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Basic equations and boundary conditions describing the propagation of acoustic waves in piezoelectric
layered structures subjected to uniform pressure have been obtained. The propagation of dispersive acous-
tic modes in the "[100](001)BGO/fused silica" and "fused silica/[010](100) LiNbO3" layered structures
has been analyzed in detail. Selection of solutions identified as the Rayleigh and Love modes of various
orders has been fulfilled. Dispersion relations for the phase velocity, EMCC and coefficients αv in terms
of parameter h×f have been obtained. Anisotropy of acoustic wave parameters in the "(001) BGO/fused
silica" structure has been investigated. Directions with the maximum values of the coefficients αv have
been found for some acoustic modes.
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Introduction

Electronic engineers are now engaged in developing acoustoelectronic devices, such as sensors,
filters, resonators et al, for industrial and medical applications. Wave propagation in crystals
subjected to external static fields, especially the external uniaxial stress is one the important
issues in this field [1, 2]. For example, piezoelectric sensors are commonly used to measure pres-
sures (up to 100-200 MPa/V). They operate on frequencies from 40 kHz to 100 MHz [3]. Internal
mechanical stress significantly modifies parameters of piezoelectric devices due to changes in the
properties of crystalline material. Changes in physical properties of the crystal subjected to
uniform pressure were used in [4, 5] to stabilize the frequency of the resonator, in particular to
compensate the frequency shift due to temperature change in langasite or quartz resonators [6,7].
Changes of surface acoustic wave (SAW) velocity caused by the application of diametric force and
bending moment to the langasite and quartz resonators have been analyzed [8]. The contribution

∗sburkov@sfu-kras.ru
†dholza@mail.ru
‡bpsorokin2@rambler.ru

c© Siberian Federal University. All rights reserved

– 10 –



Sergey I. Burkov, Olga P. Zolotova, Boris P. Sorokin The Influence of Uniform Pressure on Propagation ...

of the nonlinear material elastic constants has been analyzed. It has been found that the influ-
ence of these constants cannot be ignored for some configurations and it can lead to a significant
error in the determination of the resonance frequency shift. General theory of SAW propagation
in piezoelectric crystals and theoretical investigation of reflection and refraction of elastic waves
on the interface between two elastic media under external pressure has been considered in [9,10].

Such structures as "layer/substrate" (dielectric or piezoelectric layer of finite thickness de-
posited on a semi-infinite substrate with other material properties) are widely used for the de-
velopment of acoustoelectronic devices. The effect of initial stress on the Love wave propagation
in the "piezoelectric crystal/isotropic substrate" and "isotropic layer/piezoelectric substrate"
layered structures has been studied [11, 12]. The effect of uniaxial pressure on the Love wave
parameters in a structure consisting of a transversely isotropic piezoelectric substrate and func-
tionally graded material film has been investigated in detail [13]. Let us note that usually cubic,
hexagonal and tetragonal crystals are considered as piezoelectric medium.

A complete set of linear and nonlinear material properties of a crystal should be taken into
account for the correct analysis.

In this paper we examine the influence of uniform external pressure on the dispersion parame-
ters and on the anisotropy of the Rayleigh and Love waves propagation in the "Bi12GeO20/fused
silica" and "fused silica/LiNbO3" layered structures.

1. Theory of elastic waves propagation in layered

piezoelectric structure subjected to uniform pressure

Let the X3 axis of orthogonal coordinate system is directed along the outer normal to the surface
of the layer, occupying the 0 6 X3 6 h space, and the X1 axis coincides with the direction of
wave propagation. Referring to the initial configuration, the equations of small-amplitude wave
propagation, electrostatic equations and state equations for the uniformly deformed acentric
crystals under the static pressure can be written in the following form [14]

ρ0
¨̃UA = τ̃AB,B + ŨA,PQ τ̄PQ;

D̃M,M = 0;

τ̃AB = C∗

ABCD η̃CD − e∗MABẼM ;

D̃M = ε∗MN ẼN + e∗MAB η̃AB .

(1)

Here the following thermodynamic variables and material tensors are introduced: ρ0 is the
crystalline density referred to undeformed (initial) state, ŨA is the unit vector of the dynamic
elastic displacement, τAB is the tensor of thermodynamic stress, ηAB is the strain tensor,
τ̄PQ = −τ̄ PPPQ is the uniaxial stress tensor, PP is a unit vector of the pressure force and

D̃M is the vector of electric displacement. In what follows the time-dependent variables are
marked by tilde character. The comma after the subscript denotes the spatial derivative and
Latin coordinate indices vary from 1 to 3. The rule of summation over repeated indices is used.
Effective elastic, piezoelectric and dielectric constants which are the linear functions of pressure
τ̄ are defined as follows [15]:

C∗

ABKL = CE
ABKL − CE

ABKLQR SE
QRMNPMPN τ̄ ;

e∗NAB = eNAB − eNABKL SE
KLMNPMPN τ̄ ;

ε∗MN = εη
MN −HNMAB SE

ABKLPKPLτ̄ .

(2)

Here CE
ABKL, eNAB and εη

NM are the second-order elastic, piezoelectric and clamped dielec-
tric material constants, respectively; SE

ABKL is the tensor of elastic compliance; CE
ABKLQR and

eNABKL are the third-order elastic and nonlinear piezoelectric constants, respectively; HNMAB

is the tensor of electrostriction.
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Let us take solutions for elastic displacements and electrical potential in the form of small-
amplitude plane waves. Substituting these solutions into equation (1) and taking into account
only the terms which are proportional to pressure, one can obtain the linearized Green-Christoffel
equations

[

ΓBC (P ) − ρ0ω
2δBC

]

ŨC = 0;

ΓBC =
[

C∗

ABCD +
(

2CE
MBFNS

E
ADCF + δBCδAMδDN

)

PMPN τ̄
]

kAkD;

ΓC4 = e∗PACkP kA; Γ4C = ΓC4 + 2eAFDS
E
MNCFPMPN τ̄ kAkD; Γ44 = −ε∗PQkP kQ.

(3)

Here kA is the wave vector. SAW propagation in a piezoelectric layered structure under the
influence of uniform pressure must satisfy the relevant boundary conditions. Firstly, the normal
components of the stress tensor at the free surface of the layer should be equal to zero. Secondly,
the continuity of the tangential components of the electric field is ensured by the condition of
continuity of the electric potential ϕ at the "layer/vacuum" boundary. In addition, the condition
of equality of the normal components of the stress tensor and condition of continuity of the electric
potential at the "layer-substrate" interface (X3 = 0) must be satisfied:

τ
(2)
3A = 0

∣

∣

∣

X3=h
; D

(2)
3 = D(vac)

∣

∣

∣

X3=h
; ϕ(2) = ϕ(vac)

∣

∣

X3=h
;

τ
(1)
3A = τ

(2)
3A

∣

∣

∣

X3=0
; D

(1)
3 = D

(2)
3

∣

∣

∣

X3=0
; ϕ(1) = ϕ(2)

∣

∣

X3=0
; U

(1)
A = U

(2)
A

∣

∣

∣

X3=0
.

(4)

In what follows superscript 1 denotes a substrate and superscript 2 denotes a layer.

If mechanical pressure is imposed orthogonally to the free surface
(

~P ||X3

)

then elastic prop-

erties of the loading medium must be taken into account. Let us assume that a layered structure
is in contact with a gas. In this case the mechanical boundary conditions can be written in the
form [16]:

τ̃3J + ŨJ,K τ̄3K = 0 (X3 = 0) . (5)

Substituting the solutions in the form of homogeneous plane waves into boundary conditions
(4) and taking into account equations (1) and (2) one can obtain the system of equations involving
parameters of SAW propagation in a layered piezoelectric structure:

8
∑

n=1

[

an

(

e
∗(2)
3AB + 2S

(2)E
ABKP e

(2)
3ABPKPP τ̄

)

k
(n)
B α

(n)
A + a4

(

ε
∗(2)
3K k

(n)
K − iε0

)

α
(n)
4

]

×

× exp
(

ik
(n)
3 h

)

= 0;
8
∑

n=1

[

an

(

C
∗(2)
B3KL + 2S

(2)E
KPMNC

(2)
3BKLPMPN τ̄

)

k
(n)
L α

(n)
P − a4e

∗(2)
P3Bk

(n)
P α

(n)
4

]

×

× exp
(

ik
(n)
3 h

)

= 0;
4
∑

m=1
bm

[(

C
∗(1)
B3KL + 2S

(1)E
KPMNC

(1)E
3BKLPMPN τ̄

)

k
(m)
L α

(m)
P + e

∗(1)
P3Bk

(m)
P α

(m)
4

]

−

−
8
∑

n=1
an

[(

C
∗(2)
B3KL + 2S

(2)E
KPMNC

(2)E
3BKLPMPN τ̄

)

k
(n)
L α

(n)
P + e

∗(2)
P3Bk

(n)
P α

(n)
4

]

= 0;

4
∑

m=1
bm

[(

e
∗(1)
3AB + 2S

(1)E
ABKP e

(1)
3ABPKPP τ̄

)

k
(m)
B α

(m)
A + ε

∗(1)
3K k

(m)
K α

(m)
4

]

−

−
8
∑

n=1
an

[(

e
∗(2)
3AB + 2S

(2)E
ABKP e

(2)
3ABPKPP τ̄

)

k
(n)
B α

(n)
A + ε

∗(2)
3K k

(n)
K α

(n)
4

]

= 0;

∑4
m=1

[

U
(1)(m)
I bm

]

−
∑8

n=1

[

U
(2)(n)
I an

]

= 0.

(6)

Here α
(n)
K , a(n) and k

(n)
L are the amplitudes, weight coefficients and wave vectors of the n-th

partial wave (n = 1, . . . , 8) in the layer; β
(m)
K , b(m) and q

(m)
P are the amplitudes, weight coefficients
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and wave vectors for the m-th partial wave (m = 1, . . . , 4) in the substrate. Let us note that
relations (6) take into account all changes in the configuration of an anisotropic continuum,
in particular, the changes in the sample’s shape (geometric nonlinearity) and the changes in
the material constants (2) (physical nonlinearity) under the influence of strong static pressure.
Now we have the system of twelve homogeneous equations (6) involving unknown amplitude
coefficients an and bm. The standard method of partial waves [17] was used to calculate the
elastic wave parameters. By setting the determinant of the boundary condition matrix to zero,
we find the SAW phase velocity.

Let us consider the influence of static uniform pressure on the elastic wave propagation in
the (001) crystallographic plane of piezoelectric crystal belonging to the (23) cubic symmetry.
Uniaxial pressure imposed along the [100] direction changes the initial 23 point symmetry to
orthorhombic class 222 according to the Curie principle of symmetry [14]. As a result, the
existing material constants are modified:

C∗

11 = CE
11 + [C111S11 + (C112 + C113)S12] τ̄ ;

C∗

33 = CE
11 + [C112S11 + (C113 + C111)S12] τ̄ ;

C∗

13 = CE
12 + [C113S11 + (C123 + C112)S12] τ̄ ;

C∗

44 = CE
44 + [C144S11 + (C166 + C155)S12] τ̄ ;

C∗

55 = CE
44 + [C155S11 + (C144 + C166)S12] τ̄ ;

C∗

66 = CE
44 + [C166S11 + (C155 + C144)S12] τ̄ ;

C∗

12 = CE
12 + [C112S11 + S12(C113 + C123)] τ̄ ;

C∗

23 = CE
12 + [C123S11 + S12(C112 + C113)] τ̄ ;

C∗

22 = CE
11 + [C113S11 + S12(C111 + C112)] τ̄ ;

e∗14 = e14 + [e114S11 + (e124 + e134)S12] τ̄ ;

e∗36 = e14 + [e124S11 + (e134 + e114)S12] τ̄ ;

e∗25 = e14 + [e134S11 + S12(e114 + e124)] τ̄ ;

ε∗11 = εη
11 + [H11S11 + (H12 +H13)S12] τ̄ ;

ε∗33 = εη
11 + [H11S11 + (H31 +H32)S12] τ̄ .

(7)

Then components of the Green-Christoffel tensor (3), when the static deformation tensor is
taken as η̄AB = SABCD τ̄CD [14], can be presented in the form:

Γ11 = [C∗

11 + (2C11S11 + 1)τ̄ ] k2
1 + (C∗

55 + 2C44S11τ̄)k
2
3;

Γ13 = [C∗

13 + (4C44S12 + 1)τ̄ + C∗

55] k1k3;

Γ31 = [C∗

13 + 2C44(S11 + S12)τ̄ + C∗

55] k1k3;

Γ22 = (C∗

66 + 2C44S12τ̄)k
2
1 + (C∗

44 + 2C12S12τ̄)k
2
3;

Γ33 = (C∗

55 + 2C44S12τ̄)k
2
1 + (C∗

33 + 2C11S12τ̄)k
2
3;

Γ24 = (e∗14 + e∗36) k1k3; Γ42 = (e∗14 + e∗36 + 4e14S12τ̄) k1k3;

Γ44 = ε∗11k
2
1 + ε∗33k

2
3.

(8)

The application of uniaxial stress along the [100] direction to the (23) point symmetry crystal
removes the degeneracy of shear bulk acoustic wave (BAW) velocity. The Green-Christoffel tensor
turns asymmetric under static deformation [18].

The application of uniaxial stress to the isotropic medium such as fused silica reduces the
initial symmetry to the ∞/mmm Curie group. In terms of elastic properties this symmetry
group is similar to the hexagonal symmetry group. As a result, new elastic moduli occur. In
particular, when uniaxial pressure is imposed in the direction which coincides with the BAW
propagation direction the effective elastic moduli take the following form
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C∗

22 = C∗

11 = CE
11 + [C111S12 + C112(S12 + S11)] τ̄ ;

C∗

12 = CE
12 + (C123S11 + 2C112S12) τ̄ ;

C∗

33 = CE
11 + (C111S11 + 2C112S12) barτ ;

C∗

55 = C∗

44 = CE
44 + [C144S12 + C155(S11 + S12)] τ̄ ;

C∗

66 = CE
44 + (C144S12 + 2C155S12) τ̄ ;

C∗

13 = C∗

23 = CE
12 + [C123S12 + C112(S12 + S11)] τ̄ .

(9)

In this case, even if the values of phase velocities of longitudinal or shear waves are changed,
the degeneracy of shear waves is maintained. However, when acoustic wave propagates along a
direction which is orthogonal to the applied pressure the shear wave degeneracy is removed.

2. Dispersive relations and elastic anisotropy of the acoustic

wave parameters in layered piezoelectric structures

Taking into account equations (1)–(6), various elastic wave parameters such as phase velocity,
electromechanical coupling coefficient (EMCC) and controlling coefficient of phase velocity can
be obtained. These parameters are calculated for different order modes of the Rayleigh (Ri)
and Love (Li) waves propagating in layered piezoelectric structures "Bi12GeO20/fused silica"
and "fused silica/LiNbO3" for a number of options of pressure directions relative to the acoustic
wave path. The following variants are considered: (1) pressure acts along the SAW propagation
direction, (2) pressure acts in the direction which is orthogonal to the sagittal plane, (3) pressure
acts along a normal to the outer surface of the layered structure. For SAW parameter calculations
in cubic crystal it is assumed that the locus of propagation directions lies in the (001) plane.
In the case of trigonal crystals it is assumed that the locus of propagation directions lies in the
(100) and (001) planes.

Let us introduce the controlling coefficient of phase velocities under the action of pressure in
the form

ατ
v =

1

v (0)

(

∆v

∆P

)

∆P→0

. (10)

Data for linear and nonlinear electromechanical properties can be found in [19] (LiNbO3

(LN)), [16] (Bi12GeO20 (BGO)), and in [20] (fused silica).
The following relation is used to calculate the electromechanical coupling coefficient:

K2 = 2
v − vm

v
, (11)

where v and vm are the SAW phase velocities on free surface and metalized surface of the
piezoelectric layer, respectively. Because the interdigital trasducers (IDT) can be placed either
on the top surface of acoustoelectronic device or under the piezoelectric film on the substrate,
the EMCC can be calculated as in the case of upper layer metallization and when metallization
is placed between film and substrate.

Figs. 1 and 2 present the dependence of the phase velocity, the EMCC and controlling coeffi-
cients for the Rayleigh and Love waves in the investigated layer structures on the h×f parameter,
where h is the thickness of the layer and f is the acoustic wave frequency. As can be seen the
action of uniaxial pressure does not result in hybridization of the elastic wave modes in these
structures [21,22].

Dispersion relations for the phase velocity, the EMCC and αv coefficients for the Rayleigh
and Love waves in the "[100](001)BGO/fused silica" structure are presented in Fig. 1. Parameter
h× f is in the range from 0 to 5000 m/s. The Love wave phase velocities lies between the value
of the shear wave phase velocity for fused silica and the value of the shear wave phase velocity
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Fig. 1. Dispersion relations for acoustic wave propagation in "[100](001) BGO/fused silica"
layered structure: (а) — configuration of layered piezoelectric structure; (b) — phase velocities;
(c) — EMCC at z = h; (d) — αv coefficients in the case of P ‖ X1; (e) — αv coefficients in the
case of P ‖ X2; (f) — αv coefficients in the case of P ‖ X3. QSSBGO, QSSSub, QFSBGO and
QFSSub are the slow bulk acoustic wave and fast quasishear wave in the layer and substrate,
respectively. Ri and Li are the ith order modes of Rayleigh and Love waves, respectively

for BGO (Fig. 1, b). The velocity of zero-order mode of Rayleigh wave tends to Rayleigh SAW
velocity of BGO in the given propagation direction (1625.92 m/s) as parameter h× f increases.
The piezoelecric activity is observed for pure modes of Love wave. The calculation of EMCC
was performed in the case of metalization of the upper side of piezoelectric layer (z = h). The
maximum value of K2 = 2.71% is observed at h× f = 1100 m/s for the zero-order mode of Love
wave (Fig. 1, c). It should be noted that in any discussed variant of pressure direction the modes
of elastic wave remain pure modes, in contrast to the case of dc electric field application.

When pressure P ‖ X1 acts on the layered structure as a whole the shear bulk wave in BGO
is split into fast and slow bulk shear waves. As mentioned above (9), bulk shear wave in the
fused silica remain to be degenerative wave (Fig. 1, d). With increasing parameter h × f the
coefficients αv of the Rayleigh waves is varied from the value αv = 1.37 ·10−11 Pa−1 observed for
the mode R0 to the value (αv = −3.253 · 10−11 Pa−1) observed for the slow shear wave in BGO.
The αv values of the Love wave modes decrease gradually from αv = 7.399 · 10−12 Pa−1 for the
shear wave of fused silica to αv = −1.78 · 10−11 Pa−1 for the fast shear wave in BGO.

When pressure P ‖ X2 the shear bulk wave as in BGO and in fused silica is split into fast

– 15 –



Sergey I. Burkov, Olga P. Zolotova, Boris P. Sorokin The Influence of Uniform Pressure on Propagation ...

and slow waves (Fig. 1, e). With increasing parameter h× f the values of αv of Rayleigh wave
modes are varied from αv = 1.28 · 10−11 Pa−1 observed for the shear wave of fused silica to
αv = −1.33 · 10−12 Pa−1 observed for the fast shear wave in BGO. The values of αv of the Love
wave modes decrease gradually from αv = 2.35 · 10−11 Pa−1 observed for the fast shear wave in
fused silica to αv = −2.25 · 10−11 Pa−1 observed for the slow shear wave in BGO.

When pressure P ‖ X3 the splitting of bulk acoustic shear wave as in BGO and in fused silica
also occurs with the generation of fast and slow shear waves (Fig. 1, f). With increasing param-
eter h × f the values of αv of Rayleigh wave modes are varied αv = 2.35 · 10−11 Pa−1 observed
for the shear wave in fused silica to αv = −7.764 ·10−12 Pa−1 observed for the slow shear wave in
BGO. The values of αv of the Love wave modes decrease gradually from αv = 1.28 · 10−11 Pa−1

observed for the slow shear wave then they reach a minimum and go to αv = −1.33 · 10−12 Pa−1

observed for the fast shear wave in BGO.

Fig. 2. Dispersion relations for acoustic wave propagation in "fused silica/[010](100)LiNbO3"
layered structure: (а) — configuration of layered piezoelectric structure; (b) — phase velocities;
(c) — EMCC at z = 0; (d) — αv coefficients in the case of P ‖ X1; (e) — αv coefficients in
the case of P ‖ X2; (f) — αv coefficients in the case of P ‖ X3. QSSlayer, QSSLN , QFSlayer,
and QFSLN are the slow bulk acoustic and fast quasi-shear waves in the layer and substrate,
respectively. Rlayer denotes the Rayleigh wave in the layer. Ri and Li are the ith-order modes
of Rayleigh and Love waves, respectively

Dispersion relations for the phase velocity, the EMCC and coefficients αv for the Rayleigh
and Love waves in the "fused silica/[010](100) LN" structure are presented in Fig. 2. Parameter
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h×f is in range from 0 to 20000 m/s. The Love wave phase velocities is varied from the values of
the LN shear wave phase velocity to the shear wave phase velocity in fused silica (Fig. 2, b). The
Rayleigh wave velocity tends to the Rayleigh SAW velocity in fused silica in a given propagation
direction (3405.5 m/s) as parameter h× f increases. There are no pure modes in this structure
because the EMCC coefficients are not equal to zero for all modes of Rayleigh and Love waves.
The calculation of EMCC was performed for metallized "layer/substrate" interface (z = 0). The
maximum value of K2 = 5.79 % is observed at h× f = 2000 m/s for the zero-order mode of the
Love wave (Fig. 2, c).

When pressure P ‖ X1 the fast and slow shear bulk waves propagate in LN as in undisturbed
crystal. The bulk shear wave in fused silica remains to be degenerative wave but the value of
its phase velocity is changed (Fig. 2, d). With increasing parameter h× f coefficients αv of the
mode R0 are varied from the initial value αv = −1.11 · 10−11 Pa−1 to αv = 1.39 · 10−11 Pa−1 at
h × f = 3500 m/s. With increasing parameter h × f coefficients αv of higher-order modes of
Rayleigh and Love waves vary from αv = −8.72 · 10−12 Pa−1 for the LN bulk slow shear wave to
αv = 7.4 · 10−12 Pa−1 for the bulk shear wave of fused silica.

When pressure P ‖ X2 the bulk shear waves in both the layer and substrate is split into the
fast and slow waves (Fig. 2, e). With increasing parameter h× f coefficients αv of the modes of
Rayleigh wave, except the mode R0, are varied from αv = 1.98 · 10−12 Pa−1 for the LN bulk slow
shear wave to αv = 1.28 · 10−11 Pa−1 for the bulk slow shear wave in fused silica. The values
of αv of the modes of Love wave increase gradually to αv = 2.35 · 10−11 Pa−1 for the bulk fast
shear wave in fused silica.

When pressure P ‖ X3 the splitting of both the layer and substrate bulk acoustic shear waves
occurs with the generation of fast and slow shear waves (Fig. 2, f). With increasing parameter
h× f coefficients αv of the modes of Rayleigh wave are varied from αv = −1.198 · 10−11 Pa−1 for
the LN bulk slow shear wave to αv = −2.35 · 10−11 Pa−1 for the bulk fast shear wave in fused
silica. The values of αv of the modes of Love wave tend to αv = 1.28 · 10−11 Pa−1 for the bulk
slow shear wave in fused silica.

Some results on the maximal coefficients αv as well as data on phase velocities and EMCC
for the piezoactive modes of Rayleigh and Love waves are presented in Table 1 in the case when
uniaxial pressure is simultaneously applied to the layer and substrate (Tab. 1).

Table 1. Data on the parameters of acoustic waves in layered structures with the maximal
coefficients αv and non-zero EMCC values

Structure Mode Phase velocity K2 h× f αv,
(m/s) (%) (m/s) 10−11 Pa−1

P ‖ X1 P ‖ X2 P ‖ X3

[100](001) L0 1683.38 0.9 5000 -1.68 -2.20 -0.10
"BGO/fused silica" L0 3630.14 0.01 50 0.77 2.31 1.28

L5 3617.53 0.4 5000 0.41 -1.34 -6.08
[010](100) R0 3418.85 0.007* 3600 1.39 1.17 2.53

"fused silica/LN" L3 3968.96 0.8* 20000 0.84 2.47 1.35
R0 3496.23 0.1* 2400 1.31 1.16 2.67

* EMCC calculated at z=0
Fig. 3 shows the anisotropy of the Rayleigh and Love wave parameters for the

"(001) BGO/fused silica" structure under various uniaxial pressure directions and for three values
of the parameter h× f = 500, 1500, and 2500 m/s.

The angle ψ defines the wave propagation direction and it was varied from [100] to [010]
direction of BGO. At h× f = 2500 m/s the hybridization between R1 и L1 modes is observed
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Fig. 3. Anisotropy of acoustic waves parameters in a layered structure "(001) BGO/fused silica"
for three values of h× f (m/s) (1) — 500, (2) — 1500, (3) — 2500: (a) — phase velocities; (b) —
EMCC calculated at z = h; (c) — coefficients αv in the case of P ‖ X1; (d) — coefficients αv in
the case of P ‖ X2; (e) — coefficients αv in the case of P ‖ X3; (f) — PFA. Curves specified as
QSSBGO, QSSSub, QFSBGO and QFSSub are associated with bulk acoustic slow and fast shear
waves in the layer and substrate, respectively. Curves specified as Ri и Li are related to the
modes of Rayleigh and Love waves, respectively. Configuration of the layered structure is shown
in Fig. 1, a

when the angle ψ is varied from 28◦ to 62◦. Hybridization areas are marked by the vertical dashed
lines (Fig. 3, a). The generalized modes of Rayleigh and Love waves propagate in the plane and
both wave types have significant piezoelectric activity. Zero-order mode of the Love wave has the
maximum value of K2 = 2.54 % at h× f = 1500 m/s in the [100] wave propagation direction.
Zero-order mode of the Rayleigh wave has the maximum value of K2 = 1.96 % at h× f = 500
m/s and ψ = 45◦ (Fig. 3, b). In the case P ‖ X1 the maximum value of αv = −5.37 · 10−11 Pa−1

is observed for the mode R0 at h × f = 2500 m/s and ψ=42◦ (Fig. 3, c). When P ‖ X2 the
maximum value of αv = −6.22 ·10−11 Pa−1 is observed for the mode L2 at h×f = 2500 m/s and
ψ = 51◦ (Fig. 3, d). When pressure P ‖ X3 the maximum value of αv = −2.88 · 10−11 Pa−1 is
also observed for the mode L2 at h× f = 2500 m/s and ψ = 0◦ (Fig. 3, e). Note that the values
of αv have the same order of magnitude for all chosen directions of pressure P . Anisotropy of
the coefficients αv for the Love and Rayleigh modes is similar to the anisotropy observed for fast
and slow shear bulk acoustic waves in BGO, respectively. However, both the shear bulk acoustic
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waves in fused silica substrate show weak anisotropy and the difference between coefficients αv

at ψ = 0◦ and ψ = 45◦ is about 10−13 Pa−1. The angles of the energy power flow (PFA)
were calculated for zero-order and first-order modes (Fig. 3, f). The given crystalline cut can
be characterized by considerable anisotropy of phase velocity and, therefore, one can find the
sectors with large PFA values. Thus, the maximum value of the PFA equal to 30.2◦ is observed
for the mode L0 when h× f = 1500 m/s and ψ = 22◦. The maximum value of the PFA=–11.7◦

is observed for the mode R0 at h× f = 1500 m/s and ψ = 30◦.

Table 2 shows the characteristics of the elastic wave modes propagating in the structure
"(001) BGO/fused silica" with the maximum values of the coefficients αv.

Table 2. Anisotropy of acoustic waves parameters in the "(001) BGO/fused silica" layered
structure

Mode Angle ψ Phase velocity h× f K2 PFA αv,
(degrees) (m/s) (m/s) (%) (degrees) 10−11 (Pa−1)

P ‖ X1 P ‖ X2 P ‖ X3

L2 48 3293.84 2500 0.002 -4.52 4.5 -6.16 -1.49
R0 42 1690.16 2500 1.48 0.85 -5.37 3.72 -0.76
L2 51 3274.46 2500 0.006 -8.47 4.39 -6.22 -1.35
R0 46 1690.75 2500 1.49 -0.28 -5.29 3.75 -0.85
L2 0 2734.08 2500 0.08 0 0.04 -1.29 -2.88
R0 90 1641.10 2500 0 0 -1.65 -0.14 -1.85

Conclusion

Basic equations and boundary conditions describing the propagation of acoustic waves in piezo-
electric layered structures subjected to uniform pressure have been obtained. The propagation
of dispersive acoustic modes in the "[100](001) BGO/fused silica" and "fused silica/[010](100)
LiNbO3" layered structures has been analyzed in detail. Selection of solutions identified as the
various order modes of Rayleigh and Love waves has been fulfilled. Dispersion relations for the
phase velocity, EMCC and coefficients αv as a function of the parameter h × f have been cal-
culated. Anisotropy of acoustic wave parameters in the "(001)BGO/fused silica" structure has
been investigated. Cuts and directions with the extreme values of the coefficients αv have been
found for a number of acoustic modes. It should be noted that the values of the coefficients αv for
dispersive Rayleigh modes in the layered structure are strictly between the corresponding values
of the coefficients αv for the slow shear waves in the layer and the substrate. Thus, the highest
values of the coefficients αv should be expected in the vicinity of the direction of the acoustic
axis of the substrate when the degeneracy is removed under the influence of given pressure.

This research was supported by the Russian Federation Program for Supporting Scientific
Schools under grant no.4828.2012.2.
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Влияние однородного давления на распространение
акустических волн в пьезоэлектрических
слоистых структурах

Сергей И. Бурков

Ольга П. Золотова

Борис П. Сорокин

Получены основные уравнения и граничные условия для описания распространения акустических

волн в пьезоэлектрических слоистых структурах в условиях действия одноосного давления. Рас-

считаны дисперсионные зависимости фазовых скоростей, КЭМС, коэффициентов управляемо-

сти как функций от параметра h × f в пьезоэлектрических слоистых структурах
”
[100](001)

BGO/плавленый кварц“ и
”
плавленый кварц/[010](100) LiNbO3“. Исследована анизотропия пара-

метров распространения акустических волн в структуре (001)
”
BGO/плавленый кварц“. Опреде-

лены срезы и направления распространения волн с экстремальными значениями коэффициентов

управляемости.

Ключевые слова: пьезоэлектрическая слоистая структура, волна Лява, волна Рэлея, одноосное

давление.
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