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To the memory of my dear teacher Professor Vladimir Petrovich Shunkov, who

was an outstanding mathematician and the founder of the well-known large and

powerful algebraic school.

Introduction

Introduce the definition:

Definition. The group G will be called weakly graded, if for every g, h ∈ G, the subgroup

< g, gh > possesses a subgroup of finite index 6= 1 whenever g is an element of infinite order, or

g is a p-element 6= 1 with some odd prime p and also [gp, h] = 1 and the subgroup < g, h > is

periodic.

The same as in this definition groups were first considered in [1] (without a name).

Remind the following. A group, in which every finitely generated (respectively 2-generator)

subgroup 6= 1 possesses a subgroup of finite index 6= 1, is called locally (respectively binary)

graded (S.N. Chernikov, see [2, 3] and respectively [4, P. 20]). The class of weakly graded

groups, clearly, includes the classes of locally and binary graded groups and (by the way) the

classes of locally, binary, residually finite groups, the classes of locally, binary, residually solvable

groups. It includes the classes of 2-groups, RN−groups, groups that have a series with binary

finite factors, ... . Further, remind that in view of Mal’cev’s Theorem [5, Theorems 7, 8], finitely

generated linear groups are residually finite. Therefore obviously all linear groups belong to the

class of locally graded groups and, at the same time, to the class of weakly graded groups.

Remind that the group G is called Shunkov, if for any its finite subgroup K, every subgroup

of the factor group NG(K)/K, generated by two conjugate elements of prime order, is finite

(V.D. Mazurov, 1998). Now let G be a periodic Shunkov group, g, h ∈ G and g be a p-element 6= 1

with some odd p such that [gp, h] = 1. Then conjugate elements g < gp > and (g < gp >)h<gp>

of the factor group NG(< gp >)/ < gp > generate its finite subgroup. At the same time, the
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subgroup < g, gh > of the group NG(< gp >) is finite. So G is weakly graded. Thus the class of

weakly graded groups includes the class of periodic Shunkov groups.

Thus, the class of weakly graded groups is extremely large.

A series of deep and bright results are connected with the minimal condition for non-abelian

subgroups (briefly, with min − ab). S.N. Chernikov’s [6], V. P. Shunkov’s [7], N. S. Chernikov’s

[8] Theorems assert that a non-abelian group with min − ab is Chernikov, if it has a series with

finite factors, it is locally finite, it is binary finite respectively. The known N. S. Chernikov’s

Theorem (see [1, Theorem B]) establishes that a non-abelian weakly graded group with min−ab

is necessarily Chernikov. (Clearly, every abelian group satisfies min − ab.)

Further, the group G is called primitive graded, if for g, h ∈ G, the subgroup < g, gh >

possesses a subgroup of finite index 6= 1 whenever g is a p-element 6= 1 with some odd prime p

and also [gp, h] = 1 and the subgroup < g, h > is periodic (N. S. Chernikov [9]).

Every weakly graded group is, of course, primitive graded, and the class of periodic primitive

graded groups coincides with the class of periodic weakly graded groups. But any Ol’shanskiy’s

infinite 2−generator simple torsion-free group with all proper subgroups cyclic (see, for instance,

[10] or [11, Theorem 28.3]) is primitive graded and is not weakly graded. Thus, the class of

weakly graded groups is a proper subclass of the class of primitive graded groups.

Remind: a group with all subgroups normal is called Dedekind. According to the known

R. Baer’s Theorem [12], the Dedekind groups are exactly all abelian groups and all groups

G = Q× T ×R with a quaternion subgroup Q (of order 8), an elementary abelian 2-subgroup T

and an abelian subgroup R with all its element of odd order.

S.N. Chernikov’s Theorem [13] asserts that every group having a series with finite factors

(in particular, every RN−group, every almost solvable group) satisfies the minimal condition for

(on) non-normal subgroups (briefly, min− n) iff it is Chernikov or Dedekind. Groups with such

series are obiously primitive graded. The new N. S. Chernikov’s Theorem [9] establishes that a

primitive graded group satisfies min − n iff it is Chernikov or Dedekind.

Let min − abn be the minimal condition for (on) non-abelian non-normal subgroups. The

infinite non-abelian groups with normal infinite non-abelian subgroups (which present, in fact, a

special case of groups satisfying min − abn) are called IH−groups (S.N. Chernikov, see [2] and

also [3]). S.N. Chernikov has obtained a lot of principal results relating to the IH−groups (see

[2, 14] and also [4, §2], [3, Chapter 6] and [15, §§ 3-5]). The known S.N. Chernikov’s Theorem

[2], [14, Theorem 1.1] establishes that locally graded IH−groups are solvable. N. S. Chernikov

([16] and also [15, Theorem 3.2]) gives an affirmative answer to the following S.N. Chernikov’s

question (see [4, P. 20]): Are the binary graded IH−group solvable? N. S. Chernikov ([16] and

also [15, Theorem 3.2]) establishes that the weakly graded IH−groups are solvable.

Taking into account the data set forth above, it is natural to investigate the weakly graded

groups with min − abn.

1. The main results and some corollaries

The following three theorems are the main results of the present paper.

Clearly Chernikov groups and non-abelian groups with normal non-abelian subgroups satisfy

min − abn.

Theorem 1. For the weakly graded non-abelian group G the following statements are equivalent:

(i) G satisfies the minimal condition for non-abelian non-normal subgroups.
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(ii) G is a Chernikov group or a solvable group with normal non-abelian subgroups.

A great many Ol’shanskiy’s groups (see [11]) are infinite simple groups with min − ab. For

any such group G the statement (i) of Theorem 1 is valid but (ii) is not. Thus, in the Theorem

1, the condition: “G is weakly graded” is essential.

Theorem 2. Let G be a periodic non-abelian Shunkov group. Then the following statements
hold:

(i) G satisfies the minimal condition for non-normal subgroups iff it is Chernikov or Hamilto-
nian.

(ii) G satisfies the minimal condition for non-abelian non-normal subgroups iff it is a Chernikov
group or a solvable group with normal non-abelian subgroups.

Theorem 2 is announced [17].

Note that in view of Theorem 1 [9], in the statement (i) of Theorem 2, the restriction of

periodicity of G is not essential. However, in the statement (ii) this restriction is essential.

For instance, the Ol’shanskiy’s infinite 2−generator simple torsion-free group with all proper

subgroups cyclic (see [10] or [11, Theorem 28.3]) satisfies the corresponding minimal condition.

It is Shunkov, but it is neither Chernikov, nor solvable.

Theorem 3. Let L be the minimal local class of groups closed with respect to forming subgroups
and series (at the same time, to forming subcartesian products) and containing the class G of
all weakly graded groups. Let G be a non-abelian group belonging to L. The group G satisfies
the condition min − abn iff it is a Chernikov group or a solvable group with normal non-abelian
subgroups.

The following eight propositions are immediate consequences of Theorem 1.

Corollary 1. A solvable non-abelian group satisfies min − abn iff it is a Chernikov group or a

group with normal non-abelian subgroups.

Corollary 2. Let G be a non-abelian locally or binary or residually solvable group. Then G

satisfies min − abn iff it is a Chernikov group or a solvable group with normal non-abelian

subgroups.

Corollary 3. Let G be a non-abelian locally or binary or residually finite group. Then G satisfies

min − abn iff it is a Chernikov group or a solvable group with normal non-abelian subgroups.

Corollary 4. A non-abelian group, having a series with binary finite factors, satisfies min−abn

iff it is a Chernikov group or a solvable group with normal non-abelian subgroups.

Corollary 5. A non-abelian 2−group satisfies min−abn iff it is a Chernikov group or a solvable

group with normal non-abelian subgroups.

Corollary 6. A linear non-abelian group satisfies min − abn iff it is a Chernikov group or a

solvable group with normal non-abelian subgroups.

Corollary 7. A non-abelian RN−group satisfies min − abn iff it is a solvable Chernikov group

or a solvable group with normal non-abelian subgroups.

Corollary 8. A non-abelian locally or binary graded group satisfies min−abn iff it is a Chernikov

group or a solvable group with normal non-abelian subgroups.

The following two propositions are consequences of Corollary 8 and Theorem 1 respectively.
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Corollary 9. Let H be the maximal class of groups in which every non-abelian group with

min− abn is a Chernikov group or a solvable group with normal non-abelian subgroups. Then H

is local and closed with respect to forming series and subcartesian products.

Proof. First, note that Chernikov and solvable groups are locally graded, and the class of

locally graded groups is local and closed with respect to forming series and subcartesian products.

Therefore taking into account that the class of all groups with min − abn is closed with respect

to forming subgroups and factor groups, it is easy to see: if some non-abelian group G with

min − abn has a local system of H−subgroups or a series with H−factors or is a subcartesian

product of H−groups, then G is locally graded. At the same time, in view of Corollary 8, G is a

Chernikov group or a solvable group with normal non-abelian subgroups.

The proof is complete. 2

Corollary 10. Let H be from Corollary 9, and G be a group such that for every g, h ∈ G, the

subgroup < g, gh > has a homomorphic image K ∈ H and K 6= 1, whenever g is an element of

infinite order, or g is a p−element 6= 1 with some odd p and also [gp, h] = 1 and < g, h > is

periodic. Then G ∈ H.

Proof. Let G satisfy min − abn. Then K also satisfies min − abn. So K is Chernikov or

solvable. Therefore the 2-generator group K and, at the same time, the group < g, gh > have a

subgroup of finite index 6= 1. Thus, G is weakly graded. In view of Theorem 1, G is a Chernikov

group or a solvable group with normal non-abelian subgroups, if it is non-abelian.

The proof is complete. 2

In conclusion, note that the non-abelian groups with normal non-abelian subgroups are some-

times called metahamiltonian. The metahamiltonian groups are studied, for instance, in [18–23].

The structure of solvable metahamiltonian groups to some extent is roughly revealed in [23].

2. Preliminary results

Proposition 1. Every residually finite group G with min − abn is almost abelian.

Proof. Let each subgroup of finite index of G be non-abelian. It is easy to see: G necessarily

contains some subgroup H of finite index with normal in G subgroups of finite index; for some

subgroup K of finite index of H, H/K is non-abelian. Take any subgroup L of finite index of

K. Then all subgroups of the factor group H/L are normal in it. Therefore in view of R. Baer’s

Theorem [12] mentioned above, |(H/L)′| = 2. So because of (H/L)/(K/L)(≃ H/K) is non-

abelian, K/L is abelian. Consequently, the (residually finite) subgroup K is abelian, which is a

contradiction.

The proof is complete. 2

Lemma 1. Let G be a group with min− abn, and N E G. Then G/N satisfies min− abn, and

in the case of non-abelian N , G/N satisfies min − n.

Proof. Indeed, let

G1/N ⊃ G2/N ⊃ . . . ⊃ Gj/N ⊃ Gj+1/N ⊃ . . . , j = 1, 2, 3, . . . , (1)

be a descending chain of subgroups of the factor group G/N .

If all Gj/N are non-abelian, then all Gj are non-abelian and so almost all terms of the chain

G1 ⊃ G2 ⊃ . . . ⊃ Gj ⊃ Gj+1 ⊃ . . . , j = 1, 2, 3, . . . , (2)
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of G are normal in it. At the same time, almost all terms of (1) are normal in G/N .

In the case of non-abelian N , almost all terms of (2) are normal in G. Therefore almost all

terms of (1) are normal in G/N .

The proof is complete. 2

Proposition 2. Every finitely generated almost solvable group G with min − abn is almost

abelian.

Proof. For some solvable subgroup H E G, |G : H| < ∞. Suppose that G is not almost

abelian. Then for some term K of the derived series of H, G/K is almost abelian but G/K ′ is

not. Let L/K be an abelian subgroup of finite index of G/K. In view of Schreier’s Theorem, L is

finitely generated. Since L/K ′ is finitely generated metabelian, by virtue of Ph. Hall’s Theorem

(see for instance [24, Theorem 9.51]), it is residually finite. Also L/K ′ satisfies min−abn (Lemma

1). Therefore in view of Proposition 1, L/K ′ is almost abelian. At the same time, G/K ′ is almost

abelian, which is a contradiction.

The proof is complete. 2

Proposition 3. Let G be a weakly graded non-abelian group with min − abn. Then G contains

some normal Chernikov non-abelian subgroup, or some normal finitely generated non-periodic

subgroup, which is solvable, non-abelian and almost abelian.

Proof. First, let G satisfy min−ab. Then in view of N.S. Chernikov’s Theorem [1] mentioned

above, it is Chernikov. Therefore in what follows assume: G does not satisfy min − ab.

It is easy to see: G contains some subgroup H, which does not satisfy min − ab, such that

every subgroup of H is normal in G or satisfies min − ab; H has some descending series

H = H0 ⊃ H1 ⊃ . . . ⊃ Hγ ⊇ 1 (3)

of normal in G subgroups such that for each α < γ, Hα is non-abelian, Hγ = ∩α<γHα and

Hγ satisfies min − ab. Then again in view of N.S. Chernikov’s Theorem [1], Hγ is Chernikov

or abelian. Since in (3) all subgroups Hα, α < γ, do not satisfy min − ab, factor groups

H/Hα, α < γ, are Dedekind. Consequently in view of R. Baer’s Theorem [12] mentioned above,

|(H/Hα)′| 6 2 for α < γ. Therefore obviously |(H/Hγ)′| 6 2.

If Hγ is non-abelian, then it is normal Chernikov.

Let Hγ be abelian. Then H is solvable.

In the case of non-periodic H, let K be a finitely generated non-abelian and non-periodic

subgroup of H. Then with regard to mentioned S.N. Chernikov’s Theorem [6] on groups with

min− ab, K does not satisfy min− ab. So K � G. Since K is solvable and finitely generated, it

is almost abelian (Proposition 2).

Let H be periodic. Then in view of Proposition 1.1 [3], H is locally finite. Let F be a finite

non-abelian subgroup of H. It is easy to see:

∩α<γFHα = F (∩α<γHα). (4)

Since G satisfies min − abn, for some ordinal β < γ, FHα � G whenever β < α < γ. Then,

taking into consideration (4) we obtain: F (∩α<γHα) � G.

If ∩α<γHα is Chernikov, then F (∩α<γHα) is a normal Chernikov non-abelian subgroup of G.

Let the subgroup ∩α<γHα be non-Chernikov. Then clearly F normalizes some its countable

subgroup L = {g1, g2, g3, ...}, generated by elements of prime order. Further, for some subgroup

L1 of L, L =< g1 > ×L1, for some subgroup L2 of L1, L1 = (< g1 >< g2 > ∩L1)×L2, for some
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subgroup L3 of L2, L2 = (< g1 >< g2 >< g3 > ∩L2) × L3, .... Let Ni be the intersection of all

subgroups Lu
i with u ∈ F , i = 1, 2, .... In view of Poincare’s Theorem (see, for instance, [25]),

|L : Ni| < ∞. It is easy to see:

F = ∩∞

i=1FNi. (5)

Since FNi is periodic almost abelian and non-abelian and non-Chernikov, by virtue of Lemma 1

[6], it does not satisfy min− ab. So FNi �G. Therefore, with regard to (5), F is a finite normal

non-abelian subgroup of G.

The proof is complete. 2

Proposition 4. Let G be a weakly graded group, N its central subgroup. Let G/N be Artinian.

Then G/N is Chernikov.

Proof. Let G/N be Artinian non-Chernikov. Then G/N contains some non-Chernikov sub-

group H/N such that every proper subgroup of H/N is Chernikov. Since the factor group

(H/N)/(H/N)′ is abelian Artinian, it is Chernikov (A.G. Kurosh, see, for instance, [26, Propo-

sition 4.2.11]). Further, since the class of Chernikov groups is closed with respect to forming

extensions (S.N. Chernikov, see for instance, [3, Theorem 1.4])and (H/N)/(H/N)′ is Chernikov,

(H/N)′ is non-Chernikov and so (H/N)′ = H/N .

At the same time, H = H ′N . Therefore since N ⊆ Z(G), H ′ = (H ′N)′ = H ′′. Thus

H ′ = H ′′ (6).

Also H/N = H ′N/N ≃ H ′/H ′ ∩ N.

Thus H ′ is a weakly graded group, H ′ ∩ N ⊆ Z(H ′), H ′/H ′ ∩ N is Artinian non-Chernikov

with all proper subgroups Chernikov and also (6) holds. Taking this into account, we may

assume without loss of generality: G/N is Artinian non-Chernikov with all proper its subgroup

Chernikov and also

G = G′. (7)

Let K be a subgroup of G. If G = KN , then, with regard to (7), G = (KN)′ = K ′ and so

G = K. If |G : K| < ∞, then |G/N : KN/N | < ∞. Therefore because of G/N is non-Chernikov,

KN/N is non-Chernikov too. So KN/N = G/N and G = KN = K.

Now remind: in view of Theorem B [1], an Artinian weakly graded group is Chernikov. Thus,

G/N is not weakly graded. Further, G/N is clearly periodic. Consequently, for some h ∈ G and

g ∈ G such that gN is a p-element 6= 1 with p 6= 2 of the factor group G/N , the subgroup

< gN, (gN)hN > of the factor group G/N has no subgroups of finite index 6= 1 and also

[(gN)p, hN ] = 1. (8)

Consequently, < gN, (gN)hN > is non-Chernikov and, at the same time, it coincides with G/N .

So G =< g, gh > N . Therefore

G =< g, gh > (9)

(see above).

Since G has no subgroups of finite index 6= 1 (see above), < g, gh >, with regard to (9), has

no such subgroups. Therefore because of G is weakly graded, g is an element of finite order. So

for some p-element b of < g >, gN = bN . Obviously, < b, bh > N =< g, gh > N . Therefore, by

virtue of (9), G =< b, bh > N . Hence follows:

G =< b, bh > . (10)
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Further, with regard to (8), [bp, h] = z ∈ N(⊆ Z(G)). Put | < bp > | = m. Then [(bp)m, h] =

zm = 1. Thus < bp >< z > is a finite subgroup, normalized by b and h. At the same time, with

regard to (10), < bp >< z >E G. Consequently |G : CG(< bp >< z >)| < ∞. Since also G has

no subgroups of finite index 6= 1, bp ∈ Z(G). So

[bp, h] = 1. (11)

Since G is weakly graded and b is its p-element 6= 1 where p 6= 2, with regard to (11), < b, bh >

contains a subgroup of finite index 6= 1, if < b, h > is periodic. But with regard to (10), < b, bh >

has no such subgroups, which is a contradiction.

Thus < b, h > is non-periodic. Then, because of G/N is periodic, N has some element u of

infinite order. Since also | < b > | < ∞ and u ∈ Z(G), bu is of infinite order. Further, with

regard to (10), G =< bu, (bu)h > N . So G =< bu, (bu)h > (see above). Since G is weakly

graded, < bu, (bu)h > has a subgroup of finite index 6= 1, which is a contradiction.

The proof is complete. 2

Proposition 5. Let G be a weakly graded group, N its central subgroup. Let G/N satisfy the

minimal condition for non-normal subgroups. Then G/N is Chernikov or Dedekind.

Proof. Indeed, in view of Proposition 1 [9], (G/N)′ is Artinian. Therefore by virtue of

Proposition 4, (G/N)′ is Chernikov. Then again in view of Proposition 1 [9], G/N is Chernikov

or Dedekind.

The proof is complete. 2

Proposition 6. Let G be a weakly graded non-abelian group with min−abn, N its normal non-

abelian subgroup. Then CG(N)/Z(N) is Chernikov or Dedekind and CG(N) is almost solvable.

Proof. Indeed,

CG(N)/Z(N) = CG(N)/(N ∩ CG(N)) ≃ NCG(N)/N. (12)

In view of Lemma 1, G/N satisfies min − n. Then with regard to (12), CG(N)/Z(N) satisfies

min − n. Therefore by virtue of Proposition 5, CG(N)/Z(N) is Chernikov or Dedekind. Then,

with regard to R. Baer’s Theorem mentioned above, CG(N)/Z(N) is solvable, if it is Dedekind.

Consequently, CG(N) is almost solvable.

The proof is complete. 2

Proposition 7. The weakly graded group G with min − abn is almost solvable.

Proof. Let G be non-abelian. In view of Proposition 3, G has a non-abelian subgroup N E G,

which is Chernikov, or solvable non-periodic and also (finitely generated abelian)-by-finite. In

view of Proposition 6, CG(N) is almost solvable.

First, let N be Chernikov. Then for some abelian subgroup A � G of N , |N : A| < ∞. Put

Ai = {g : g ∈ A and | < g > | 6 i}, i = 1, 2, .... Clearly, Ai E G and Ai is finite, i = 1, 2, ...,

and A = ∪∞

i=1Ai. Consequently, G/CG(Ai) is finite, i = 1, 2, ..., and CG(A) = ∩∞

i=1CG(Ai).

Therefore G/CG(A) is residually finite. Then G/(CG(A) ∩ CG(N/A)) is also residually finite.

Therefore in view of Lemma 1 and Proposition 1, G/(CG(A) ∩ CG(N/A)) is almost abelian.

Further, in view of Kaluzhnin’s Theorem (see, for instance, [25]), (CG(A) ∩ CG(N/A))/CG(N)

is abelian. So G/CG(N) is almost solvable. Thus, with regard to Proposition 6, G is (almost

solvable)-by-almost solvable. Therefore G is almost solvable.

Let N be non-Chernikov. Then obviously it is polycyclic. Therefore N is residually finite

(K.A. Hirsch, see, for instance, [26, Proposition 5.4.17]). Since it is also finitely generated, in
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accordance with Baumslag-Smirnov Theorem (see, for instance, [24, Corollary, P. 119]), Aut N

is residually finite. So G/CG(N) is residually finite. Consequently, in view of Lemma 1 and

Proposition 1, G/CG(N) is almost abelian. Therefore, with regard to Proposition 6, G is almost

solvable.

The proof is complete. 2

Proposition 8. The weakly graded periodic group G with min − abn is Chernikov-by-abelian.

Proof. Let G be non-abelian. Then in view of Proposition 3, G has some normal Chernikov

non-abelian subgroup N . By virtue of Proposition 7, G and, at the same time, G/N are almost

solvable. Further, G/N satisfies min − n (Lemma 1). In consequence of Theorem 1 [13] and

Corollary [13, P. 16], G/N is Chernikov or Dedekind. In the first case, G is Chernikov (see [3,

Theorem 1.4]). In the second case, by virtue of R. Baer’s Theorem [12], |(G/N)′| 6 2. Hence

follows: G is Chernikov-by-abelian.

The proof is complete. 2

Proposition 9. Let G be an infinite almost abelian group with min−abn. Let also G be finitely

generated and non-abelian. Then every non-abelian subgroup of G is normal in it.

Proof. Let A be a normal abelian subgroup of finite index of G. In view of Schreier’s Theorem,

A is finitely generated. Therefore in view of the Main Theorem on finitely generated abelian

groups, A = (×n
i=1 < ai >) × (×l

i=n+1 < ai >) where < ai >, i = 1, ..., n, are infinite, and

< ai >, i = n + 1, ..., l, are finite. Put m = | < an+1 > |...| < al > | and B = {gm : g ∈ A} (of

course, it is possible that m = 1). Then B � G and B = ×n
i=1 < bi > with bi = am

i . Obviously

B is torsion-free and |G : B| < ∞.

Let p1, p2, ..., be primes such that for i 6= j, pi 6= pj , and pj ∤ |G : B|, j = 1, 2, .... Put

Bj = ×n
i=1 < b

pi...pj

i >, j = 1, 2, ... (in particular, B1 = ×n
i=1 < bp1

i >). Then Bj �G, j = 1, 2, ....

Since G is non-abelian and, clearly, ∩∞

j=1Bj = 1, G/Bk is non-abelian for some k. Fix k. Further,

clearly,

|G : Bk| = |G : B|pn
1 ...pn

k (13)

and |Bk : Bk+1| = pn
k+1

. At the same time, (|G : Bk|, |Bk : Bk+1|) = 1. Therefore in view of

Schur’s Theorem (see [25]), for some subgroup Dk+1/Bk+1 of G/Bk+1,

G/Bk+1 = Bk/Bk+1 ⋋ Dk+1/Bk+1. (14)

Then

G = BkDk+1 (15)

and

Bk ∩ Dk+1 = Bk+1. (16)

In particular, with regard to (15), G/Bk ≃ Dk+1/Dk+1 ∩ Bk. Consequently, Dk+1/Dk+1 ∩ Bk

and, at the same time, Dk+1 are non-abelian.

Further, in view of (14), |Dk+1 : Bk+1| = |G : Bk|. Also |Bk+1 : Bk+2| = pn
k+2

. At the same

time, with regard to (13), (|Dk+1 : Bk+1|, |Bk+1 : Bk+2|) = 1. Again in view of the mentioned

Schur’s Theorem, for some subgroup Dk+2/Bk+2 of Dk+1/Bk+2,

Dk+1/Bk+2 = Bk+1/Bk+2 ⋋ Dk+2/Bk+2. (17)

(Of course, Dk+1 % Dk+2.)
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Then in view of (17),

Dk+1 = Bk+1Dk+2. (18)

Therefore, with regard to (15) and (18),

G = BkBk+1Dk+2 = BkDk+2. (19)

Also in view of (17),

Bk+1 ∩ Dk+2 = Bk+2. (20)

In particular, with regard to (19), G/Bk ≃ Dk+2/Dk+2∩Bk. Consequently Dk+2 is non-abelian.

Further, with regard to (20) and (16), Bk ∩Dk+2 = Bk ∩ (Dk+2∩Dk+1) = (Bk ∩Dk+1)∩Dk+2 =

Bk+1 ∩ Dk+2 = Bk+2. Thus

Bk ∩ Dk+2 = Bk+2. (21)

Analogously, for some subgroup Dk+3/Bk+3 of Dk+2/Bk+3, Dk+2/Bk+3 = Bk+2/Bk+3 ⋋

Dk+3/Bk+3 and G = BkDk+3, Dk+3 is non-abelian, and Dk+2 6= Dk+3, ....

Thus, we have the chain Dk+1 ⊃ Dk+2 ⊃ Dk+3 ⊃ .. of non-abelian subgroups such that

Dj/Bj+1 = Bj/Bj+1 ⋋ Dj+1/Bj+1, j = k + 1, k + 2, ..., (22)

G = BkDj , j = k + 1, k + 2, ..., (23)

and, like to (16) and (21),

Bk ∩ Dj = Bj , j = k + 1, k + 2, ... . (24)

Then, with regard to (24), Bk ∩ (∩∞

j=k+1
Dj) = ∩∞

j=k+1
(Bk ∩ Dj) = ∩∞

j=k+1
Bj = 1. So

Bk ∩ (∩∞

j=k+1Dj) = 1. (25)

Since G satisfies min − abn, for some s > k, every Dj with j > s is normal G. Then with

regard to (22), Dj/Bj+1 = Bj/Bj+1 × Dj+1/Bj+1, j = s, s + 1, .... Thus, [Bj ,Dj+1] ⊆ Bj+1,

j = s, s + 1, .... Further, also G = BkDj+1, j = s, s + 1, ..., (see (23)) and [Bk, Bj ] = 1. Hence

follows:

Bj/Bj+1 ⊆ Z(G/Bj+1), j = s, s + 1, ... . (26)

Obviously, B/Bj+1 = Bj/Bj+1 × Fj/Bj+1 where |Fj/Bj+1| = pn
1 ...pn

j , and, with regard to

(26),

B/Fj ⊆ Z(G/Fj), j = s, s + 1, ... . (27)

Further, B/Fj is (as Bj/Bj+1) an elementary abelian group of order pn
j+1.

Therefore, obviously,

Fj = ×n
i=1 < b

pj+1

i > . (28)

Taking into account (28), it is easy to see:

∩∞

j=sFj = 1. (29)

In view of (27) and (29), B ⊆ Z(G). Therefore, with regard to (23), G′ ⊆ ∩∞

j=k+1
Dj . Then in

view of (25), Bk ∩ G′ = 1. Consequently, G′ is finite.

Let H be a non-abelian subgroup of G. Show that H E G. Take primes q and r 6= q

such that q ∤ |H ′||H : CH(H ′)| and r ∤ |H ′||H : CH(H ′)|. Put Qj =< gqj

: g ∈ H > and

Rj =< grj

: g ∈ H >, j = 1, 2, . . .. It is easy to see: H ′ ⊆ Qj , Rj , and H = QjRj , j = 1, 2, . . ..
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Let H be infinite. Then Q1/H ′ and R1/H ′ are finitely generated infinite abelian. Taking

this into account, it easy to see: Qj 6= Qj+1 and Rj 6= Rj+1, j = 1, 2, . . .. Thus, we have infinite

strictly descending series:

Q1 ⊃ Q2 ⊃ . . . ⊃ Qj ⊃ Qj+1 ⊃ ..., R1 ⊃ R2 ⊃ . . . ⊃ Rj ⊃ Rj+1 ⊃ ... . (30)

Consider the case when H ′ ⊆ Z(H). For any g, h ∈ H, [gqj

, hqj

] = [g, h]q
2j

6= 1 and [grj

, hrj

] =

[g, h]r
2j

6= 1, if [g, h] 6= 1. Thus (30) are series of non-abelian subgroups. Since G satisfies

min − abn, for some t, Qt and Rt are normal in G. So H = QtRt E G.

Consider the case when H ′ * Z(H). Since q ∤ |H : CH(H ′)| and r ∤ |H : CH(H ′)|, for every

h ∈ H \ CH(H ′), we have: hqj

, hrj

∈ H \ CH(H ′), j = 1, 2, .... At the same time, Qj * CH(H ′)

and Rj * CH(H ′), j = 1, 2, .... Consequently, since H ′ ⊆ Qj , Rj , Qj and Rj are non-abelian.

Then, as above, H = QtRt E G for some t.

Now let H be finite. Then HG′ is a finite normal subgroup of G. So |G : CG(H)| < ∞.

Consequently, CG(H) is not periodic. Let u be an element of infinite order of CG(H). Since G

satisfies min − abn and obviously < uqj

> ×H %< uqj+1

> ×H, for some natural d, < ugd

>

×H E G. Since H is the set of all elements of finite order of the group < ugd

> ×H, H E G.

The proof is complete. 2

Lemma 2. Let the non-abelian group G have a local system M of subgroups such that in every

non-abelian F ∈ M all non-abelian subgroups are normal. Then any non-abelian subgroup H of

G is normal in G.

Proof. Let a, b ∈ H and [a, b] 6= 1. Take any g ∈ G and any h ∈ H. Now take any subgroup

F ∈ M, containing a, b, g and h. Then H ∩ F is a non-abelian subgroup of F . So H ∩ F E F .

Consequently, hg ∈ H ∩ F . Thus, for any g ∈ G and any h ∈ H, hg ∈ H. So H E G.

The proof is complete. 2

3. Proofs of the main results

Proof of Theorem 1. Let (i) hold. In view of Proposition 7, G is almost solvable. Let also G

be non-Chernikov.

First, assume that G contains an element g of infinite order. Take a, b ∈ G such that [a, b] 6= 1.

Clearly all finitely generated subgroups F of G, containing g, a and b, form its local system. Since

G is almost solvable, in consequence of Proposition 2, every F is almost abelian. Since F satisfies

min− abn and F is infinite almost abelian and finitely generated (and non-abelian), every non-

abelian subgroup of F is normal in F (see Proposition 9). Therefore by virtue of Lemma 2, all

non-abelian subgroups of G are normal in G.

Now let G be periodic. In view of Proposition 8, for some Chernikov subgroup N �G, G/N is

abelian. In consequence of O.Yu. Shmidt’s Theorem (see, for instance, [25]), G is locally finite.

Let U be an arbitrary non-abelian subgroup of G; u, v ∈ U and [u, v] 6= 1; g be an arbitrary

element of U and L =< u, v, g >. Then L is finite non-abelian, LN E G and LN is Chernikov.

In view of R. Baer-Polovickǐi-S.N.Chernikov Theorem [27], [28], [29], G/CG(LN) is Chernikov.

Then with regard to (S.N. Chernikov’s) Theorem 1.4 [3], CG(LN) is non-Chernikov. Since it

is periodic almost solvable (as the group G), by virtue of S.N. Chernikov’s Theorem (see, for

instance, [3, Theorem 4.3]), it contains some abelian non-Chernikov subgroup A. Obviously,

there is some descending series A1 ⊃ A2 ⊃ ... ⊃ Aj ⊃ Aj+1 ⊃ ... ⊃ 1 of A with A1 ∩ L = 1 and

∩∞

j=1Aj = 1. Since G satisfies min − abn and Aj × L % Aj+1 × L, j = 1, 2, ..., for some natural
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k, Aj × L E G, j = k, k + 1, .... Then L = ∩∞

j=k(Aj × L) ⊳ G. At the same time, for any b ∈ G,

gb ∈ L ⊆ U . Consequently, U E G.

Thus, G is an almost solvable group with normal non-abelian subgroups.

Let R E G be a solvable subgroup with |G : R| < ∞. If G/R is non-abelian, take its

non-abelian subgroup K/R with abelian proper subgroups. In view of Miller-Moreno Theorem

[30], K/R is solvable. Since K is non-abelian, obviously, G/K is Dedekind. Therefore G/K is

obviously solvable. Consequently, G/R and, at the same time, G are solvable.

Clearly, (ii) implies (i).

The proof is complete. 2

Proof of Theorem 2. Indeed, any Shunkov group is primitive graded. Therefore the assertion

(i) of Theorem 2 is a consequence of Theorem 1 [9].

Further, any periodic Shunkov group is weakly graded. Therefore the assertion (ii) of Theorem

2 is a consequence of Theorem 1.

The proof is complete. 2

Proof of Theorem 3. First, remind: an arbitrary class of groups is closed with respect to

forming subcartesian products, if it is closed with respect to forming subgroups and series (see

[31, Lemma 1.37]). Further, let H be from Corollary 9. Let M be the intersection of all local

classes of groups that are closed with respect to forming series and contain G. In view of

Corollary 9, H is local and closed with respect to forming series. In view of Theorem 1, also

G ⊆ H. Consequently, M ⊆ H. Further, M is obviously the union of the classes Mα where

M0 = G and for ordinals α > 0 by induction: if α = β + 1 for some ordinal β, then Mα is the

class of all groups with a local system of subgroups having a series with Mβ-factors; if there is

no such β, Mα = ∪β<αMβ . Let us assume that all Mβ with β < α are closed with respect to

forming subgroups. Then it is easy to see: Mα is also closed with respect to forming subgroups.

Thus M is closed with respect to forming subgroups.

Therefore clearly M = L. So L ⊆ H.

Let G satisfy min− abn. Since G ∈ L ⊆ H, G is a Chernikov group or a solvable group with

normal non-abelian subgroups.

If G is a Chernikov group or a solvable group with normal non-abelian subgroups, then it

satisfies min − abn.

The proof is complete. 2

Also the following assertion holds.

Assertion. Let R be a commutative and associative ring with 1, M be a finitely generated unital

module over R, n be a natural number. The group G 6 AutR(M) or G 6 GLn(R) satisfies

min−abn iff it is Chernikov or abelian, or a solvable non-abelian group with normal non-abelian

subgroups.

Proof. Since AutR(M), GLn(R) are locally graded (see [32, P. 428–429]), by virtue of Corol-

lary 8, the present assertion is true. 2
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Группы, удовлетворяющие условию минимальности
для неабелевых ненормальных подгрупп

Николай С. Черников

В настоящей статье устанавливается, что в очень многих больших и экстремально-больших

классах групп неабелевы группы, удовлетворяющие указанному условию, — это в точности неабе-

левы черниковские группы и неабелевы разрешимые группы с нормальными неабелевыми подгруп-

пами.

Ключевые слова: условия минимальности, ненормальные подгруппы, неабелевы, черниковские, ар-

тиновы, дедекиндовы, шунковские, разрешимые, периодические группы, слабо, бинарно, примитив-

но, локально ступенчатые группы.
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