ R is given
coefficient.
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We will use following notation:

Cq,s(Π[0,T ]) =

{

ū = (u1(t, x), . . . , un(t, x))

∣

∣

∣

∣

∂jui

∂tj
,Dαui(t, x) ∈ C(Π[0,T ]);

∣

∣

∣

∣

∂jui

∂tj

∣

∣

∣

∣

6 K, |Dαui(t, x)| 6 K; i = 1, . . . , n; j 6 q; |α| 6 s; q, s ∈ Z; Kis const

}

is class of bounded, continuously differentiable functions,

U i
α(0) = supx∈Rn |Dαϕi(x)| ,

U i
α(t) = supξ∈[0,t] supx∈Rn |Dαui(ξ, x)| ,

U i(t) = max
|α|6p+2

U i
α(t), U(t) = 1 +

n
∑

i=1

U i(t)

are nondecreasing nonnegative functions.
Let p > max(p0, 2), function ϕ̄ satisfies

ϕi(x) ∈ Cp+2(Rn), |Dαϕi(x)| 6 K1; i = 1, . . . , n; |α| 6 p+ 2, (3)

µ и f̄ are continuous in all variables and the following relations are valid for any function
ū(t, x) ∈ C1,p+2(Π[0,T ]):

µ(t, ω̄(t)) > µ0 > 0, ∀ū(t, x) ∈ C1,p+2(Π[0,T ])

|Dαfi(t, x, ū, ω̄)| 6 K2

(

1+U(t) + U(t)2
)

, |α| 6 p+ 2.
(4)

Here and further, Ki are constants depending only on the initial data. We will prove

Theorem 1.1. Let the initial data of problem (1), (2) satisfy (3), (4) for some p. Then constant
t∗ exists (t∗ ∈ (0, T ]) for which a solution of problem (1), (2) exists and lies in C1,p(Π[0,t∗]) class.

2. An example

We have investigated inverse problem involving finding functions u(t, x), g(t) in Cauchy prob-
lem for the Burgers-type equation

ut(t, x) = µ(t)uxx +A(t)uux +B(t)u+ g(t)f(t, x),

u(0, x) = u0(x), 0 6 t 6 T, x ∈ R,

which reduces (using overdetermination condition u(t, x0) = ψ(t)) to Cauchy problem for loaded
parabolic equation

ut(t, x) = µ(t)uxx +A(t)uux +B(t)u+ F (t, u), (5)

u(0, x) = u0(x), 0 6 t 6 T, x ∈ R, (6)

where

F (t, u) =
f(t, x)

f(t, x0)
(ψ′(t) −B(t)ψ(t) − µ(t)uxx(t, x0) −A(t)ψ(t)ux(t, x0))

is functional depending on traces of unknown function and its derivatives at point x0. The
problem (5), (6) is the particular case of problem (1), (2) for n = 1, ū = u(t, x), f̄ = F (t, u),
ϕ̄ = u0(x).
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Let the initial data of problem the (5), (6) satisfies

u0(x) ∈ Cp+2(R),

∣

∣

∣

∣

∂ku0

∂xk

∣

∣

∣

∣

6 K0 − const, k = 0, . . . , p+ 2, (7)

A(t), B(t) ∈ C([0, T ]), ψ(t) ∈ C1([0, T ]), |f(t, x0)| >
1

K0
,

|A(t)| + |B(t)| + |ψ(t)| + |ψ′(t)| 6 K0,

µ(t) > µ0 > 0,
∂kf

∂xk
∈ C([0, T ] × R),

∣

∣

∣

∣

∂kf

∂xk

∣

∣

∣

∣

6 K0, k = 0, . . . , p+ 2

(8)

for some p > 2. Conditions (3) of Theorem 1.1 are fulfilled by (7). We can check fulfillment of
(3) provided (8) are valid:

∀u(t, x) ∈ C1,p+2([0, T ] × R) ∀k = 0, . . . , p+ 2

∣

∣

∣

∣

∂k

∂xk
F (t, u)

∣

∣

∣

∣

6

6 K2

(

1 + U1
2 (t) + U1

1 (t)
)

6 K2 (1 + U(t)) .

Thus in is the particular case one can use Theorem 1.1 to prove existence of solution of problem
(5), (6) in C1,p(Π[0,t∗]) class.

3. Auxiliary theorem

Theorem 3.1. Let u(t, x) be solution of

ut =
n

∑

i=1

bi(t, x)
∂u(t, x)

∂xi
,

u(0, x) = u0(x), x ∈ En

in domain G[0,T ] = {(t, x)|0 6 t 6 T, x ∈ En} of C1,p(G[0,T ]) class. Let the conditions

|Dαbi(t, x)| 6 M(p), |α| 6 p, i = 1, . . . , n;

|Dαu0(x)| 6 C(p), |α| 6 p

are valid. Then u(t, x) satisfies

|Dαu(t, x)| 6 C(p)el(p)M(p)T , |α| 6 p, (9)

where l(p) > 0 depends only on p and does not depend on the initial data.

4. Proof of Theorem 1.1

We will prove existence of solution of problem (1), (2) using weak approximation method
(see [4]). We split the problem into three fractional steps and make time shift by τ/3 in traces
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of unknown functions and nonlinear terms. This leads to equation system

∂uτ
i

∂t
= 3µ(t, ω̄(t−τ /3))∆u

τ
i , t ∈

(

mτ,
(

m+1 /3

)

τ
]

, (10)

∂uτ
i

∂t
= 3ν(ūτ (t−τ /3) · ∇)uτ

i , t ∈
((

m+1 /3

)

τ,
(

m+2 /3

)

τ
]

, (11)

∂uτ
i

∂t
= 3fi(t−

τ /3, x, ū
τ (t−τ /3, x), ω̄(t−τ /3)), (12)

t ∈
((

m+2 /3

)

τ,
(

m+ 1
)

τ
]

,

uτ
i (t, x)

∣

∣

t60
= ϕi(x); i = 1, . . . , n; m = 0, . . . ,M − 1; Mτ = T. (13)

Let us introduce the following notation

U iτ
α (t) = sup

ξ∈[0,t]

sup
x∈Rn

|Dαuτ
i (ξ, x)| ,

U iτ (t) = max
|α|6p+2

U iτ
α (t), Uτ (t) = 1 +

n
∑

i=1

U iτ (t).

Zeroth whole step (m = 0) is considered. In first fractional step system (10), (13) is rep-
resenting n Cauchy problems for parabolic equations, for which the maximum principle can be
applied. We differentiate (10), (13) with respect to spartial variables up to (p + 2) times, thus
obtaining

U iτ
α (t) 6 U i

α(0), Uτ (t) 6 U(0), |α| 6 p+ 2, t ∈ (0,τ /3]. (14)

In second fractional step (11), (13) is n separate linear first-order partial differential equations

∂uτ
i

∂t
= 3νuτ

1(t−τ /3, x)
∂uτ

i

∂x1
+ · · · + 3νuτ

n(t−τ /3, x)
∂uτ

i

∂xn
,

uτ
i |t= τ

3
= uτ

i (τ/3, x), i = 1, . . . , n,

solutions of which satisfy Theorem 3.1, giving us estimate (with K3 equals to l(p+ 2) arising in
Theorem 3.1)

|Dαuτ
i (t, x)| 6 U iτ (τ/3)e

τK3Uτ (τ /3), |α| 6 p+ 2, t ∈ (τ/3,
2τ /3],

leading to

Uτ (t) 6 Uτ (τ/3)e
τK3Uτ (τ /3), t ∈ (τ/3,

2τ /3]. (15)

In third fractional step uτ
i (t, x) are solutions to n separate Cauchy problems for ordinary

differential equations with known right-hand sides. Thus uτ
i (t, x) and their derivatives can be

expressed explicitly

Dαuτ
i (t, x) = Dαuτ

i (
2τ

3
, x) +

∫ t

2τ /3

3Dαfi

(

ξ −
τ

3
, x, ūτ (ξ −

τ

3
, x), ω̄(ξ −

τ

3
)
)

dξ,

|α| 6 p+ 2, t ∈ (2τ/3, τ ],

and using (4) can be estimated‡ by

Uτ (t) 6 Uτ (2τ/3)e
τK4Uτ (2τ /3), t ∈ (2τ/3, τ ]. (16)

‡For detailed derivation of (16), see Appendix 5.
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Let t∗ be nonnegative constant satisfying

e6t∗K5U(0)
6 2, K5 = max(K3,K4). (17)

We will prove that derivatives {Dαuτ
i }, |α| 6 p + 2 are bounded uniformly on τ in some time

interval 0 6 t 6 t∗. Here and further τ be arbitrary small (τ ≪ t∗) and for some integer
M ′ = M ′(τ) equality M ′τ = t∗ is valid. From (17)

e(2i−1)·3τK5U(0)
6 2, i = 1, . . . ,M ′. (18)

Using (18) we express from (14)–(16) estimate valid in t ∈ [0, τ ]

Uτ (t) 6 U(0)e3τK5U(0). (19)

We will prove the inequality

Uτ (iτ) 6 U(0) exp((2i− 1)3τK5U(0)) = K6, i = 1, . . . ,M ′, (20)

by induction. For i = 1 (20) is valid by (19). Let (20) be valid for some i < M ′. Applying our
reasoning as in zeroth whole step, we deduce

Uτ ((i+ 1)τ) 6 Uτ (iτ)e3τK5Uτ (iτ)
6

6 U(0) exp((2i− 1) · 3τK5U(0)) exp(3τK5U(0)e(2i−1)3τK5U(0)) 6

6 U(0) exp((2i+ 1) · 3τK5U(0)) = U(0) exp((2(i+ 1) − 1) · 3τK5U(0)),

thus validating (20) for i+ 1. It holds for all i < M ′ by mathematical induction principle.
Since Uτ (t) is monotonic, from (20) we have

Uτ (t) 6 Uτ (M ′τ) = K6 − const, t ∈ [0, t∗].

From the previous inequality it follows that uniform on τ

|Dαuτ
i (t, x)| 6 K6, (t, x) ∈ Π[0,t∗], |α| 6 p+ 2, (21)

where Π[0,t∗] = {(t, x)|0 6 t 6 t∗, x ∈ R
n}.

Derivatives

∂

∂t
Dαūτ (t, x),

∂

∂xi
Dαūτ (t, x), (t, x) ∈ ΠM0

[0,t∗], |α| 6 p, i = 1, . . . , n,

where ΠM0

[0,t∗] = {(t, x), t ∈ [0, t∗], |xi| 6 M0}, are bounded uniformly on τ from (21) and equations

(10)–(12), which implies uniform boundedness and uniform equicontinuity (for any M0 > 0) of
function sets {Dαūτ}, |α| 6 p in ΠM0

[0,t∗].

Applying Arzelà–Ascoli theorem about compactness, we show existence of the subsequence
ūτk(t, x) of sequence ūτ (t, x), which converges to some vector function ū(t, x) with its derivatives
Dαū(t, x), |α| 6 p. Under the theorem about weak approximation method convergence [4] the
vector function ū(t, x) is a solution (of C1,p(ΠM0

[0,t∗]) class) to (1), (2) in |xi| 6 M0, and

‖Dαūτ −Dαū‖
C(Π

M0
[0,t∗]

)
→ 0, |α| 6 p

for τ → 0.
Since M0 is arbitrary constant, the vector function ū(t, x) is a solution to (1), (2) in whole

Π[0,t∗] domain. Theorem 1.1 proved.
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5. Derivation of inequality (15)

We are given with

Dαuτ
i (t, x) =Dαuτ

i (
2τ

3
, x) +

∫ t

2τ /3

3Dαfi

(

ξ −
τ

3
, x, ūτ (ξ −

τ

3
, x), ω̄(ξ −

τ

3
)
)

dξ,

|α| 6 p+ 2, t ∈ (2τ/3, τ ],

Taking absolute value of both sides of the previous equality and using (4) we have

|Dαuτ
i (t, x)| 6

∣

∣

∣
Dαuτ

i (
2τ

3
, x)

∣

∣

∣
+

∫ t

2τ /3

3K2

(

1 + Uτ (ξ −τ /3) + Uτ (ξ −τ /3)
2
)

dξ.

Since 2τ/3 6 ξ 6 t 6 τ and U(t) is nondecreasing function, it is true that U(ξ −τ /3) 6 U(2τ/3):

|Dαuτ
i (t, x)| 6

∣

∣Dαuτ
i (2τ/3, x)

∣

∣ +

∫ t

2τ /3

3K2

(

1 + Uτ (2τ/3) + Uτ (2τ/3)
2
)

dξ.

Integrand in the previous inequality does not depend on the integration variable.
∫ t

2τ /3
dξ 6τ /3.

As Uτ (t) > 1, it is obvious that Uτ (2τ/3)
2 > Uτ (2τ/3) > 1. Thus

|Dαuτ
i (t, x)| 6

∣

∣Dαuτ
i (2τ/3, x)

∣

∣ + 3τK2U
τ (2τ/3)

2.

We apply supx∈Rn first, then sup[0,t] to both parts of the previous inequality:

U iτ
α (t) 6 U iτ

α (2τ/3) + 3τK2U
τ (2τ/3)

2.

Taking maxα for |α| 6 p+ 2, and calculating sum for i = 1, . . . , n, we obtain

Uτ (t) 6 Uτ (2τ/3) + 3nτK2U
τ (2τ/3)

2.

Let K4 be equal 3nK2. We factor out Uτ (2τ/3):

Uτ (t) 6 Uτ (2τ/3) ·
(

1 + τK4U
τ (2τ/3)

)

.

Using 1 + x 6 ex we finally get

Uτ (t) 6 Uτ (2τ/3) · e
τK4Uτ (2τ /3).
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О разрешимости задачи Коши для системы нагруженных
уравнений

Юрий Я.Белов

Кирилл В. Коршун

В работе рассмотрена задача Коши для системы нагруженных уравнений типа Бюргерса. При-

веден пример обратной задачи математической физики, сводящейся к рассматриваемой задаче.

Получены достаточные условия существования решения задачи в классе гладких ограниченных

функций.

Ключевые слова: задача Коши, обратные задачи, уравнение Бюргерса, система нелинейных урав-

нений, метод слабой аппроксимации.
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