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Mean Value Theorem for a System of Differential Equations
for the Stress Tensor and Pore Pressure
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A system of second-order differential equations for the stress tensor and pore pressure for the poroelasticity
statics in the absence of mass forces and energy dissipation is obtained. The stress tensor is shown to
be a biharmonic function. Integral mean value relations in explicit form for the obtained systems of
differential equations are found.
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It is well known that static simulation methods are used to solve multidimensional boundary
value problems at a small number of points, especially if the domain boundary shape is rather
complex [1-3].

If a boundary value problem has stochastic parameters (for instance, the equation coeffi-
cients or right-hand side are random), Monte Carlo methods are an especially convenient tool to
calculate both average characteristics of the solution and other static characteristics [4].

Such theorems were proved for many basic equations and systems of equations (see [1-15]). In
papers [16-18], systems of differential equations in terms of displacements of particles of an elastic
porous body and pore pressure for stationary processes in the porous medium were obtained
[19,20]. Mean value relations for such systems of differential equations were also established
[16-18].

In the present paper, a system of differential equations in terms of the stress tensor and pore
pressure for stationary processes in the porous medium is obtained. Mean value relations for the
obtained system of differential equations are found.

Problem statement

Assume that a bounded domain Q C R? is a porous medium filled with a homogeneous
isotropic saturated fluid. In the reversible case the elastic-porous static state of the medium
is described by the following system of differential equations [16-18]:

AU + (A + p) Vdiv U = 0, (1)
Ap=0, (2)

where U = (Uy, Us, Us) is the displacement vector of an elastic porous body with partial density
ps,  is the pore pressure, A = X — (p? )"V K2, K = A +2u/3, A\, i, « = paz + K/p? are the
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constants of the equation of state [20-23|, p = ps + pi, and p; is the partial density of the fluid.
In paper [16], a formula was obtained relating the stress tensor with the deformation tensor of
an elastic-porous body and pore pressure:

Oik = 20Eik + NikEmm — Qi p, G,k =1,2,3, (3)

3
1 . Z
Eik = 7(Ui,k + Uk,i)7 27 k = 17 2) 37 Emm = E’I’L’na
n=1

2
0 K
where §;;, is the Kronecker symbol, v = —U, a=1-— —.
Oxy, ap
Solving system (3) with respect to the deformation tensor, we obtain
1 Sik A
cik=—0p — ——— | —omm —ap|, i,k=1223. 4
ik 2% ik 33+ 21 (2,“ mm p) (4)

System of differential equations for the stress tensor and pore
pressure
Substituting (3) into the consistency condition of the deformation tensor e;; xx + €xk,ij =

Eik,kj FEkjik, & 7,k = 1,2,3 we obtain the following system of second-order differential equations
for the stress tensor and pore pressure:

1 - ~ . .
Tijkk + Okkyij — —=——— {st‘ijm,kk + ANOkkOmm,ij — 20605 Pk — 20k, P,i;} =
3N+ 2u
+ = [Xa + 20 20160 2 }
= Oik,kj T Okjik — —= ikOmm,kj kjOmm,ik — 4 QOik P kj — a0k P ik | -
J J 3N+ 2 J J e J MO
Let us perform summation over k:
1 - -
AO’i' +Ummi' —_— = |:/\51A0mm +3)\O—mmi' — 2 d(;lAp* 6 OAép1:| =
J AP 21 J Jij Q04 HaD ij
! N )
= Oik,kj + Okjik) — —=——— |:)\O—mm,i' -2 &p,l] , 4,5 =1,2,3.
;( J j,ik) 3% + 2 J 12 J
From equation (1), with allowance for (3), for o;; we obtain the first-order equation
3
> ok +ap;=0, i=123. (6)

k=1
From (5), with harmonicity of the pore pressure p and the equilibrium equation (6), we obtain

2\ + 1) Ao A 3\t

Acij + — Omm,ij — == =20 =————7p
3A+2p 3A+ 2 3A+ 2

YR 7”] = 132a3' (7)

Umm -

Hence, at ¢ = j and summing over ¢ from 1 to 3, we obtain harmonicity of the stress tensor trace
oik, that is,
Aopm = 0. (8)

With allowance for this equality, relation (7) takes the following form:

Acij + BOmm.,ij = VP.ijy 45 =1,2,3, (9)
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20\ + ) s 3\ 4 u

3\ +2u 3\ 421

Thus, the pore pressure and stress tensor satisfy the system of second-order differential equa-
tions (2) and (9). It follows from system (9) that the stress tensor components are biharmonic

functions. In fact, let the Laplace operator A act on the both sides of equality (9), and, taking
into account properties (2) and (8), we obtain A%0;; = 0.

6=

Mean value relation for system (2), (9)

Now we introduce, in accordance with [9], N (u), the averaging operator of the vector function
u = (uy,us,...,u,)T over the surface of a sphere S(x, R) with respect to the uniform measure
df2, that is, N(u) = ;5= Ju(x+ry)dQ(y), where w, is the unit sphere area, and {s;}I,
are the direction cosines.

For the harmonic function p(x), x € €, the mean value relations [10]

f5(0 R) pdQ 1
p(0) =5 =— pd€2(s), (10)
fS(07R) L@ ws Js,)

3
p(0) = o N (), (1)
are valid. Here N(W)p(x) is the integral of P over the ball W (x, R)(= {|x —y| < R}. For the
32
harmonic function ————, we use relation (11)
2, 0x;

92p(0) 3 3 TR
al‘kaxl 47TR3 /W(O,R) Pk 47TR3 \/3(07 1) p R2

aQ, i k=123,

or

p(0) 3
dr0x; A7 R3

/ psisEdQ(s), i,k=1,2,3. (12)
5(0,1)

As shown in [10], the mean value relation is valid for the biharmonic function. Applying formula
(2.5) from [10] to equation (6), we obtain

3
_20.13

)
73/ Uide— O'ide . (13)
R W (0,R) S(0,1)

From the equilibrium equation (6), we have

/ oijd W = (Uz‘kxj),de—/ ik kx;dW =
W(0,m) W(0,7) W (0,n)

0:;(0)

€TiT
:773/ Oik ]2de+6[/ (pm])yldW—délj/ de: (14)
S(0,1) n w(0,n) w(0,m)
= 773 / Tik Lfkdg + d?’]3 / pxifj ds) — déi]‘ de
5(0,1) n so,1) M W (0,n)

From (13) and (14), we obtain

3 - ey 54
0i5(0) = 5— 5/ Uikxjik dQ —/ 055 A2 + 564/ px ? d§) — %5@’ pd W | .
2ws 5(0,1) n S(0,1) s,1) " n W (0,n)
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Now we multiply the both sides of this equality by n?, integrate from 0 to R and, with allowance
for (11), obtain

5 _ . 54
T =55 [ et [ opanr asa [ pTraa) - T %600
5 2ws 5(0,1) Ui 5(0,1) s0,1) 1 2
(15)
From the equilibrium equation (6), as in (14), we obtain
/ 7720¢de =R’ / Jikzjixzde - 2/ oiptrTid W+
W (0,R) 5(0,1) R W(0,R) (16)
+aR’ / P40 — a6, / Ppd W — 24 / pria;d W.
so,1) R W (0,R) W (0,R)
From (15) and (16) we have
15 / = Tixk
04 0) = — |7 O'Zkl'kxdW — R‘)/ O’ik]idﬁ—
i) 2w3 RS W(0,R) ’ 5(0,1) R?
(17)
iZj . . 5a
—R5d/ px a;J dQ + &y npd W + 7a/ priz;d W | — —aéijp(O).
so,1) R W (0,R) W (0,R) 2
Let us multiply (9) by n? and integrate with respect to the ball,
0:/ n? [Acij + BOmm,ij —’Yp,ij]dW:C2/ |:O'ij,kxk+ﬁ0'mm,imj —WP,ixj} dsS—
W (0,0) 5(0,¢) ¢ ¢ ¢
T Z; Z;
72\/ |:0'7;‘7k+50'mm71'j’yp,i]:| dW =
wo,o L ¢ ¢ ¢
= —2(3/ {aij + ﬁommxi—fj — 'ypxifj] dQ — / [30i; + 300 mm — v ijp] dW.
5(0,1) ¢ ¢ W(0,¢)
(18)

Here we use the fact that the surface integral is zero and the Gaussian formula.
Assuming in (14) that ¢ = j = k, we obtain

/ ourd W = 1 / o1 2L 40 + g / pdQ — 3@/ pd W. (19)
W (0,n) 5(0,1) n 5(0,1) W (0,n)

From (18) and (19), using simple transformations, we have

3/ oirtirrd W + 3(34/ px;x;d W —
W (0,R) W(0,R)

~(@+ 38 / *pd W + B3y / onzrud W = (20)
W (0,R) W(0,R)

= / nzaide + 0 OmmTiT;d W — vy / pz;x;d W.
W(0,R) W (0,R) W(0,R)

It can be shown by direct calculations that oj;zix; is a biharmonic function. Using for it formula
(13), we obtain

5
0= 3 / ak.lxkxldW — OklITELT] dS). (21)
R W (0,R) S(0,1)
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From (20), with allowance for (16) and (21), we have

.%‘j.%‘k dO—

5/ oz dW =3 OmmTjd W + R® [/ Tik—pg

W(0,R) S(0, 1) R

—Qéi]‘ Ukle?dQ] — (5d + ’7)/ pr;x;d W— (22)
5 7 Jso1y R W(0,R)

W(0,R)

7(07 + 1)51]/ 772de + z)(sm/ 772de + @RS/ p R2
W (0,R) 3 W (0,R) 5(0,1)

€T;T

IdQ.

w

The volume integral in (22) can be transformed as follows:

/ Ok ;AW = (orizmxiz;)  dW —/ Opl 1T xjd W—
W (0,R) W (0,R) W (0,R)

—/ Ukikade — O'ijkl‘idW = R5/ O'kl%gikxldgﬁ-
W (0,R) W(0,R) 5(0,1) R
+aR® / pxi—?dﬂ — 3d/ pxiz;dW — / OriTrr;d W — Ok Trx;d W.
w,1) T W (0,R) W (0,R) W (0,R)
(23)
In the derivation of (23), we used the equilibrium equation (6).
From (22) and (24) we obtain, after simple transformations,
R® TiT;TLT] T;Th
oipZiTrd W = 3 Ukljidﬂ—‘r/ O’Z‘kjidQ—
/W(O,R) ! 5+ 25[ 5(0,1) R? 5(0,1) R?
8 TRy a(B+1) 5 ;%
——0;; Okl dQ} + R P dQ+ 24
57 Jsony | R? 5+2p s R? (24)
~ o Tl (5+308)a+~ /
+75¢v/ P aw — —~——— = px;z;dW.
36+28) 7 Json) TP R 5+2p W(0,R) !

From (18) and (24), after simple transformations, we obtain integral mean value relations for the
stress tensor

3 TELs T
0;:(0 =7101—5/ o; LdQ — 736, o dQ+
i) 2ws(5+ 25)[ ( ) 5(0,1) "R? " Js(0,1) "R?
TiTiTLT] 15&(2 4+ 55) T
+35ﬂ/ Okl J dQ| + p dQ+
S(0,1) R } 2w3(5+28) Js,1) I?

15 /. 7y / , 105(45 + ) / 54
+ + 5ij AW + —— 22T 2 dW — 225,p(0).
2ws R? (O‘ 3(5 + 25)) I o T 205 (5+ 20)R° Jwomy 5 0P (0)
(25)
Let B(R) = {z € R®: |z| < R} be a ball of radius R. S is its boundary, ws is the unit sphere
area, and df2 is the measure on S.

Theorem 1. For the system of differential equations (9), the following mean value relations are
valid:

- 3
~ 2ws3 (5+28)

10(1 — 5)/ | oL 40 — 75, Ly o MR
5(0,1

i (0
0]( ) R2 5(0,1) R2
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+356 Ons TiZjTET|

140+ +
5(0,1) R4

a+

i) + 15a (2 + 55) / Tk
s

15
2(,{13 (2 + 5/8) (0,1) b R2 2(4]3R5 (
(26)

Ty ) / 9 105 (af + ) / 5a
+—) b pdW + ————~ px;x; dW — —06,;:p (0).
3(54208)) 7 Jwo.r 7 3(5+28)R° Jwo,r) ! 2 Y ©)

Thus, we obtained integral mean value relations (7), (8), and (26) for a system of poroelasticity
equations. To determine the dilatancy zone, it is necessary to have integral characteristics of
the medium being considered. In mathematical simulation, the averaging method - the mean
value theorem is used for this. The relations obtained for the stress tensor of a porous body and
pore pressure allow using dilatancy zones in problems of monitoring Earth’s crust technogenic
processes and earthquake prediction [24].

Since in (26) & tends to zero, we obtain mean value relations for the stress tensor components
for the static equations of classical elasticity [10].

This work was supported in part by the Russian Foundation of Fundamental Research under

grant No 12-01-007785.
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TGOpeMbI O CpeaHeM 3Ha4YeHUuHr JJid CHUMCTEMbI

nndpdepeHITnaabHBIX YPABHEHU JIJIsT TEH30pa HAIIPS>KEeHUS
1 TOPOBOTO JIaBJIEHUS

Hacpuaaua M. 2Kab6opos
XoumatrkoH X. IMmoMHa3apoB

Pacemompenra cucmema ypasrenuti 6mopozo nopadka 0Af MeEH30PA HANPAHCEHUA U NOPOB020 0aABAEHUA

onn nopos,nacmwmoﬁ cmamury 8 omcymcmaeue Cun Macc u IHeEp2uU Guccunau,uu. TeHsop HANPAHCEHUA

Asasemces buzapmonuveckot gynryuet. Hatideno coommnowerue 0ai WHmMe2pasbHo20 CpedHezo 3Ha%eHUus

6 MouHol hopme NPU PACCMOMPEHHBLT TOAYHEHHVT cucmem JuPPepenyuaroHblT Ypasrerut.

Karouesvie caosa: dug‘@epeuuuaﬂbnoe YpasHeEHUE, TLOPOIAACTNUHYHAA CTNAMUKA, TMEH30D HAMPAHCEHUA.
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