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In the paper an inverse boundary value problem for the Boussinesq-Love equation with an integral con-
dition of the first kind is investigated. First, the given problem is reduced to an equivalent problem in a
certain sense. Then, using the Fourier method the equivalent problem is reduced to solving the system
of integral equations. The eristence and uniqueness of a solution to the system of integral equation is
proved by the contraction mapping principle. This solution is also the unique solution to the equivalent
problem. Finally, by equivalence, the theorem of existence and uniqueness of a classical solution to the
given problem is proved.
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Introduction

There are many cases where the needs of the practice bring about the problems of determining
coefficients or the right hand side of differential equations from some knowledge of its solutions.
Such problems are called inverse boundary value problems of mathematical physics. Inverse
boundary value problems arise in various areas of human activity such as seismology, mineral
exploration, biology, medicine, quality control in industry etc., which makes them an active field
of contemporary mathematics.

Inverse problems for various types of PDEs have been studied in many papers. Among
them we should mention the papers of A.N. Tikhonov [1], M.M. Lavrentyev [2, 3], V.K. Ivanov [4]
and their followers. For a comprehensive overview, the reader should see the monograph by
A.M. Denisov [5].

In this paper, following [6-9], we prove existence and uniqueness of the solution to an inverse
boundary value problem for the Boussinesg-Love equation modeling the longitudinal waves in an
elastic bar with the transverse inertia.

1. Problem statement and its reduction to an equivalent
problem
Consider for the Boussinesq-Love equation [10]
Ut (T, 1) — Uttar (T, 1) — QUze (X, ) — Buge(x,t) = a(t)u(z, t) + f(z, 1) (1)

in the domain Dy = {(x,t) : 0 < 2 < 1, 0 < ¢t < T} an inverse boundary problem with the initial
conditions
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the periodic condition

the non-local integral condition

and with the additional condition
u(zo,t) =h(t) (0<t<T), (5)

where 29 € (0,1), a > 0, § > 0 are the given numbers, f(z,t), p(z), ¥(x), h(t) are the given
functions, and u(x,t), a(t) are the required functions.

The condition (4) is a non-local integral condition of first kind, i.e. the one not involving
values of unknown functions at the domain’s boundary points.

Definition. A classical solution to the problem (1)—(5) is a pair {u(z, t), a(t)} of the functions
u(x,t) and a(t) with the following properties

1) the function u(xz,t) is continuous in Dr together with all its derivatives contained in
equation (1);

2) the function a(t) is continuous on [0,T];

3) all the conditions (1)—(5) are satisfied in the ordinary sense.

The following lemma holds.

1
Lemma 1. Let f(z,t) € C(Dr), / flx,t)de =0 (0 <t <T), p(x),v(x) € CH0,1], h(t) €
0

C?[0,T), h(t) 0 (0< t < T) and

1 #(0) = ¢/(1), ¥/(0) = ¥'(D)

/ p(z)dz =0, / Y(a)dr =0, p(xo) = h(0), Y(zo) = h'(0).

0 0

Then the problem of finding a classical solution to the problem (1)—(5) is equivalent to the problem

of finding functions u(x,t) and a(t) with the properties 1) and 2) of the definition of the classical
solution from the relations (1)—~(3) and satisfying

uz(0,t) = ug(1,¢) (0<t<T), (6)
B (t) — it (70, t) — Qgzz (X0, t) — Buze(To,t) = a(t)h(t) + f(xo,t) (0<tLT). (7)
Proof. Let {u(x,t),a(t)} be a classical solution to the problem (1)—(5). Integrating equation

(1) with respect to = from 0 to 1, we have

2 1 d2 d
az u(x, t)dx — p7e] (ug(1,t) — uy(0,t)) — as (ug(1,8) — ux(0,¢)) — .
B (un(1,1) — (0, ) = a(t) /1 w(z, t)dz + /1 Fetdr (0<t<T).
0 0
Taking into account that /1f(a:, t)dx =0 (0 <t <T) and (4), we find that
0
d? d
NPT (uz(1,t) —ug(0,8)) — as (ug(1,t) —ug(0,t)) — (9)

—p (uw(lﬁt) - uz(oat)) =0 (O <t < T)
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By (2) and ¢'(0) = ¢’(1), ¥'(0) = ¢’(1) we obtain
1,0) = u2(0,0) = ¢'(1) = ¢'(0) = 0,
Uz (1,0) — w(0,0) = /(1) — ¢'(0) = 0.

Since the problem (9), (10) has only a trivial solution, we have u,(1,t) — u;(0,¢) = 0, i.e. the
condition (6) is fulfilled.
Assume now that h(t) € C2[0,T). Differentiating (5) twice, we get

ua(L, (10)

ui(wo,t) = h'(t), wg(xo,t) =h"(t) (0Kt LT). (11)
It follows from (1) that
Utt(ajOa t) - utth(l‘m t) - auth(-TOa t) - ﬂu:cx(x()a t) = a(t)u(l'O; t) + f('rOa t) (O <t < T) (12)

Hence, taking into account (5) and (11), we conclude that (7) is fulfilled.
Now suppose that {u (x,t),a (¢)} is a solution to the problem (1)—(3), (6), (7), then from (8)
and (6) we find that

a? [t

az u(z, t)dz — a(t)/o u(z,t)de =0 (0<t<T). (13)

1 1
By (2) and / p(x)dx =0, / Y(z)dz = 0, it is obvious that
0 0

/01 u(z,0)dz = /01 o(z)dz =0, /01 ug(z,0)dx = /01 Y(x)dx = 0. (14)

1
Since the problem (13), (14) has only a trivial solution, / u(z,t)de =0 (0<t<T),ie. the
0

condition (4) is fulfilled.
From (7) and (12) we obtain

a2
dt?
By (2) and ¢(zg) = h(0), ¥(z¢) = h'(0) we have
u(x0,0) — h(0) = ¢(z0) — h(0) =0,
{ ui(0,0) — h'(0) = (z0) — 1'(0) = 0.
From (15) and (16) we conclude that the condition (5) is fulfilled. The lemma is proved. O

(u(xo,t) = h(t)) = a(t)(u(zo, t) = h(t)) (0<t<T). (15)

(16)

2. Existence and uniqueness of the classical solution to the
inverse boundary value problem
It is known [11] that the system
1,cos A1z, sin Ay, ..., cos Apx, sin \gz, .. . (17)
is a basis in Ls(0,1), where A\, = 2k (k = 1,2,...). Therefore, it is obvious that for each
solution {u(zx,t),a(t)} to the problem (1)—(3), (6), (7) its first component u(z,t) has the form:

u(z,t) = Zu1k(t) COS A\, + Zqu(t) sin \gx (Mg = 27k), (18)
k=0 k=1
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where

1
ulo(t):/o u(z, t)dx,

1 1
uig(t) = 2/ u(x,t) cos \gzdx, ug(t) = 2/ u(z,t)sin \pzde  (k=1,2,...).
0 0

Then, applying the formal scheme of the Fourier method, from (1) u (2) we have
ufy(t) = Fio(t;u,a) (0<t<T),
(L 4+ AZ) ufl, (8) + aXjuiy, () + BA R (t) = Fix (tu, a)
O<t<T; i=1,2 k=12..),

u10(0) = @10, u}0(0) = 10,
wik(0) = pig, ulp(0)=vu (=1,2; k=1,2,...),

where
Fig (t;u,a) = a(t)uig(t) + frix(t) (k=0,1,...),
Fro(t) = [y flx,O)dz,  fu(t) =2 [} fa,t)cos prdz (K =1,2,...),
1 1
<P10=/0 o(x)dz, wloz/o Y(x)d,

1 1
P1E = 2/ p(x)cosAprdr, 1 = 2/ Y(x)cosAgzdr (kK =1,2,...),
0 0

1
Foi, (tu,a) = a(t)ugk(t) + for(t), for(t) = 2/0 f(z,t)sin \yzdzr (K =1,2,...

1 1
Pop = 2/ o(x) sin Agaxdx, o = 2/ Y(x)sin \pzde  (k=1,2,...).
0 0

It is obvious that A7 < 1+ A} < 2A%. Therefore

a? a?\? a?
s Pagey Tl

2
Now suppose that % — [ > 0. Solving the problem (19)—(22), we find

t
u10(t) = @10 + 10 +/ (t —7)Fio(T;u,a)dr (0t <T),
0

i [(/leltmt _ lfflkeu%t) Qi + (e;u'2k:t _ euuct) Vit
k

Uik t) =

t ®=3
+/ Fy. (15 u,0) (el‘2k(t—7') _ eulk(t—r)) dr} (i=1,2; 0<t<T),

0

where

ar} ; a?)\? B
= (=1 A k__ i=1,2),

a?X? Jé]
Vi = Mok — fik = 2Ak - .
\/4(1+/\Z)2 L+ A%
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After substituting the expressions w1, (t) (k=0,1,...) and ugg(t) (k=1,2,...) into (18),
for the component u(x,t) of the solution {u(z,t),a(t)} to the problem (1)—(3), (6), (7) we get

t
u(z,t) = @10 + th1o + / (t — 7)Fo(T;u,a)dr+
0

[ 1
+ { [(pore " — papet> " )prpt (42 — e+t +
=1 Tk
t
Jr/ Fip(T;u, a)(eﬂmc(tf‘r) _ eﬂlk(tT))dT] } cos A\p T+ (26)
0

o0
1
+ Z { [(pore! ™t — p1pet oo (€24 — e+ )ahgy+

—|—/ Fop (75 u,a) (!> (t=7) — e“““(t_T))dT} } sin Agx.
0

Now, from (7) and (18) we have

a(t)=1h (t)]_l {n"(t) — f(wo,t) + Z iulllk )+ aXiul, (1) + BAiugg (t)] cos A\ To+
o =t (27)
+ Z [Auby (1) + adfuly, (1) + BAZuas (1)] sin /\kxo} .
k=1
Differentiating (24) twice, we get
i 1 Hikt Lokt okt M1kt
uir(t) = -~ [ pion (€0 — €26 )i+ (popel ™t — puy el )app+
¢ (28)
+/ Fir (750, a)(paget> =7 — Mlke”l’“(t_T))dT] (i=12),
0
1
u;'k(t) = % [.Ulk,UQk(,Ulkeﬂlkt _ ,Uszeﬂ%t)(Pik‘i‘ (‘ugke#%t _ M%kemkt)%k‘F
¢ (29)
+/ Fi(riu, a)(p3 e ) — N%keulk(tﬂ)dﬂ + Fir(t;u,a) (i=1,2).
0
By (20) and (29) we have
Apudy, (8) + aXfuiy, (8) + BAjuin(t) = Fir(tu, a) — uf(t) =
1
T [ashan (ke — pore Vit (ugre™" — piyet™ )i+ (30)

t
+/ Fir(r5u, a)(p3,et>=7) — ufke””“(t_ﬂ)dr] (i=1,2).
0

To obtain the equation for the second component a(t) of the solution {u (z,t),a (t)} to the
problem (1)—(3), (6), (7), we substitute expression (30) into (27) and have

a(t) = [h (O] {1 () — flxo,t) -

o
1
- Z — [makpon (ke ™" — porpe o1t (e — pipe it

S
t

+ / Fi(ru, a) (pgpe> =7 —u?ke“”“‘”)dﬂ cos Apio— (31)
0

o0
1
- E -~ [anion (1€ — pore> Y pop+ (u3pet " — pd e s )ihoy+
=1

t
+/ sz(T;u,a)(ugke““(t_T) - u%ke“l’“(t_T))dT] sin )\kxo} .
0
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Thus, the problem (1)—(3), (6), (7) is reduced to solving the system (26), (31) with respect to
the unknown functions u(x,t) and a(t).
Similarly to [9], it is possible to prove the following lemma.

Lemma 2. If {u(x,t),a(t)} is any solution to the problem (1)—(3), (6), (7), then the functions
1
u1o(t) = / u(z, t)dx,
0

1 1
u1g(t) = 2/ u(z,t) cos A\pzdr,  ug(t) = 2/ u(z,t)sin \gzdz  (k=1,2,...).
0 0

satisfy the system (23), (24) in [0, 7).

Remark. It follows from lemma 2 that to prove the uniqueness of the solution to the problem
(1)—(3), (6), (7), it suffices to prove the uniqueness of the solution to the system (26), (31).

In order to investigate the problem (1) — (3), (6), (7), consider the following spaces

1. Denote by Bj 1 [8] the set of all functions u(z,t) of the form

u(w,t) =Y urg(t) cos e + Y ugi(t)sin Az (Mg = 2k),
k=0 k=1

defined on Dp such that the functions u(¢) (k= 0,1, ...),u2k(t) (k= 1,2, ...) are continuous on
[0,T] and

Nl

1
oo 3
+ (Z ()\i ||u2k(t)|c[07T])2) < +o00.

k=1

Jr(u) = [luro(®)ll oo, + <Z (A} ||U1k(t)0[o,T])2>

k=1

The norm on this set is given by

(e )53, = Jr(a).
2. Denote by E3. the space B3 . x C[0, T] of the vector-functions z(z,t) = {u(x,t),a(t)} with
the norm
2l gg. = lu(z, O)ll gz . + la®)llogo7y -

It is known that BS,T and E3. are Banach spaces.
Now, in the space E3 consider the operator

O (u,a) = {P1(u,a), P2(u,a)},

where

D1 (u,a) = a(z,t) = Z U1k (t) cos Agz + Z Ugg (t) sin Mg,
k=0 k=1

Dy (u,a) = a(t),

U10(t), 4k (t), k=1,2,...) and a(t) equal to the right hand sides of (23), (24), and (31), respec-
tively.
It is easy to see that

pi <0, ekt <1 et <1 (1=1,2k=1,2,..;0<t<T,0< 7 < 1),
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al a’Xi 8 A} _
Mk < Ak + — < La(i=1,2k=1,2,...),
i (2(1—&-)\%) \/4(1+)\%)2 1+ A2 1+ A2 ( )

BAL
1+A2 °

HikH2k = 57

_— = g Evo(k:1727...).
Ot2
Ty (e ) 25 (5 )
AT\ 4(1+22)

Taking into account these relations, by means of simple transformations we find

2

T
l[a10()ll o7y < 010+ T [¢h10+TVT (/0 | f10(7)[? dT) +T2 [la®)ll ¢ o,y lvroll co,7y > (32)

(Z(Aillﬂm(t)llcw,ﬂf) < dayo (Z(/\%|Sﬁik)2> + 470 (Z(Ai|¢ik|)2> +

k=1 . Ve=l1 =1 L (33)
T o0 2 0 2
VT ( / Z(Amk(m%) + 4907 [a(®) oo (Z (] ||uik<t>||C[O,T]>2> ,
k=1 k=1
IOl < H[h(t)]‘lucm{nh”l(t)—f(xo,ﬂncm,m 1
S 2 2 0o 2 2
+< )‘k2> > [204570 <Z (AiI%kl)2> +2a%y <Z i [ik]) > +
k=1 i=1 k=1 k=1
T oo 3 (34)
+2a%70VT (/ > (R | fir(r) )2d7> +
k=1 N
+20%70 T [la()l 0.1y <Z X lJur (1) |COT)2> ] }
k=1

Suppose that the data of the problem (1)-(3), (6), (7) satisfy the following conditions
2

L. a>0,3>0, %—5>o

2. p(x) € C*0,1], ¢""(x) € La(0, ), (0) = (1), ¢'(0) = ¢'(1), ¢"(0) = ¢"(1)
3. p(z) € C?[0,1], ¥"(x) € L2(0,1),9(0) = 9(1), ¥'(0) = ¢'(1), ¢"(0) = ¢"(1)
4. f(z,t), fo(z,t), foe(z,t) EC(DT s Jraez(z,t) € La(Dr)

(z
f(O, t) = f(1,1), f2(0,
h(t) € C2[0,T], h

e, )5, < Av(T) + Bi(T) a(®)lopo,zy e, ) g (35)

77 < As(T) + Bo(T) [a(®)l o,z [0, D)l s, - (36)

where
A(T) = ||<P(5U)||L2(0,1) +T ||1/’(5U)HL2(0,1) +TVT Hf(xat)HLQ(DT) +

+8a70 [l¢" (%)l 1, 0,1) + 870 10" (@)l £, 0,1y + 870VT | faaa (@) 1y (D
Bi(T) =T + 8T,
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{17 @) = £ @0, ) ooz +

:l H (h(t)] Hc[O,T]

+ <§: /\22> 2 {4%% "@(3)(“:)“L2(071)+40‘2V0 sz(g)(x)‘

P L2(0,1)
+ 40290V T | fraa (2, )| 0]}
1
(o) 2
Ba(T) = da®yq | (e)] | Mo
o) = st ) (0
It follows from the inequalities (35), (36) that
a1l , + 180l ez < AT) + B lal®lleqo zy e 1) g, (37)
where A(T) = A1(T) + Ax(T), B(T) = B1(T) + B(T).
Now we can prove the following theorem.
Theorem 1. Let the conditions (1)-(5) be fulfilled and
(A(T) +2)?B(T) < 1. (38)

Then the problem (1)—(3), (6), (7) has a unique solution in the ball K = KR(HZHE; < R =
A(T) + 2) of the space E3.

Proof. In the space E3. consider the equation
z =z, (39)

where z = {u,a} and the components ®;(u,a) (i =1,2) of the operator ®(u,a) are given by the
right hand sides of the equations (26), (31). Consider the operator ®(u,a) in the ball K = Kg
from E3. Similarly to (37), we see that for any z, 21,22 € Ky the following estimates hold:

18] 5y < ACT) + BT) la(®)llcio,zy s, )]s (40)

[®21 — @22l 3 < BT)R(la1(t) = a2(®)lpo,ry + lun (@) — wa(w D)l g ). (41)

Then, it follows from (38) together with the estimates (40) and (41) that the operator ® acts
in the ball K = K and is contractive. Therefore, in the ball K = Kpg the operator ® has a
unique fixed point {u,a}, that is a unique solution to the equation (39), i.e. a unique solution
to the system (26), (31).

The function u(z,t), as an element of the space B3 r, is continuous and has continuous
derivatives u, (z,t) and ug.(x,t) in Drp.

Now from (28) it is obvious that w}, (¢t)(i = 1,2;k = 1,2, ...) is continuous in [0,7] and from
the same relation we get

(Z (/\2|U§k(t)cm,n)2> < 2v2Bv (Z (A% I‘Pik>2> +2v2a <Z (AR |¢¢k|)2> +
k=1 k=1 k=1

T 00 0o
+20V/2T /Z )‘k|f2k dr +2\@aT||a ”COT (Z )‘kHuzk |C[0T])2> ’
- k=1

k=1
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or

1
00 2
<Z (A} ”u;k(t)”C[O,T])Q> < 2V200 ||<P”/($)HL2(0,1) +2V2a ||¢W(x)||L2(0,1) +

k=1

2

+2aV2T | fowa (2, 75)HL2(DT +2\[aT||a ”COT (Z (AR JJuan (8 |00T])2>

Hence, ui(z,t), e (z,t), e (z,t) is continuous in Dp
Next, from (29) it follows that uf} (¢t)(i = 1,2;k = 1,2, ...) is continuous in [0,7] and conse-
quently we have:

(Z(Aillu;’k(t)llqo,n ) (Z P [l (t |COT)2) +

k=1

+w<§xﬁmwammﬂﬁ>+2vaw+amuww%m4!

L2(0,1)
k=1 2(0,1)

From the last relation it is obvious that we(x,t), U (2, 1), Uttee (2, t) is continuous in Drp.

It is easy to verify that the equation (1) and conditions (2), (3), (6), (7) are satisfied in the
ordinary sense. Consequently, {u (z,t),a(t)} is a solution to the problem (1)—(3), (6), (7), and
by Lemma 2 it is unique in the ball K = Kg. ]

By Lemma 1 the unique solvability of the initial problem (1)—(5) follows from the theorem.
Theorem 2. Let all the conditions of Theorem 1 be fulfilled and

/¢@M=Q /wmm:m o(z0) = h(0),  (x0) = K (0).
0 0

Then the problem (1)—(5) has a unique classical solution in the ball K = KR(HZHE;,F < R-=
A(T) + 2) of the space E3.
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O paspermmMocTu O/THOI OOpaTHOI KpaeBoii 3aaum
nasa ypaBHeHusi bycunecka—JIsBa

Amap T. Merpanuesn

B pabome uccaedosara odna obpamnas kpaesas 3adavwa 0is ypasHeHus Byccunecka—/Iasa. Chavana uc-
T00HaA 360a4a C800UMCA K IKEUBAAEHMHOU 6 onpedeseHHom cmoicae 3adave. C nomowwvro memoda Pypoe
IKGUBANEHMHAA 300a4a CEOOUMCA K PEUWEHUIO CUCTIEMDL UHMEZPANLHUT Ypasherul. Jlanee, ¢ nomouybio
memoda coicamur omobpasicernuti JoKa3vleamMes CYUWECMEOGAHUE U eOUHCTMEEHHOCTIL PEUEHUS, CUCTe-
MBL UHMEZPANLHBIL YPASHEHUT, KOMOPAA TAKICE ACAACTNCA COUHCTMEEHHIM PEUEHUEM IKEUSANEHIHOT
3adavu. Iloab3ysacs IKEUBANEHIMHOCTDLIO, 0KA3BIBAIOMCA CYULLCNBOBAHUE U eOUHCTNEEHHOCTL KAACCU-
YeCcK020 pewerus ucroonot 3adayu.

Karoueswie crosa: obpamnas xpaesas 3adawa, ypasnenus Byccunecka—JIasa, memod Pypoe, xaaccue-
cKoe pewenue.
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