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In this note we show that certain non-isomorphic free amalgamated products with cyclic amalgamated

subgroup and the same type have the same number of subgroups of every index.
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Introduction

For a group G and a natural number n, we denote the number of subgroups of G of index n
by an(G). Suppose G and H are groups. Then, following Lubotzky and Segal [5], G and H are
called isospectral if and only if an(G) = an(H) for all natural numbers n. Our main theorem is
as follows.

Theorem 0.1. If A and A′ are cyclic amalgams of the same type, then their universal comple-

tions are isospectral.

All the unexplained terminology in Theorem 0.1 is introduced in Section Two. For here it
suffices to say that a cyclic amalgam is one in which the amalgamated subgroup is cyclic. It is very
easy to manufacture examples of cyclic amalgams of the same type which have non-isomorphic
universal completions. Indeed, if two amalgams of finite groups have the same type and are
not isomorphic then their universal completions are not isomorphic. The smallest example is
obtained by taking A1

∼= A2 isomorphic to the Frobenius group of order 20 and B cyclic of
order 4. Then there are exactly two isomorphism classes of amalgams say A1 and A2 of type
(F20,F20,Z/4Z). Their universal completions have presentations

G(A1) ∼= 〈x, y, z | x5 = y5 = z4 = 1, xz = x3, yz = y2〉

and
G(A2) ∼= 〈x, y, z | x5 = y5 = z4 = 1, xz = x2, yz = y2〉.

Theorem 0.1 asserts that these two (non-isomorphic) groups are isospectral. It is natural to ask
about the subgroup lattice in each group. It turns out the they are not isomorphic. In fact,
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using the computational algebra package Magma [1], it has been shown that the intersection of
all subgroups of index 5 in the first group has index 1296000000 while in the second it has index
100. It follows easily that these groups have non-isomorphic subgroup lattices. It is also easy to
see that G(A1) has two normal subgroups of index 20 while G(A2) has six. I don’t know whether
G(A1) and G(A2) have the same number of conjugacy classes of subgroups at a given index. For
more information about subgroups of finite index in free amalgamated products see [8].

Theorem 0.1 has the following corollary.

Corollary 0.2. For each natural number k, there exist k pairwise non-isomorphic amalgams

with isospectral universal completions.

Other instances of isospectral groups can be found in [3, Theorem 1.3] where du Sautoy,
McDermott and Smith prove that the groups Z × Z and 〈x, y, t | [x, y], t2 = y, xt = x−1〉 are
isospectral. Also, in [6], Mednykh shows that Γg and Γ∗

g are isospectral where

Γg = 〈x1, . . . , xg, y1, . . . , yg |

g∏

i=1

[xi, yi] = 1〉

and

Γ∗

g = 〈x1, . . . , xg, y1, . . . , yg |

g∏

i=1

(xiyi)
2〉

are the fundamental groups of a closed orientable surface of genus g, respectively, a closed non-
orientable surface of genus 2g.

This note originated from observations made about symmetric presentations and their accom-
panying progenitors in the monomial case (see [2]). It turns out that there are two progenitors
of shape 7∗7 :m F21 up to isomorphism (where F21 denotes the Frobenius group of order 21).
One has presentation 〈x, y, z | x7 = y7 = z3 = 1, xz = x2, yz = y2〉 and the other has presen-
tation 〈x, y, z | x7 = y7 = z3 = 1, xz = x2, yz = y4〉 (so they are cyclic amalgams of the same
type (F21,F21,Z/3Z)). Experimenting with Magma [1] confirmed that the progenitors are not
isomorphic (one has GL3(2) as an image the other does not) and, more strikingly, showed that
they have an identical number of subgroups at each index up to 15 (with 39791 subgroups of
index at most 15). The main result of this paper says that the groups are in fact isospectral.

Our notation is standard, but we mention that Sym(n) denotes the symmetric group of degree
n and that, for groups A and B, Hom(A,B) is the set of homomorphisms from A to B. All our
maps are written on the right.

1. Amalgams and completions

A group amalgam, or more simply an amalgam, is a quintuple A = (A1, A2, B, φ1, φ2)
where A1, A2 and B are groups and, for i = 1, 2, φi : B → Ai are monomorphisms. Let
A = (A1, A2, B, φ1, φ2) and A′ = (A′

1, A
′

2, B
′, φ′1, φ

′

2) be amalgams. Then A and A′ have the
same type provided there are group isomorphisms α1 : A1 → A′

1, α2 : A2 → A′

2 and γ : B → B′

satisfying Im(φ1α1) = Im(γφ′1) and Im(φ2α2) = Im(γφ′2). The amalgams A and A′ are iso-

morphic if there are group isomorphisms α1 : A1 → A′

1, α2 : A2 → A′

2 and γ : B → B′

satisfying φ1α1 = γφ′1 and φ2α2 = γφ′2 (as homomorphisms with domain B). Obviously, iso-
morphic amalgams have the same type. Suppose that γ ∈ Aut(B). Then we define an amalgam
Aγ = (A1, A2, B, φ1, γφ2). The triple of maps (IdA1

, IdA2
, IdB) demonstrates that A and Aγ

have the same type. Often the type of an amalgam will be uniquely determined by specifying
the groups A1, A2 and B. This is for example the case if, for i = 1, 2, any two subgroups of
Ai isomorphic to B are conjugate in Ai. If this is the case we can denote the type of amalgam
simply by (A1, A2, B) as we did in the introduction.
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It is natural to ask how many isomorphism classes of amalgam there are of a given type. The
answer is provided by the Goldschmidt Lemma. To state it we require a definition. Suppose that
H ≤ K. Then Aut(K,H) = NAut(K)(H)/CAut(K)(H) identified as a subgroup of Aut(H).

Lemma 1.1 (Goldschmidt Lemma). Suppose A = (A1, A2, B, φ1, φ2) is an amalgam and define

X1 = {φ1αφ
−1
1 | α ∈ Aut(A1, (B)φ1)} ≤ Aut(B)

and

X2 = {φ2βφ
−1
2 | β ∈ Aut(A2, (B)φ2)} ≤ Aut(B).

Then the map

X1γX2 7→ Aγ

defines a bijection between the set of (X1,X2)-double cosets in Aut(B) and isomorphism classes

of amalgams of the same type as A.

Proof. See [4, (2.7)].

Notice that X1 and X2 both contain all the inner automorphisms of B and so the calculation
of the double cosets in the Goldschmidt Lemma really takes place in the outer automorphism
group of B. For the proof of Theorem 0.1 the important point in Lemma 1.1 is conveyed by the
following corollary.

Corollary 1.2. If A = (A1, A2, B, φ1, φ2) is an amalgam and A′ has the same type as A, then

there exists γ ∈ Aut(B) such that A′ is isomorphic to Aγ .

Let A = (A1, A2, B, φ1, φ2) be an amalgam. A representation of A into a group G is a pair
of homomorphisms (ψ1, ψ2) where ψi ∈ Hom(Ai, G), for i = 1, 2, such that φ1ψ1 = φ2ψ2 ∈
Hom(B,G). The triple

(〈(A1)ψ1, (A2)ψ2〉, ψ1, ψ2)

is called a completion of A (in G). A completion (G,ψ1, ψ2) of A is called universal provided
that given any completion (H, ρ1, ρ2) of A, there exists a unique π :∈ Hom(G,H) such that
ρi = ψiπ for i = 1, 2. Universal completions of A exist, are unique up to isomorphism, and the
group G in the universal completion can be identified with the free amalgamated product

G(A) ∼= (A1 ⋆ A2)/〈(b)φ1(b
−1)φ2 | b ∈ B〉

where A1 ⋆ A2 is the free product of A1 and A2 (see [7]). We note that because G(A) is
the universal completion of A, every representation of A into a group G leads to a unique
homomorphism from G(A) into G and vice versa.

Suppose that A = (A1, A2, B, φ1, φ2) is an amalgam. For a group G set

Hom(A, G) = {Ψ | Ψ is a represention of A into G}.

Let θ ∈ Hom(B,G). Then we say (ψ1, ψ2) ∈ Hom(A, G) extends θ if and only if θ = φ1ψ1 = φ2ψ2.
Put

Homθ(A, G) = {Ψ ∈ Hom(A, G) | Ψ extends θ}.

Assume that θ ∈ Hom(B,G). Let πθ : B → B/ker θ be the projection map, and θ be the
canonical isomorphism from B/ker θ to (B)θ . Then θ = πθθ. Define

θ̃ ∈ Hom(NG((B)θ),Aut(B/ker θ))

by (x)θ̃ = θcxθ
−1

for all x ∈ (B)θ where cx denotes the automorphism of (B)θ induced by
conjugation by x. Finally, for γ ∈ Aut(B) such that (ker θ)γ = ker θ, define γ∗ so that the
πθγ

∗ = γπθ. So γ∗ ∈ Aut(B/ker θ).
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Lemma 1.3. Assume that θ ∈ Hom(B,G) and γ ∈ Aut(B) with (ker θ)γ = ker θ. If there exists

x ∈ NG((B)θ) such that (x)θ̃ = γ−1∗

, then there exists a bijection between Homθ(A, G) and

Homθ(A
γ , G).

Proof. We define two maps

α : Homθ(A, G) → Homθ(A
γ , G)

(ψ1, ψ2) 7→ (ψ1, ψ2cx)

and

β : Homθ(A
γ , G) → Homθ(A, G)

(ψ1, ψ2) 7→ (ψ1, ψ2cx−1).

Clearly α and β are inverse to each other, so if they are well-defined we are done. So we show
that (ψ1, ψ2cx) ∈ Homθ(A

γ , G). We have

γφ2ψ2cx = γθcx = γπθθcx = γπθθcxθ
−1
θ

= γπθ(x)θ̃θ = γπθγ
−1∗

θ = γγ−1πθθ = πθθ = θ.

Since φ1ψ1 = θ, α is well-defined. The proof that β is well-defined is similar. Thus the lemma
holds.

We say that A = (A1, A2, B, φ1, φ2) is a cyclic amalgam if B is a cyclic group.

Theorem 1.4. Suppose that A = (A1, A2, B, φ1, φ2) is a cyclic amalgam. Then for all nat-

ural numbers n and for all γ ∈ Aut(B), there is a bijection between Hom(A,Sym(n)) and

Hom(Aγ ,Sym(n)).

Proof. Let G = Sym(n). Suppose that θ ∈ Hom(B,G). Since B is a cyclic group, (ker θ)γ =
ker θ. Furthermore, the generators for (B)θ in G all have the same cycle type and so are con-

jugate in G. Thus θ̃ ∈ Hom(NG((B)θ),Aut(B/ker θ)) is an isomorphism. In particular, for all

θ ∈ Hom(B,G), there exists x ∈ NG((B)θ) such that (̃x)θ = γ−1∗

. It follows from Lemma 1.3
that for all θ ∈ Hom(B,G), there is a bijection between Homθ(A, G) and Homθ(A

γ , G). Since
Hom(A, G) =

∐
θ∈Hom(B,G) Homθ(A, G) and Hom(Aγ , G) =

∐
θ∈Hom(B,G) Homθ(A

γ , G) the the-
orem is true.

Since there is a bijection between Hom(A, G) and Hom(G(A), G), we have the following
corollary.

Corollary 1.5. For all natural numbers n and all γ ∈ Aut(B), there is a bijection between

Hom(G(A),Sym(n)) and Hom(G(Aγ),Sym(n)).

For a group G, let hn(G) = |Hom(G,Sym(n))|. The following result intertwines hn(G) and
an(G).

Lemma 1.6. Suppose that G is a group. Then

an(G) =
1

(n− 1)!
hn(G) −

n−1∑

k=1

1

(n− k)!
hn−k(G)ak(G).

Proof. See [5, Corollary 1.1.4].
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Proof of the Main Theorem. Suppose that A and A′ are cyclic amalgams of the same type. Then
by Corollary 1.2 there exists γ ∈ Aut(B) such that A′ is isomorphic to Aγ . It follows from
Corollary 1.5 that hn(G(A)) = hn(G(A′)) for all n. We have that a1(G(A)) = a1(G(A′)) and so
using Lemma 1.6 and induction gives us that an(G(A)) = an(G(A′)) for all n.

We now prove Corollary 0.2. Suppose that k is a natural number. Let p be a prime such
that p− 1 ≥ k2, then φ(p− 1) ≥ k where φ is the Euler totient function. Now let A1 and A2 be
Frobenius groups of order p(p− 1) with kernel of order p and let B be the cyclic group of order
p − 1. Then, with X1 and X2 as in the Goldschmidt Lemma, X1 = X2 = 1 and so there are
exactly |Aut(B)| = φ(p − 1) ≥ k pairwise non-isomorphic amalgams of type (A1, A2, B). Now
the corollary follows from Theorem 0.1.
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Примеры групп с одинаковым числом подгрупп любого
индекса

Крис В. Паркер

Атапату А.С. Канчана

Мы показываем, что при определённых условиях неизоморфные свободные произведения с цикли-

ческой амальгамой имеют и одинаковое число подгрупп каждого индекса.

Ключевые слова: неизоморфные свободные смешанные произведения.
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