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It is very popular in meteorology and climatology to solve the so-called eigen problem for the 
meteorological field covariation matrix in order to extract “main modes” of the meteorological 
field variability. In this paper we depict the application of a similar problem for the tree-ring record 
covariation matrix in order to standardize tree-ring records. For the first time this technique has been 
applied to a sample set of very long-lived Qilian junipers (Sabina przewalskii Kom.) from the Dulan 
region in western China and has been earlier published (Yang et al., 2011, 2012a, 2012b). This paper 
expands our report at the All-Russian conference on dendrochronology (RusDendro-2011) where 
we have presented the eigen analysis with some recent improvements and additional applications of 
the technique to a larger sample set of the long-living Chinese junipers, and to another sample set 
of relative short-living Siberian larches growing in the Yamal Peninsula. We demonstrate that our 
eigen analysis technique is applicable to heterogeneous sets of tree-ring width records, and of great 
perspective to create really reliable tree-ring chronologies.
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Introduction 

Tree-ring width records are most often used 
as proxies to reconstruct past climatic variations, 
and so it is very important to create tree-ring 
chronologies that would be unaffected by different 
nonclimatic effects like the biological unique of 
each individual tree, and micro-environmental 
conditions of the tree growth, and so reliable 
indeed. Initially, dendrochronologists mainly 
tried to reconstruct interannual and interdecadal 
climatic variations. For this goal it was enough to 
remove a general trend of the tree growth from 
each individual tree-ring record to reject age-
dependent variations of the growth from further 
consideration (Fritz, 1976). This simple technique 
has been called the “classic” standardization 
(CLS). Unfortunately, the procedure of the 
trend removing was very subjective in practice 
of the CLS use. Moreover, it has been proved 
that CLS is inadequate if the reconstruction of 
longer (centennial and many-centennial) climatic 
variations is of interest. It was so because the 
climate-induced variations periods of which are 
commensurate to longevities of the trees under 
consideration turned out to be removed along 
with the truly age-dependent variations (Cook et 
al., 1995; Briffa et al., 1996). To overcome this 
defect, several new kinds of the standardization 
have been developed such as the age-banding 
technique and the regional curve standardization 
(RCS). 

RCS is most popular now (Briffa et al., 1992, 
1996; Cook et al., 1995; Esper et al., 2002, 2003, 
2007; Wilson et al., 2005; Büntgen et al., 2006; 
D'Arrigo et al., 2006) although there are some 
limitations on its practical use. In particular, 
RCS can be only applied to large samples of 
tree-ring records of any tree species growing 
in a geographic region that has homogeneous 
environmental conditions. 

Using RCS, all records are aligned with 
respect to their biological age, and then averaged 

to create a single time series of tree aging (called 
the “regional curve” – RC). Certainly, this curve 
turns out to be truly representative as “the 
statistical normal” of the tree growth when the 
first and latest calendar years of the tree records 
analysed cover the entire time interval under 
reconstruction (for example, the latest one or 
two millennia of calendar years) more or less 
uniformly; moreover, the same is true for the 
temporal coverage of the records of different 
lengths. If both of these conditions are fulfilled, 
one can hope that removals of the contribution 
of RC from each individual record, either by 
subtracting RC from that or dividing each record 
by RC, admit us to create a set of time series of 
the so-called tree-ring indices that are age-free. 
It means that tree growth variations represented 
in these index series do not depend on the tree 
biological age. 

Unfortunately, careful investigations have 
demonstrated that the above conditions for 
making RC to be truly representative as the 
statistical normal of the tree-ring set analysed 
are never fully met. For example, the first 
calendar years of individual records might not 
cover some latest part of the time interval under 
reconstruction. This circumstance implies a 
systematic bias in the index time series (Esper et 
al., 2008; Melvin, Briffa, 2008). A similar bias is 
inherent in the earliest part of the time interval 
under reconstruction because the latest years of 
the tree-ring records can not be incorporated 
into it. 

Then, lengths of the tree-ring records 
always are very different, and specific 
peculiarities exist in RCs created by averaging 
only the records of a particular length (Esper 
et al., 2007; Esper et al., 2008; Melvin, Briffa, 
2008; Datsenko et al., 2010). As a result, the 
index time series created with use of a single 
RC contain “fingerprints” of these specific 
peculiarities. Although certain extensions of 
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RCS have been recently proposed (Helama et 
al., 2004, 2005; Nicault et al., 2010, and others), 
RCs computed in practice are usually flamed by 
heterogeneous (long- and short-term) climatic 
and nonclimatic effects. Especially, spurious 
trends in the scale of the overall length of the 
tree-ring records analysed are found to be 
inherent in the tree-ring chronologies being 
created (Melvin, Briffa, 2008; Yang et al., 
2010a). 

At last, the RCS technique completely 
ignores two important circumstances implying 
trees to grow faster or slower: the heterogeneity 
of the micro-environmental conditions of the 
individual tree stands, and the uniqueness of each 
tree as a living organism. It is a general case that 
the redistribution of the faster and slower growing 
trees along the interval of calendar years under 
reconstruction turns out to be uneven. By this 
reason, long-term variations of the tree growth 
represented in any tree-ring chronology have to 
be essentially effected by the afore-mentioned 
circumstances. 

Thus, because of all above reasons, the 
tree-ring index time series created by the RCS 
technique remain to be age- and environment-
dependent in practice. The main goal of this 
paper is to give two examples (for very long-
living high-altitude Chinese junipers, and 
shorter-living conifers growing near the northern 
timberline in Siberia as well) of this regrettable 
circumstance by means of demonstration of the 
“main modes” of the tree-ring index time series 
variability. 

Materials and Methods
Data

The goal of this paper is to testify 
applicability of the eigen analysis technique 
to create tree-ring chronologies for both long- 
and short-living trees. Especially, we try to 
corroborate that the modes of the tree growth 

are the same for both long- and short-living 
trees, and these modes may be depicted well 
using the basis of the first segments of the Bessel 
function of the first kind and zero order. It means 
that these modes are age-dependent. This age-
dependence is a very serious obstacle to create 
any reliable tree-ring chronology. Therefore, we 
indicate a simpler way, in comparison with the 
way indicated previously (Yang et al., 2012b), 
how it is possible to escape the age-dependence 
of the Bessel basis. 

The first application of the eigen analysis 
of tree-ring records has been previously done 
(Yang et al., 2012a, 2012b) on an example of 
a set of 56 junipers aged 603 years or more 
from the Dulan region in the northeastern part 
of the Tibetan Plateau in Qinghai Province of 
western China. This juniper Sabina przewalskii 
Kom. is a unique, very long-lived species (up to 
1000 biological years and even longer) which 
is endemic to China. It grows in open-spaced 
stands on south-facing slopes near the upper 
timberline. Researchers started to collect and 
process Dulan tree cores and discs more than 25 
years ago (Wang et al., 1983; Kang et al., 1997). 
This sample was later supplemented (Kang et 
al., 2000; Yang et al., 2000; Zhang et al., 2003 ; 
Sheppard et al., 2004; Liu et al., 2006). Now 
Chinese scientists continue to add new trees to 
this sample.

The Dulan region is an arid area with intensive 
plateau-continental climatic characteristics. Both 
the East Asian and the Indian monsoons impact 
the climate of the region. Instead of the usual 
division of the annual period onto four seasons, 
it is more appropriate to distinguish only the wet 
and dry seasons in the Dulan climate. During 
the wet season this climate is mild, since the 
East Asian summer monsoons impact the Dulan 
region. During the dry season, the Westerlies 
and the Plateau Cold High are important. In 
general, temperature and precipitation change 
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synchronously in the Dulan region: lower 
temperature corresponds to lower precipitation, 
and vice versa. This relationship may indicate that 
the climatic patterns are combined from warm-
wet and cold-dry events not only on a decadal/
centennial, but also on a multi-centennial scale. 
In particular, a multi-proxy analysis (Yang et al., 
2000) revealed that the Medieval Warm Epoch 
was wet and warm, and the Little Ice Age was 
dry and cold in the Dulan region, although more 
essential variations were inherent to both of these 
epochs on centennial and multi-decadal scales in 
comparison with Europe. 

We also used the well-known set of larches 
sampled by S.G. Shiyatov and his colleagues in 
the Yamal peninsula (Hantemirov, Shiyatov, 
2002), and a subset of the 233 tree-ring width 
records with longevity no less than 200 years has 
been chosen from this set.

Besides, in order to corroborate the results 
published in Yang et al. (2012a, 2012b) and 
improve the eigen analysis technique we used 
a much larger sample set (834 records) of the 
same tree species S. przewalskii, both living and 
archeological trees. This set has been sampled 
from four mountain valley around the Dulan 
region. There is full information about pith and 
bark for each record of this sample set, and careful 
cross-dating has been done as well. This sample 
set has been decomposed into six subsets: from 
200 to 400 (219 records), from 400 to 600 (220 
records), from 600 to 800 (151 records), from 
800 to 1000 (122 records), from 1000 to 1500 (91 
records), and more than 1500 (31 records) years. 
Our eigen analysis technique has been applied 
to each of these subsets. But in this paper we 
demonstrate the eigen analysis results for the 
subset 600-800 years only. It is because of two 
reasons. First, the respective results for all other 
subset are practically the same as for the subset 
chosen to demonstrate. Second, the subset chosen 
is of the same longevity that was inherent to the 

sample of 56 Dulan’s junipers used for our first 
demonstration of the eigen analysis technique 
(Yang et al., 2012a, 2012b). 

Mention only that we used a slightly 
improved preprocessing of the long-living 
Chinese junipers before doing the second step 
of our eigen analysis. All individual records 
were scrutinized to recognize the grand 
maximum of the juvenile tree growth, and all 
innermost rings before this grand maximum 
were excluded from further consideration in 
each individual record. As a rule, the number 
of the excluded innermost rings was less than 
10. But, in some (rather seldom) cases this 
number was essentially more (up to 60 rings), 
or, to the contrary, it was equal to zero. Such 
exclusions of a number of innermost rings 
was done because these rings are known to be 
the main source of the tree-ring width record 
heteroscedasticity. Besides, in order to more 
diminish heteroscedasticity, we fulfilled the 
normalization of the remaining parts of the 
records, i.e. each tree-ring index (computed by 
means of subtraction of RC from ring width) 
was divided by the root-mean-square value of 
the indices of the respective age computed for 
the studied subset.

Method of the tree-ring  
record analysis

The starting point of our study is to treat 
any large set of tree-ring records as a random 
sample from an unknown probabilistic ensemble. 
This ensemble is characterized by a probability 
distribution of the ring width (density, isotope, 
etc.) values, with its normal (RC) and deviations 
from RC (index time series) characterized by 
second-order statistics such as the intra-record 
covariation matrix, i.e. covariations between all 
pairs of index values of each tree-ring record 
averaged over the entire sample set of the records 
analysed: 
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shape of the eigen vector is so more oscillatory 
than the number of this eigenvector is larger. By 
this reason, one can usually exclude from further 
consideration those 
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to their calendar years. It has been shown that 
the shapes of the eigenvectors corresponding to 
the essential principal components can be well 
approximated by several first segments of the 
Bessel function of the first kind and zero order 
(Yang et al., 2011, 2012a). All of these are evidently 
age-dependent, and thus it is impossible to escape 
some nonclimatic influences on the tree growth 
depicted by the respective principal components.

However, the afore-mentioned endogenous 
micro-environmental variations and the unique 
biological nature of each tree, which affect 
growth of individual trees, unfortunately turn out 
to be characterized as being very low-frequency. 
Therefore, as it has been shown (Yang et al., 
2011), the intra-record covariation matrix does 
not reveal any essential decrease to zero when the 
age shift between compared pairs of tree-rings 
increases. As a result, the largest eigenvalue 
corresponds to that mode (eigenvector) which 
components are of the same sign. Moreover, the 
shape of this eigenvector is very specific and 
age-dependent. It can be approximated well by 
the very first segment of the Bessel function of 
the first kind and zero order (Yang et al., 2011, 
2012a). Basing on this mode, it is possible to 
separate trees with different biological potential 
of growth, i.e. trees which grow either fast or slow 
independently from any variation of climate. It 

means that the contributions of the first principal 
component for all trees 
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growth, i.e. trees which grow either fast or slow independently from any variation of climate. It 

means that the contributions of the first principal component for all trees NiiPC ,2,1),1( =  have  have to 
be excluded from any consideration if we want 
to create reliable (induced by climatic variations 
only) tree-ring chronology. 

In sum, when the eigen analysis of tree-ring 
records is used, the steps of the tree-ring record 
processing are follow:

–	 Selection of a subset of records of a certain 
length from a (rather large) sample set of 
tree-ring records of interest.

–	 Alignment of all records of this subset 
according to their biological ages in order 
to compute the RC of the subset.

–	 Transformation of these records to their 
index time series either by means of 
subtraction of RC from individual records 
or by means of division of these records 
by RC.

Note that dendrochronologists use the record 
division by RC. But Cook and Peters (1996) have 
indicated some defects of this defining the index 
time series. Some other defects have also been 
indicated (Yang et al., 2012b). Therefore, our 
recommendation is to use the subtraction of RC.

–	 Computation of the intra-record 
covariation matrix for the index time 
series, and then solution of the eigen 
problem for this matrix.

–	 Consideration of the eigenvalue spectrum 
of the problem in order to chose a 
number of tree growth modes for further 
processing.

–	 Computation of the principal components 
for some first eigenvectors in order 
to compute the contributions of the 
respective modes into the index time 
series variability.

–	 Testify of the redistribution of the mode 
contributions along the time interval 
of calendar years under reconstruction 
in respect of the null-hypothesis (the 
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uniformity of the redistribution). If 
the null-hypothesis is accepted the 
contribution of the respective mode 
should be considered as induced by 
nonclimatic (micro-environmental and/
or biological) effects. Only if the null-
hypothesis is rejected the contribution 
can be considered as climate induced, and 
so the respective 
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 may b3e used to 
include its contribution into the tree-ring 
chronology. 

Results
Short-living trees

In our application of the eigen analysis 
technique to an Yamal subset of relatively short-
living larches, we used three different definition 
of the tree-ring width index: subtraction of RC 
from original records; division of these records by 
RC, and the RC subtraction with the preliminary 
logarithmic transformation of the records. 
Fig.  1-3 show our numerical estimation of the 
1-6 eigenvectors for these cases. Comparing 
these figures with the respective figures shown in 
Yang et al. (2012b), one can be convinced that the 
shapes of the eigenvectors for the Yamal’s short-
living larches are qualitatively the same that were 
found for the long-living Chinese junipers. 

For example, in the case of the RC 
subtraction, the eigenvectors look to be rather 
well approximated by the first segments of the 
Bessel function of the first kind and zero order. 
The only one difference exists that the Bessel 
approximation is not applicable to some longer 
(than it is inherent to the Chinese junipers) 
portion of the index time series during the 
juvenile growth of the larches considered. It is 
because the longevity of the juvenile growth takes 
essentially longer part of the entire tree life for 
the short-living larches in comparison with such 
longevity for the long-living junipers. Perhaps, 
the innermost rings corresponding to the juvenile 

growth of larches have to be excluded from 
further consideration when the eigen analysis is 
applied to these larches. But this way, we lose 
some essential part of the tree-ring information 
because the longevity of the mature growth of 
the larches is commensurate to the longevity of 
their juvenile growth (both are equal to about 100 
biological years for the Yamal subsample). 

In the case of the record division by RC 
the first eigenvector looks to be almost constant 
function of the tree age, the second eigenvector 
seems to be similar to cosine the period of 
which is equal to the doubled tree longevity 
(400 biological years) period. But subsequent 
eigenvectors remain to be of more complex 
shapes and (it is essential for the subsequent steps 
of the eigen analysis) age-dependent. In the case 
of the preliminary logarithmic transformation of 
the records the situation is rather similar to the 
second case of the record division by RC, i.e. the 
first and second eigenvectors reveal themselves as 
stationary tree growth variations with respect to 
the biological age, but all subsequent eigenvectors 
reveal variations nonstationary with respect to 
the tree age. 

Thus, neither division of original records 
by RC, nor their preliminary logarithmic 
transformation can ensure tree growth variations 
to be homoscedastic. It is just the same conclusion 
that has been obtained for the long-living Chinese 
junipers (Yang et al., 2012b). Therefore, the 
recommendation may be confirmed here to use 
the subtraction of RC from records instead of the 
traditional record division by RC. 

By the way, recently Briffa and Melvin have 
announced (www.cru.uea.ac.uk) a new Yamal 
chronology, created by means of the traditional 
RCS, with current warming trend being very 
expressed. Our conclusion about an unavoidable 
heteroscedasticity of the index time series of the 
Yamal larches, created with use of the record 
division by RC, allows us to assert that the trend-
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Fig. 1. Six eigenvectors of the intra-record covariation matrix of the Yamal ring width sample set corresponding to 
1-6th largest eigenvalues. Tree-ring indices are defined by means of subtractions of RC from individual records

like ingredient of their chronology is very affected 
by some remaining heteroscedasticity effects (by 
the afore-mentioned existence of the faster and 
lower growing trees).

Long-living trees

Processing the new subset of the long-
living Chinese junipers, we used the eigen 
analysis technique with some improvements. 
First of all, because the character of the juvenile 
growth of these junipers essentially differs from 
the character of their mature growth, using 
full information about the pith offset, we have 
done careful visual inspection of each tree-ring 
width record in order to recognize the position 
of the grand maximum of the juvenile growth. 
It turned in some cases (but rather seldom) the 

grand maximum is observed for the innermost 
ring. But, much more often, the maximum takes 
place within an interval of biological tree ages 
from a few years and to about 70 years. We have 
excluded all inner rings before the grand maxima 
from each individual ring width record, and then 
computed RC for the only rings of the mature tree 
growth. Fig. 4 shows the RC (the graph marked 
“1”), which we obtained by such manner, together 
with root-mean-square deviations (the graph 
marked “2”) computed for each biological age of 
the mature tree growth for the 151 records as a 
whole sample set. 

One can see that the values of the root-mean-
square deviation are practically the same for the 
100-600s rings. However, this value is about two 
times more for a few first rings. It is maximal 
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Fig. 2. Six eigenvectors of the matrix of the Yamal sample set (the same as in Fig. 1), where tree-ring indices are 
defined with use of preliminary logarithmic transformations of individual records

for the ring that corresponds to the grand 
maximum of the juvenile tree growth. It means 
that the tree-ring width variability remains to be 
slightly heteroscedastic even if the only mature 
tree growth is considered. But the remaining 
heteroscedasticity is essentially less pronounced 
than in the case of the consideration of both stages 
of the juvenile and mature tree growth. 

The eigen value spectra for the subset of the 
151 long-living Chinese junipers, computed with 
use different afore-mentioned definitions of the 
tree-ring width index look to be very similar to 
the respective spectra of the 56 Chinese junipers 
of the same longevity (Yang et al., 2011 b, 2012b). 
Each of these spectra is of a hyperbolic shape, 
i.e. the first (maximal) eigen value is much more 
than the second and third eigen values, and all 

subsequent eigen values are much smaller. Thus, 
a rather small number of the main tree growth 
‘modes” seems to be enough to depict well 
heterogeneous tree growth variations. These 
“modes” may be represented by the eigenvectors 
of the intrarecord covariation matrix of the tree-
ring index variations corresponding to the very 
first (larger) eigen values. 

Fig. 5 shows 1-10th eigenvectors of the 
index time series defined by the RC subtraction. 
Comparing this figure with the respective 
figure of the eigen vectors in (Yang et al., 
2012a, 2012b), one can see that the shapes of 
the eigenvectors shown in Fig. 5 are essentially 
smoother (especially for the 1-5th eigen vectors), 
and more similar to the very first segments of 
the Bessel function of the first kind and zero 



Fig. 3. Six eigenvectors of the matrix of the Yamal sample set (the same as in Fig. 1), where tree-ring indices are 
defined by means of divisions of individual records by RC

Fig. 4. The regional curve of a sample subset of the Chinese junipers Sabina przewalskii with the longevity of 
600-800 years (1). The graph of the root-mean-square deviation of individual tree-ring indices from RC as a 
function of the tree age (2). The graph of the tree count for each biological tree age of the trees (3)
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Fig. 5. Ten eigenvectors of the intra-record covariation matrix of the Chinese ring width sample set corresponding 
to 1-10s largest eigenvalues. Tree-ring indices are defined by means of subtractions of RC from individual 
records

order (shown by grey lines in Fig. 5 for the 
only 1-5th eigenvectors). The better smoothness 
of the eigenvectors is a consequence of two 
factors: a larger number of the tree-ring width 
records used (151 versus 56 in the study of Yang 
et al. (2012a, 2012b)), and the exclusion from 
consideration some parts of the tree-ring width 
records before the juvenile grand maxima of 
their tree growth. The absence of any singularity 
at the very beginning of the eigenvector curves 
(corresponding biological years just after the 
juvenile grand maximum) confirms well that the 

exclusion of some innermost rings before the 
juvenile grand maximum of the tree growth is 
the right way to diminish the heteroscedasticity 
of the tree-ring width variability. 

However, the variability of the mature tree 
growth become fully homoscedastic only after 
normalizing the index time series, i.e. dividing 
each mature index time series by the value of 
the root-mean-square deviation of the respective 
age. The curves of the 1-10th eigenvectors of 
the normalized covariation matrix confirm this 
circumstance (Fig. 6). Indeed, these new curves 
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Fig. 6. Ten eigenvectors of the matrix of the Chinese sample set (the same as in Fig. 5), where tree-ring indices are 
defined after the preliminary normalization of each individual record by means of dividing its ring width by the 
root-mean-square deviation of the respective tree age

of the eigenvectors look to be rather similar to 
a family of the trigonometric functions, sine 
and cosine periods of which are multipliers of 
the longevity of the tree-ring width records 
considered. For example, the first eigenvector 
looks to be of almost constant value. The second 
eigenvector is similar to the cosine of the period 
which is equal to the doubled longevity of 
the records (1200 biological years). The third 
eigenvector is similar to the sine of the period 
which is equal to the longevity of the records 
(600 biological years). The fourth eigenvector is 

similar to sine of the 300-year long period. The 
next eigenvectors would be similar to the sines 
and cosines of the progressively diminishing 
periods. But, because of the very equality of the 
eigen values corresponding to these eigenvectors, 
accurate computation of these vectors is 
impossible to fulfill. By this computational 
reason, the 6-10th eigenvectors shown in 
Fig. 6 are a mixture of the true eigenvectors, 
and so their shapes look to be more complex 
and deviate from shapes of the trigonometric 
functions. Stress, it is inevitable difficulty of 
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any eigen problem numerical solution when the 
eigen value spectrum is hyperbolic.

In order to overcome this difficulty a 
recommendation has been given (Yang et al., 
2012b) to use the traditional Fourier basis of 
sines and cosines instead of the “optimal” 
trigonometric base of the main “modes” of the 
eigen. Excellent correspondence of the shapes of 
the 1-5th eigenvectors shown in Fig. 6 confirms 
that this recommendation can be useful indeed.

Applying all afore-mentioned steps of the 
eigen analysis technique to a sample set of 56 
Dulan junipers of the 600-year life-span we could 
create a tree-ring chronology of the Chinese 
junipers that cover the time interval of the last 
millennium AD 1000-2000 (Fig. 7 upper part). 
Comparing the 25-year moving average of this 
tree-ring chronology (shown by light grey line) 
with the solar forcing of the climate system during 
the same time interval (Mann et al., 2005), one 
can see that these time series correspond well to 
each other in centennial time scale. In particular, 
main minima of the tree growth with more or less 
reasonable delays followed by the well-known 
minima in solar activity: Oort (1040-1080), Wolf 
(1280-1350), Spoerer (1450-1550), Maunder 
(1645-1715), and Dalton (1790-1820). It should 
be emphasized that none tree-ring chronology, 
earlier built for the Dulan region, did not show 
such a high degree of compliance with the solar 
forcing. At the same time, it should be noted that 
our tree-ring chronology does not reproduce the 
many-centennial decline in solar forcing from 
the Medieval Warm Epoch to the Little Ice Age 
and the subsequent increase in solar forcing to 
the present. The reason of the last circumstance 
is clear: the 2-10 modes of the Dulan juniper 
variability selected by our eigen analysis catch 
only those climate-induced tree growth variations 
periods of which are no more than one half of the 
tree-ring record length (600 years). We believe 
that similar restriction on the ability of trees 

to reproduce super long-term climate-induced 
variations inherent in all tree-ring sample sets.

Discussion 

A few years ago a completely new, 
mathematically well-grounded technique of the 
tree-ring record standardization called the eigen 
analysis of tree-ring records has been developed 
(Yang et al., 2011, 2012a, 2012b). The aim of this 
technique consists of an justification of different 
peculiarities of tree growth that can affect the 
dendrochronologies being created when the so-
called regional curve standardization is used 
to process raw tree-ring data. It turned out 
that these peculiarities reveal themselves in 
specific shapes of the “main modes” tree growth 
variability. These “modes” can be represented by 
the eigenvectors of the intrarecord covariation 

Fig. 7. Chinese’s chronology reconstructed with use 
PC2-10 over the time period AD 1000-2000 (upper 
part), and solar forcing (W/m2) computed for tropical 
Pacific according Mann et al. (2005) (lower part)
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matrix of the tree-ring index records. In turn, 
these eigenvectors are well approximated on a 
special basis of the very first segments of the 
Bessel function of the first kind and zero order. 
This basis is obviously age-dependent. The 
existence of this age-dependence proves the 
poor representativeness of the regional curve as 
a tree growth “normal”. 

The hyperbolic shape of the eigen value 
spectrum of the intrarecord covariation matrix 
found in all our numerical solutions of the 
eigen problem evidences that the very first 
eigen “mode” is prominent. It is indebted to 
the existence of fast and slow growing trees 
independently from any variations of climatic 
conditions, i.e. this “mode” is a characteristic 
of the biological uniqueness of every tree as 
a living organism. Thus, this mode has to be 
excluded from consideration when any tree-
ring chronology is created, and so the capability 
of tree-ring chronologies to reproduce super 
low-frequency climate-induced variations is 
hard limited by about one half of the tree-ring 
record length being analysed. This uniqueness 
was completely neglected by our predecessors 
who created millennial-long tree-ring 
chronologies on the base of the regional curve 
standardization.

By this reason, one may believe that all already 
published millennial tree-ring chronologies 
based on the regional curve standardization are 
essentially affected by biological and micro-
environmental effects. Therefore, it is almost for 
certain that these chronologies are unreliable as 
sources of information about many-centennial 
changes of climate in the past. 

Besides, some age-dependent peculiarities 
of the tree-ring index time series are induced 
by the well-known property of the tree growth 
heteroscedasticity. Taking this in mind, we 
propose two simple improvements of the 
preliminary pre-processing of the tree-ring 

width data. First of all, we propose to exclude 
some initial period of the juvenile tree growth 
(before the grand maximum of some innermost 
rings) from further consideration. Secondly, we 
propose to compute the age-dependent curve of 
the root-mean-square deviation of the mature 
parts of the tree-ring index time series, in order 
to normalize these index time series before the 
computation of their intrarecord covariation 
matrix. If this matrix would be computed by this 
way, its eigenvectors turn out to be of the shapes 
that are well-approximated by the trigonometric 
functions, and so the traditional Fourier basis 
seems to be useful to extract the main “modes” 
of the tree growth with a certain confidence. 
We suppose that such improved eigen analysis 
technique will be capable to reproduce climate-
induced tree growth variations commensurate to 
the overall length of the tree-ring records being 
used. 

Conclusion

Verifying the new technique of the eigen 
analysis of tree-ring records technique on a 
sample set of relative short-living larches growing 
in the Yamal Peninsula we confirm that the eigen 
analysis can be really applied to relative short-
living trees sampled in cold and wet regions near 
the upper and northern timberline of the North 
Eurasia. 

Considering an the essentially larger sample 
set of the long-living Chinese junipers, we also 
confirm all results of the eigen analysis obtained 
in our pioneering study published earlier (Yang et 
al., 2011, 2012a, 2012b). Namely, the regional curve 
does not include within itself all peculiarities of 
the tree growth depending from the age of trees. 
Some of these peculiarities remain to be inherent 
to the tree-index time series independently 
from the definition used to compute deviations 
of individual tree-ring width records from this 
regional curve. 
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В метеорологии и климатологии широко используется решение так называемой проблемы 
собственных значений для ковариационной матрицы метеорологических полей, для того 
чтобы выявить «главные моды» изменчивости этих полей. В статье мы описываем 
приложение сходной проблемы для ковариационной матрицы рядов годичных колец деревьев, 
чтобы стандартизовать эти ряды. Впервые данная техника была приложена к выборке рядов 
очень долгоживущих можжевельников (Sabina przewalskii Kom.), произрастающих в районе 
Дулан Западного Китая, и описана в публикациях (Yang et al., 2011, 2012a, 2012b). Эта статья 
излагает наш доклад на Всероссийской конференции по дендрохронологии (РусДендро–2011), 
где мы представили наш анализ с некоторыми недавними усовершенствованиями и 
дополнительными приложениями этой техники к большей выборке долгоживущих китайских 
можжевельников, а также к другой выборке относительно недолгоживущих сибирских 
лиственниц, произрастающих на полуострове Ямал. Мы показываем, что наша техника 
анализа приложима к разнородным выборкам рядов толщин годичных колец деревьев и 
перспективна для построения реально значимых дендрохронологий.

Ключевые слова: проблема собственных значений, дендрохронология, тысячелетняя 
палеоклиматическая реконструкция, эффекты солнечной активности на рост деревьев.


