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Lie group analysis of equations of an ideal fluid written in variables of trajectories and Weber’s potential
was conducted. It was shown that the use of volume conserving arbitrary Lagrangian coordinates is in
fact an equivalent transformation for the equations. The defining Lie algebra equations for the initial
velocity distribution were obtained. The basic Lie group and its extensions were found.
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Introduction

In describing the motion of an ideal incompressible fluid with a free boundary one needs to
find the solution of the Euler equations subject to kinematic and dynamic conditions at the free
boundary. The kinematic condition allows us to transform the initial problem to the problem
with the fixed domain. This is achieved with the use of the Lagrangian coordinates & = (&, 7, ()
which are the coordinates of fluid particles at the initial point in time ¢t = 0: x = €. The particle
coordinates x = x(&,t) are defined by the equation dx/dt = u(x,t).

A system of equations of the following type is considered [1]

o = (Yn2¢ — 20Yc) (Pe — o) + (=Yez¢ + 2ey¢) (0 — vo) + (Yezy — 2eyn) (e — wo), (0.1)

Yr = (—xpz¢ + 292¢)(Pe — wo) + (Teze — 26x¢)(Pn — v0) + (—xe2y + zexy) (e — wo),  (0.2)
2t = (TnYc — Ynrc) (e — o) + (—Teye + yexc)(on — vo) + (Teyy — yexn) (¢ —wo),  (0.3)
ze(Ynze — Yczn) + Ty(—Yeze +ycze) +xc(Yezn — ynze) = 1, (0.4)

where (z, y, z) = x(§, t) are the fluid particles coordinates, ¢((&, t)) is the required function that
arises from the transformation of the equations of motion and ug(&,7,¢), vo(&,n,¢), wo(§,n,<)
are the components of the particle velocity vector at ¢ = 0. The transformation of equations of
motion with respect to variables x and ¢ was first discovered by G. Weber [2|. Equation (0.4)
describes the volume conservation, detM = 1, where M = 9(x)/J(€) is the Jacobi matrix.

To study the group properties of equations (0.1)—(0.4) the following index designations are
introduced

;[;1:57 1.2:777 $3:C7 .%'4:t,

u® :uk(§7 7, <7 t)a k= 13 4.
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Let us rewrite the system of equations using the index designations

uy = (u%ug - ugug) (u% + uo) + (—ufug + ui’u%) (u;1 + vo) + (u%ug — u‘;’ug) (u§ + wo) , (0.5)

3 3

ui = (—u%ug + ugué) (u‘l1 + uo) + (u%ug — ulué) (u‘g1 + vo) + (—u%ug + u%ué) (u§ + wo) , (0.6)

(
su3 —usug) (uj +uo) + (—ujud + wiud) (us +vo) + (uju3 — uiuy) (uj+wo), (0.7)

ul = (ulud — udul
uy (uzu3 — uiu3) +uy (—ufuf + uiud) + ug (uiud —uiu3) —1=0. (0.8)

Here ug, wvg, wqg are the functions of the initial velocity distribution at ¢ = 0. They depend on
(', 22, 23) and are found to be the defining functions for the given system.

It can be shown that transition to arbitrary Lagrangian coordinates («a, §8,v) = a(€) which
conserves the volume (detJ = 1, where J = d(«, 3, 7)/9(§, n, ¢) is the Jacobi matrix) is the
equivalent transformation for equations (0.1)—(0.4). The structure of equations (0.1)—(0.4) is not
changed after such transformation. The components of the initial velocity vector are changed
and they are described by the following formulas

= (Byve — Bem)uo — (Beve — veBe)vo + (Beym — Bve)ws,

Jug
Jug — (Yeorw — ey )vg + (Ve — Yo )wy,
up — (e — Beae)vg + (g By — amBe)wg,

)
where (u}, vd, w(l)) =g (&(a, B, 7)) and divug = 0.

1. Formulation of the problem and group analysis
of equations

It is necessary to find the kernel of basic Lie algebra of the transformation of system (0.1)—(0.4)
and all specifications of the elements wug, vg, wo that give us an extension of the Lie algebra [3].
We define the infinitesimal operator for system (0.5)—(0.8) in the following way

0 0
oz T duk

X=¢

i=1,4, k=1, 4. From this point on we assume summation for all repeating indices. We
assume that elements (£1, €2, ¢3) depend on (x!, 22, 23) and ¢* depends only on z*. We also
assume that (n', 7%, n, n*) depend on (&%, €2, &3, &4, ut, w2, u?, u?).

System of equations (0.5)—(0.8) has first order derivatives. To construct the determining
equations it is necessary to extend the operator X to the first order derivatives

¢ N
ox’ Ui oum b

)1(:X_|_(:x

k _
'Laiui'ca Cz_

oz’ toun

n=14, j=1, 4.

Let us use the criterion of invariance [3] when the action of the operator )1( on equations
(0.5)—(0.8) gives us zero It means transition to a manifold of equations (0.5)-(0.8). By ex-
pressing elements u}, u3 and u} from equations (0. 5) (0.7) in terms of the remaining variables
we determine the manifold M. We express element u} from equation (0.8) in the following way

3 3,2 1 3 3,2 2,3 3,2

Lo (u2ud — 2) b (udud — udud) (uduf — u2u3) —uj (uiul — uiuj) (udul — u2u3)

Uy = (UgUz — UgUg

Let us consider each of the equations.
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The result of action of the operator on equation (0.8) gives

1(,2 3 3,2 1 2 3 3,2 1,2 3 3
)1( (ul (u2u3 — u2u3) + ug (—ulus + u1u3) + u3 (u1u2 uluz) 1) 0.
The extended version of the previous expression is

¢t (Uzus - “2“3) +uy (< uj +u3Cs — Guj — ua?‘Cg?) @) (u1u3 - U‘;’Ug)

(<1U3 +ui¢s — “3(1) + (3 (Uluz u1u2) + ug (Cl uj +uids — Gut — Uz(f) =0.

Let us switch to manifold M which is defined by equations (0.1)-(0.5).
split the resultmg equation with respect to the independent variables uj, 4
variables u}, u%, u3, ui). The results of the splitting are presented below

We notice that the derivatives of coordinates of the operator X are equal to zero for several

variables, namely,

what follows we

Inw
=1, 4 (we exclude

2 J

ot on*  ond ont ont  ont

ETR R R il v il v Al (1.1)
2 2 2 3 3 3

o’ _on® _ ot _, on’ _on’ _ o (1.2)

Ozt~ 0z2 023 ' Ox' 022 01
The following equation for the coordinates is valid

L/ L/ S S S
ol o T o ot 92 a8 (1.3)

Let us analyze equation (0.5). The result of action of the extended operator on this equation
with respect to the coordinates used in equations (1.1)—(1.2) is

)1( ((ugug u%u%) (uiL + uo) + ( u1u3+u‘;’u§) (uéL + vo) + (u%u% u?ug) (ugL + wo) — U};) =0.

The extended version of the previous expression is
1y 3,2 4 2,3 1 aUO 20ug 30U
i+ (3 4+ u3C3 —(Guz — u3C3) (uf +uo) + (u3ud —uju3) (¢ +f T +¢ 2 +£ 923 +
2.3 4 1 81}0 2 81}0 3 81}0
+ (Hus—uiG + Gl + uiQd) (up +vo) + (—ufu +uiu) ( G +f +€ +€ +

+ (C1U2 + U1C2 C1U2 - U?C%) (ué + wo) + (U1U§ - u1u2) (Cs +f 8w0 f 8w0 +§3 8w0> = 0.

We obtain equation in which the transition to manifold M is realized. The resulting system of
equations is split with respect to independent variables shown above. The following conclusions
are made as a result of the splitting of the equation. First of all, we found out that

on* B ont
out Ozt
Second, we obtained the following type of equations

ot om* o  omgt  9gt 0 o0&t ot

= 0. (1.4)

o "0l T 0w T oul  orl 0a  0ad T oat (15)
on*  ont on*  ont
%w*w O w0\ gur T o) =Y o)
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oul  Oud

From equations (1.6)—(1.7) four cases follow: 1) vg # 0, wo # 0; 2) vo =0, wo # 0; 3) vo # 0,
wo =0; 4) vg =0; wp = 0. The first three cases result in the following equations

3 1 3 1
v <6n+ 877) =0, wo (8"+a77) — 0. (1.7)
u

on?>  ont 0 0
o o0 0w o, (1.8)
ou ou oul  Ou
The last case is not taken into account.
Third, we obtained equation that contains components of the velocity vector (ug, v, wp) in

explicit form:

gi+§ % 58“0_’_535“0
+u0(§$—g§+gﬁ—g§—?+§€i)+ og—ngr gfj 0, (L9)
Z—Zi%lgﬂ% gv2+§3avo
+“O§i:+“0(gnz—gi+g?;—gg—gzﬁJrgii)*wogg:Oa (1.10)
gﬁ3+§ (3wo+5 %+53%+

ag! o¢? o ogt on®  9g2  ont  ogt\
Tuogs T 0gE T\ GE T e Y s T 9 awt Toet) — % (Y

Similarly to the previous case, the result of action of the extended operator on equation
(0.6) is

_C4 (_CZUB u2<3 +< +U§C§) (uzll+u0) ( Uz’ug + U2U3) <C1 + 51 5u0 T T 52 8u0 +§3 8u0>+
+ (Cllug + u%g‘? — Cf’ué — u?g‘%) (u;l + vo)+(u%u§ — “1“3) <<2 51 v 0 52 31)0 e 81}0)
+ (_<11U2 U1C2 —|—<1 UQ + U1C2) (u§+w0)+( U1u2—|—u1u2) <<3 _|_€1 8wo +€2 8wo +£3 8w0> 0.

As a result of the splitting with respect to independent variables we obtained equation

ont _ on?

and the following equations

ot on* on? ot ogt  0gr 08 ogt
9 "o B T ort o2 008 T oat " (1.13)

Y (1.14)

The last equations were obtained after considering the mentioned above cases: 1) vg # 0, wp # 0;
2) vg =0, wyg#0; 3)vy#0, wo=0;4)vg=0; wg=0.
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We have also obtained the following equations

877 51 Buo 52 Buo 53 8u0

8772 8&'2 77 853 7’ 854 852 853
o (auax 98 03 T oul T oat ) T g TogT =0 (1.15)
0 0 50 0
al +E SR P+ o
o¢’ o o¢! an 853 on* a§4 o
+u0812 +UQ <_8'LL2 - 81171 + aus - 8,I3 + aul + 8 1 + w a a0 0, (116)

8 4 51 8’100 52 5‘w0 +§3 5‘w0
03
ogt  0¢ on? 551 on’ 552 ont 0N _
9 T3 T\ "o Tt Tow "0 T o T o) T
Let us note that equations (1.15)—(1.17) differ from equations (1.9)—(1.11) by the terms in

parentheses.
Finally, the result of action of the extended operator )1( on equation (0.7) is

+U0

(1.17)

ou 5 0u ou
<+ (Qui+ubGG—CGul — u3G) (ui+uo) + (ujud — w%)Q1£ ()5 °+€ 0)+

ov (% ov
+ (—C%U?ﬁ uiGs + Cus +u1C3) (”vé"‘”o) + ("“1“3"’“1“3) (Cz fl 2 +52 2 +53 0)"‘

2&%+g&%>_0

(C1U2+U1<2 Cf“%f“%@l) (u§+w0)+(u%u§ uiu u3) <C3+§1 +£ 02 923

As in previous cases, the splitting of the equation with respect to independent variables leads
to the following result

ot on®
o~ oat (1.18)
ot _om® o ot o8t 0¢ 0¢  o¢t
8U4 a’LLB + auQ + oul afEl 612 8.’E3 + ax4 - 0) (119)
o’ o> _ o omt o
02 oY g T Y (1.20)

given that 1) vg # 0, wg #0; 2) vg =0, wy #0; 3) vg#0, wo=0; 4) vg=0; wy=0.
Besides, there are equations which contain the coordinates of the operator and the components
of initial velocity:

%+51% +52% +53%+
o (gzz—gi—gﬁ—§§+a;+§f)+wgi+wogf 0, (1.21)
2—224&1% +52§”;’+538”0
+uog§+vo<gzz—gfj—gi,_gf)’+gzl+gfi)+w02§:0, (1.22)
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ow, ow, ow,
ot | 40w | 50wy 30wy
ox3 +< ox! +< Ox? +< 8x3+
ot 552 on* ogt o o ont ot
o 05 ont 95T on 08\ 1.2
Huog s T s T\ G2 T o T 98 a2 T aut T aet) 0 (1.23)

As in the previous cases, let us note that equations (1.21)—(1.23) differ from equations (1.15)—
(1.17) by the terms in parentheses.
Therefore, the determining equations for the coordinates of the operator X that are admitted
by system (0.5)—(0.8) are
1 2 3
on. _ o _ o (1.24)
oul  ou?  Oud

ont 1 Oug 8uo dug ont  0¢? 3 oet 0¢? o€’
al‘f‘f +f +§37+ 0(31_&%2_8—1—84 +v Oﬁ—i—woa =0, (1.26)
8 1 8110 9 81}0 3 (%0 3751 377]1 6751 ﬁ ot g3
T T o T e T g T\ GuT T et aas T aet) T W0 = O 12D
ont | 8w0 9 8w0 3 8w0 ¢! €2 ont ogt  agr ot
a f f f 83+v083+w0(61_6$1_8$2+84 =0 (128)
When v ;é 0 and wqg # 0 the following equations are valid
on?  ont
a1 + 03 =0 (1.29)
on* ont
Pl + 955 0, (1.30)
on®  on? B
According to equatlons (1.1), ( ) (1.4), (1.12.) and (1.18) the following relation are true:
nl(u:l? u27 u3)’ 772( ’ )7 77 ( 27 u3)’ 774(1:17 :L'Z’ x37 u4)7 §J(x17 :Z:27 1;3)7 j: ]"253

and &*(z%).
The analysis of the equations which do not contain initial velocity gives the preliminary
structure of the sought-for functions:

¢ =¢E@" 2? 2%, i=1, 2, 3,
¢t =¢iah),
nt = Ciut — Cou® — Csu® + Cy,
n? = Cou' + Cyu® + Csu® + C,
773 = Csut — Csu? + Chu + Cr,
= (20, — &) u' + @(2', 27, 2%, 2"),
here C; ... C; are constants. Then we obtain the equation that links ¢!, ¢2 and £3:

o1 + &2+ E5s = 301 (1.32)
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The remaining three determining equations are in fact classifying equations for the functions

uo(§), vo(§), wo(é):

8u0 auo a¢! 854 o¢? o¢?

51 —|—§2 —&—537—% 0( 201+8 6 A )tV 08 1 +’w087+87 0, (1.33)
. 5‘1}0 ) 5‘1}0 5 avo ae! a2 oet o¢?

§opt T8 g T8 g g s Tvo| 201+ 55 + 27 | +w W*@:O’ (1.34)
ow ow ow o€t 2 9¢3 9ed 0P

R SR 853 + vo(,f3 +w < 201 + 6—53 + a§4> o = 0. (L35).

Let uo(€), vo(€) and wo(€) be arbitrary functions then &' = 0, ¢2 =0 and &2 = 0. Therefore,
we have C; =0, 9¢*/9z* =0, 0®/0x! =0, 0®/92* = 0 and 9P/dx3 = 0. It means that
& = Cy = const and ® = h(z*). Then the basis of the main operators of the Lie algebra
consists of the following operators

. 0 5,0 ;0 30 ;0 5,0 3 0
Lot Xy =50 Xo=—wl o tul oo, Xy = —u’op bl o, Xo= —ulog oo
0 0 0 o 0
Ko = gt Ko = 5@ X1 = g Ko =M )5

It should be noted that equations (1.33)—(1.35) do not contain terms which depend on x*,

with the exception of the term 9¢*/(0z*). Then we can conclude that 9¢*/(0x*) = Cg = const
so &4 = Cgx* + Cy.

It turns out that the analysis of system (1.33)—(1.35) is reduced to the analysis of three
equations for the components of the initial vortex w = rotug, where ug = (ug, v, wp), w =
(W, w?, w3), w! = wop2 — Voas, W? = Uges — Woer and WP = vgu1 — Ug2. Indeed, considering
the condition of compatibility of equations (1.19)—(1.21) we get the system of equations that
contains only components of vector w and the operator coordinates &', £2 and &3

2 3 1 1
(Cg —-2C1 + % + gi) w!l — %wz - giw +&twl + 20 + 8wl =0, (1.36)

- ot ot , 08 0 5 2 2 3.2 _

<C’8 20 + = ey +—8 5 )W 5 T 5 Wi+ w2 + 2wk + Bw? =0, (1.37)
ot 02N 4 08 | 08 5, 4 5 2 3 3.3 _

<Cg — 201 + 67 + 87 W — @w — 6760 +£ w 21 + wzz + wm?, S 0 (138)

Equations (1.36)—(1.38) supplemented by equation (1.32) are classifying equations for system
(0.1)-(0.4). With the change of variables ¢! = Cizt + Zl, & = Ciz? + EQ, & =0 + Eg
equation (1.32) becomes homogeneous one

o+ + 80 =0, (1.39).
As a result of this change of variables, equations (1.36)—(1.38) take the form
71 —
Cs — ai wl_ai“ﬂ aiw +(Clx1 "‘gl)wil +(C1$2+Ez)w;z+(C1w3+gj)wi,3 =0, (1.40)
x 0x? Oz3
08\ o 08 . €
(Cs - x) Wl = o w S (Cha" +8 w2 +(CraP+E)wke +(CraP +E )wds = 0, (1.41)
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o€’ o€’ g’ 1 2 3
3 1 1,7 3 272\ 3 379V ,3.
(Cg — 6x3> A e T 2 (Cra € )W (O +-E) w3, +(Cra® +€ ))wds = 0. (1.42)
We need to add equation
wh + w2 +ws = 0. (1.43)

to equations (1.39)—(1.42). _
Therefore, we have five equations (1.39)—(1.43) for six functions g,owi, j=1, 2 3.

2. The solution of classifying equations

From equations (1.40)—(1.42) the first classifying relation w' = const can be derived. Then
system of equations (1.40)—(1.42) can be rewritten as

1

o€t | og , e

91t g T g = Gt
08 | O o 4
9ot g g = Ot
‘95 % 9 3
) +6 +8 w?® = Cgw®.

Thus, from equations (1.40)—(1.42) we obtain the following equations

Ve w = Cgw, (2.1)
i=1,2, 3, w=(w!, w? w?) is constant vorticity of the fluid at the initial point in time. Let
us assume that w # 0 and without loss of generality we can also assume that w!' = const # 0.
Then equation (2.1) can be divided by w! and vorticity takes the form w = (1, w?, w?) with
new constants w? and w3.

Let us rewrite system of equations (2.1) in extended form, assuming that w! = 1,

—1 1

98 0E ¢
aa1 T a2t 5 =06 (22)

2 —2 2

o OE €
ﬁ+@ 2+ﬁ 3:08012’ (23)

3 —3 —3
%+% 2+%w3:08w3 (2.4)

We obtain three first order partial differential equations in variables El, EQ and 53.
One can suggest the following solution of equations (2.2)—(2.4)

& =Cyr' + Y, B), (2.5)
& = Cgwz! + (e, ), (2.6)
& = st + o, B), (2.7)

where o = 22 — w?z!, =23 —~w3w1.
If we assume f2( a, B) = f*(a, B) + aCs then instead of Csw?z! we can write Cgz? in
equation (2.6). Similarly, instead of Cgw?x! we can write Cgz® in equation (2.6).
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Remark. When w? # 0, w? = 0; w? =0, w?® # 0; w? = w3 = 0 we have special cases of
relations (2.5)—(2.7):

a) w2 #0, w3=0: El = Cgzt + fl(a, 23), 52 = Csz? + f?(a, 2°), Eg = f3(a, 2%).

b)w2 =0, w? 7é 0: El = Cle + fl(m2v ﬁ)v 52 = fz(x27 5)7 ES = CSxS +f3($2, ﬁ)

u? =wd =0 & =Cyal + f1(2%, 2%), € = 22, 2%), & = f3a?, 2%).

After substituting expressions (2.5)—(2.7) into equation (1.39), we obtain the following equa-
tion

3Cs + (f* = fHa+ (fP —w’fHs=0. (2.8)

Let us introduce the following designations in equation (2.8): dg = f? — w?f! and d, =
f3 —w3f! +3CsB. Then we find that f2 = w?f! +dg, f3=w3fl —3Cs6+da.

Conclusion

For the vorticity vector w = (1, w?, w?®) = const we have the following coordinates of the
operator
51 = lel + Cle + fl(ay ﬁ)v

€ = C12? + Cga® + W’ f + dg,
¢ = C12® + Csa® + WP f1 — 3CsB + da,
¢t = Csz" + Oy,
nt = Crul — Cou?® — Csu® + Cs,
n? = Cyul 4+ Cru? + Cyu® + Cs,
n® = Cyu! — Cyu’ + Crud + Cr,
n* = (2C) — Cg)u* + h(zt, 22, 23) + p(2?),

where o = 22 — w?r!, B = 2% — w3z and functions h(z!, 22, 23), o(z), (o, B), d(a, B)
are arbitrary functions.
The basic Lie algebra Ly is extended by operators

0 0 0 0 0 0
_ .1 2 3 1 3 3 4
Xi=r g a T e P g Y g T e T e T2 g
0 0 0 0 0
_ .1 2 3 4 4
Xe=a g i T gz Y m v g ~ Vg
0 0 0 0 0 0
Xy = — 2 Y 37X: = — X- = 1 2 37-
3 8x1+w 8x2+w o3 4 B oz2 da8x3’ 5 h(m,x,x)au4

Another possibility to obtain classifying equations is given by the function w. Let us present
system of equations (1.40)—(1.42) in the form

C1x - ywh + € - gw* + Csw® — ek - w =0, (2.9)
k=1, 2, 3, Cy and Cjy are some constants,
div€ =0, divw = 0. (2.10)

Equations (2.9) and (2.10) allow one to determine the coordinates of the operator £ in terms
of w.

The basis of the Lie algebra for any function w that extends Ly can be found in the following
cases:
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ifCy =1, Cs =0;
2) 1f01 :0, 08:1;
3)if ¢y =0, Cs=0.
In the first case the coordinates of the operator are derived from system (2.10) and equations

x-ywh + €yt - vehw =0,

k=1, 2, 3. In the second case the coordinates of the operator are derived from system (2.10)
and equations
£ vuw' +wk - vt w=0,

k=1, 2, 3. In the third case the coordinates of the operator are derived from system (2.10)
and equations

€ v —vehw=0,

k=1, 2, 3. A special solution of the latter system of equations is & = w. For this solution we
have the following coordinates of the operator

r]l = —CzUZ — C3u3 + Cy, 772 = Cgul + +C5u3 + Cs,
n® = Csu' — Csu® + +C7, n' = —Ehau' + (2", 2%,2°, 7).

Author wants to thank Professor Viktor Andreev for problem formulation and helpful discus-
s10MS.
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I'pynmoBas kiaccudukaliius ypaBHEeHUN TPEXMEPHOIA
NaeaJbHON KNJKOCTA B TEPMUHAX TPAEKTOPUil
n noreHnuaJga Bebepa

Hapbsa A.KpacHoBa

IIposodumcs 2pynno6oti anasu3d ypasHenull d8UNCEHUs UOEAALHOT HCUIKOCU 6 NEPEMEHHBLT MPAek-
mopuli — nomenyuan Bebepa. Ilokazaro, wmo nepexrod x npouseosbHuM AG2DAHIACEEHIM KOOPOUHGMAM,
coTpaHAOUUT 00BeM, ABAACMCA NPEOOPA30BAHUEM FKEUBAACHMHOCTIU 0Af d9mol cucmemdt. Tloaywervl
KAACCUPUUUPYIOWUE YPABHEHUA HA PYHKUUU HAYAADHO20 pacnpedeseHus ckopocmu. Buuuciena ochos-
naa epynna Jlu u yxasanovr €€ pacwuperus.

Karoueswie crosa: ypasnerus udeasvholi scudkocmu, npeobpa3osanue IK6UBAAEHIVHOCTU, AA2PAHIHCESDL
KoopIUHAMYL, KAacCUPuUUUPYIOULUE YPABHEHUA.
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