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1. Classification of finite simple groups

It is a common knowledge that the completion of the classification of all finite simple groups
was first ‘announced’ sometime around 1980, although there were some results not yet printed or
announced officially. These ‘gaps’ were filled in due course except for the classification of quasi-
thin groups. (A finite group G is said to be quasi-thin if for every nonidentity 2-subgroup P, the
normalizer Ng(P) does not contain an abelian p-subgroup of rank more than 2 with p being an
odd prime.) From the mid 1990’s to early in the 2000’s, Aschbacher and Smith made enormous
(and courageous) efforts to put an end to the classification of all finite simple groups by redoing
the determination of all quasi-thin groups almost from scratch. Their work was published in
2004 [1]. This work marked the official end of the complete classification of all finite simple
groups which had been sought after by group theorists for nearly 150 years or even longer.

A review of the classification [The classification of finite simple groups| was published by
Aschbacher, Lyons, Smith and Solomon in 2011 [2]. This book is given the subtitle [Groups of
characteristic 2 type|, since the book deals mostly with the groups of characteristic 2 type and
hence the authors regard their book as the ‘Volume 2’ of Gorenstein’s book [The classification of
finite simple groups. Vol. 1. Plenum Press, New York, 1983. Groups of noncharacteristic 2 type].
Their publication earned the 2012 L. P. Steele Prize from the American Mathematical Society.

Independent from the books mentioned above, Lyons, and Solomon (with late Gorenstein)
have been devoting efforts in revising the existing classification of finite simple groups since early
in 1980’s. Up to ten volumes have been planned and the first six volumes have already been
published [3] as of 2013.

At this point, one could ask naively: Is there another way for classifying all simple
groups of finite order ?

This is a question, which would fall not only upon the current group theorists, but surely
also upon some future group theorists. In fact, some research in this direction has already been
undertaken. Currently, the most active area of mathematics in this direction is the research on
the fusion systems. The fusion system was not necessary created to redo the classification of
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finite simple groups, but as its application, the theory has proved useful in that aim also [4]. A
little more (but not much more) on the fusion systems will be mentioned later in this notes.

2. Sylow subgroups
Let G be a finite group and n = |G|, the order of G. Let
n=pi'-pyt-ps
be the factorization of the order n into the product of powers of distinct primes p1,po, ..., ps.

Sylow(1872). For each i, G possesses a subgroup (called a Sylow p;-subgroup) of order p;* and
all Sylow p;-subgroups are conjugate in G.

Without any question, this theorem due to Sylow is the most fundamental result obtained
for finite groups. The proof is also easy. Firstly, show that a finite abelian group whose order is
divisible by a prime p contains an element of order p. Given this fact, an easy induction, though
using the class equation of the group crucially, on the order of groups involved will prove the
theorem of Sylow. Here the class equation of a group G is defined to be:

|G| = |C1]| + |Ca| + - - - +|Cs],

where {C;,1 < i < s} are the conjugacy classes of G. It has been said that the notion of
conjugation was first brought into group theory by Sylow. Induction on the order of groups is
used in the proof and so, in general, we do not know the Sylow p-subgroups explicitly. We know
only the existence of them.

Example. The symmetric group S,, of degree n. Let

n=ag+ap+ap’ +---+ap®, 0<a; <p
be the expansion of n written to the base p. Then
S ~p (Sp) ™ X (Sp2) 2 -+ X (Spe )™,

where the notation ~,, denotes that the Sylow p-subgroups of the both sides are isomorphic. We
know also that the Sylow p-subgroup of the symmetric group S,: is isomorphic to the (i — 1)-fold
wreath product Z, 1 Z,1---1Z,. By this description, the Sylow p-subgroup of \S,, is in general
the direct product of smaller p-group. In particular, it is not indecomposable, unless n itself is
a power of the prime p.
Question. Can we characterize the Sylow subgroups of finite simple groups? Or, a slightly
weaker question: What can we say about the structure of Sylow subgroups of a simple group?
If the prime p in question is odd, then we cannot say much. Some may even say that
practically nothing can be said if p is odd. On the other hand, if p = 2, we know many useful
results. For example, the Sylow 2-subgroup of a non-abelian simple group cannot be cyclic,
generalized quaternion, Z, X Z4, to name just a few. Note that here we are asking a stand-alone
structure theorem on Sylow p-subgroups, but not a result on fusion, or on p-local subgroups.
Let us here raise a more specific question. There are 49,487,365,422 isomorphism types of
groups of order 210 [5]. But if we make use of the result of the classification of all finite simple
groups, we know that only 11 of them can and will appear as Sylow 2-subgroups of finite simple
groups.

Definition. A p-group P is said to be realizable if P is isomorphic to a Sylow p-subgroup of a
(nonabelian) finite simple group.
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PROBLEM. Characterize 11 (known) realizable groups of order 2! among 49,487,365,422
groups.

{LQ(QlO), Lg(q), Lg(q), G2(17), 54(17), L4(9), ]\4247 003, A14, U5(2), 52(32)}

is the list of 11 simple groups possessing Sylow 2-subgroups of order 2!° (with a suitable choice
of ¢, a dihedral or a semi-dihedral group of order 2!° are the relevant 2-groups there). If the
number 49,487,365,422 appears intimidating, then there are smaller numbers. We know there
are 2,328, 56,092, 10,494,213 groups of order 27,28 and 2° respectively ( [6-8][19] and there are
7, 7, and 12 realizable groups respectively.)

As for even smaller groups of order < 29 there are 267 groups altogether [9][14], and 18
realizables. Those small 2-groups and their occurrences in finite simple groups as Sylow 2-
subgroups were investigated by the author in the mid 1960’s by hand. The difficult cases to
eliminate from the list of realizable 2-groups of order < 2 were all decomposable groups such as

ZQ X ZQ XDg,Dg XDg,....
Those decomposable groups were eliminated in 1970’s by the following papers and by others.

Theorem (Gorenstein and Harada [10] ). Dam X Dan(2 < m,3 < n) cannot be a Sylow 2-
subgroup of a finite simple group. (Da: is a dihedral group of order 2t.)

Theorem (Goldschmidt [11]). If S = S1 X Sy is a Sylow 2-subgroup of a finite group and suppose
SN (S)¢ C S;(i =1,2). Then G is not simple. ((S;) is the set of all conjugates of S; in G.
If the condition S N (S;)¢ C S;(i = 1,2) holds, then S; is said to be strongly closed in S with
respect to G.)

Remark. In the paper of Gorenstein and Harada, each direct factor of a given Sylow 2-subgroup
is indecomposable (unless m = 2), while in the paper of Goldschmidt, each direct factor \S; is
not assumed to be indecomposable.

3. Decomposable and indecomposable Sylow subgroups

We have already shown how the Sylow p-subgroups of the symmetric groups would look like.
It says, in particular, the Sylow p-subgroups of S,, is decomposable unless n is a power of the
prime p. Since the index [S,, : A,] = 2, the Sylow p-subgroups of the alternating group A, are
isomorphic to those of S,,, if p is an odd prime. On the other hand, if p = 2, the situation is very
much different.

In fact,

Theorem (( [12]). If T is a Sylow 2-subgroup of the alternating group A,, then
(i) if n =4,5, orn = 4m + 2,4m + 3 with 4m # 2", then T is deomposable; and,
(i) if n =4m,dm + 1,m > 2, or n =4dm + 2,4m + 3 with 4m = 2", then T is indecomposable.

Remark. We have Ayy,10 ~2 Sim(~2 Agm+s). To see it, simply replace all transpositions of a
Sylow 2-subgroup of Sy, by (12)-(transposition).
Remark. Ay ~o Sy X Sg ~o Ag X Ajg is the smallest alternating group for which its Sylow

2-subgroups are decomposable.

From the remark mentioned above, one would suspect that if a Sylow 2-subgroup of a (known)
simple group is decomposable, then each indecomposable component is also realizable (with
respect to a smaller simple group). In fact one can prove it in general.

Theorem (Harada and Lang [12]). Let S be a Sylow 2-subgroup of a (known) finite simple group
and let S = 51 x Sg X -+ X Sy be the direct product and each component S; is indecomposable.
Then each S; is also a Sylow 2-subgroup of some (known) simple group.
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4. Reduction of the problem

First Reduction. We may assume that the 2-group S in question is indecomposable.

A supportive evidence to this reduction is the observation of Harada and Lang [12] made on
all known simple groups. But the initial PROBLEM is raised in order to redo the classification
of all simple groups of finite order. If so, this reduction step must be proved. The prototype of
the proof will be Gorenstein and Harada [10] and also Goldschmidt [11]. However, it is best to
accept this reduction step as it is. If we find a good characterization of indecomposable realizable
2-groups, then we will, hopefully, be able to find a good formulation of this reduction step.

Second Reduction. We may assume that the 2-group S in question is of nilpotent class at
least 3.

We have the following classical results. If the number of group of order p” is denoted by

p"P) then
a(n,p) =n’(2/27+ O(n~'/%)).
which is due to to G. Higman [13], C. Sims [14]. On the other hand, the number of special group
of order p" is p?(™P) with
b(n,p) =n*(2/27+O(n™"),

(G.Higman [13].) If a p-group P satisfies Z(P) = ®(P) = [P, P] = elementary abelian, then P
is said to be special. These results show that as n tends to infinity, then almost all 2-groups are
of class 2. In fact, we observe that

27, 41%
28, 56%
20, 84%

210 perhaps, more than 95% of them will be of class 2 (personal

are of class 2. For groups of order
communication, Eick, 2000.)
In order ot support the second reduction theoretically, we have the following results of Goren-

stein and Gilman [15], Gomi [16].

Theorem (Gorenstein and Gilman, Gomi). Let G be a simple group having a Sylow 2-subgroup
of nilpotenmt class at most 2. Then G is of a known type.

These results were obtained in the mid 1970’s. If a modern technique is used, perhaps a
smoother and shorter argument will prove an equivalent result. This is the mathematical reason
for the second reduction step.

Third Reduction. We may assume that the 2-group S in question is of the lowest type.

Sylow 2-subgroups of the simple group Lo(q) is elementary abelian if ¢ is even and dihedral
if ¢ is odd. Classification-wise, investigating one even case and one odd case will suffice. In fact,
except for a few small cases of linear groups, considering two cases with ¢ = 2,3 will in general
be sufficient. Thus, a Sylow 2-subgroup of a simple group G will be called of the lowest type if
G is a sporadic simple group or G is a linear group defined on the field of two or three elements.

At this moment, we have no more reductions. Summarizing, let us define that a 2-group S is
of basic type if S is indecomposable, of nilpotent class at least 3 and of the lowest type.

Remark. If one applies the formula of Higman, Sims for the number of 2-groups of order 2"
very naively, one would estimate that there would be about 2'°%° groups of order 246. But by
the classification of all finite simple groups, we know that only three of them are realizable and
of basic type, i.e. Monster, Ly(3), and O4(3).

Strategy

Step 1. Write out generators and relations for the 2-group in question. Use involutions whenever
possible. If done so, then fusion arguments will be easier to perform and also easier to view the
obtained results.
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Step 2. Force the fusion of involutions (or elements of higher orders if necessary) using;
(1). Z*-theorem [17],
(2). Transfer theorems.

Most 2-groups will be eliminated by this Step 2.
Step 3. For the remaining 2-groups, one can use, and perhaps it is necessary to use, Gold-
schmidt’s theorem [18] on groups having a strongly closed abelian 2-subgroup.

There will be some remaining groups to be eliminated. If so, then we will have to formulate
necessary results and prove them. Keep in mind that only 11 out of some 50 billions of 2-groups
of order 2'% will survive from all criteria (known or unknown.)

5. Sylow subgroups for odd primes

No corresponding Z*-theorems for an odd prime is known. In particular, if a # 1 is an
element of a Sylow p-subgroup P (p odd) of a finite group G, then we do not know whether or
not a is conjugate to another element of P in G under a reasonable assumption of simplicity of
G. Glauberman’s Z*-theorem for p = 2 has been one of the powerful results in analyzing the
structure of Sylow 2-subgroups of simple groups. But for an odd p, the corresponding theorem
is totally missing. If we use the classification of all finite simple groups, then we know that there
are some parallel results for p = 2 and p odd, such as a Z*-theorem for P = Z, x Z,. But those
desired results have been far from being proved (without the classification.) We note also that a
parallel result sometime may be false.

As for stand-alone transfer theorems for odd primes, we know the following:

Theorem (Yoshida [19]). Assume that the wreath product Z, Z, is not involved in a Sylow
p-subgroup P, p odd, of a finite group G. Then, if p divides |[Ng(P)/Ng(P)'| then p divides
|G/G'| also. Here the quotation mark’ indicates the commutator subgroup.

Let us here list up a few desired results for a Sylow p-subgroup P of a finite (simple) group
G for an odd prime p. Note that desired results are not necessarily true even for known simple
groups. Therefore, ‘desired” means : Prove it or determine all counterexamples.

(Desired Result No.1). There is no (conjugacy) isolated elements of order p in P with respect
to G, i.e. Z*-theorem for an odd prime p.

(Desired Result No.2). There is no strongly closed subgroups of order p in P with respect to
G (a slight extension of the Z*-theorem.)

(Desired Result No.3). If there is a strongly closed abelian subgroup in P with respect to G,
then the group G in question is classifiable.

Note that the ordering of the strength of these desired results is obviously: No.1 < No.2 <
No.3.

Let us investigate, as a test, the structure of a finite group G with an explicitly prescribed
Sylow p-subgroup P with an odd p. Most results below has already been obtained in Ruiz and
Viruel [20]. But, the author of this notes was not aware of their result until sometime later. Ruiz
and Viruel’s result is based on the axioms and languages of fusion systems, while in this notes, we
only use the standard group theory. As in [20], we investigate only the possible fusion patterns
and some p local subgroups, but make no attempts to determine the corresponding (global)
group structure. To determine the group structure, there will be unsurmountable obstacles at
this moment, unless the classification of finite simple groups is used.

Test Case: P is isomorphic to an extra-special group of order p? (the exponent of P is not
assumed to be p.)
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There are two isomorphism types of such an extra-special group P of order p>. These two
types are often denoted symbolically by p?Q, where pl;r2 is of exponent p and p**? is of exponent

p?. Now let G be a finite group having a Sylow p-subgroup P.

Case 1. P~ p'™2

Suppose P = {(a,b | a? = 1,b°" = 1,[a,b]? = 1,[a,b,a] = [a,b,b] = 1). P contains only
one elementary abelian subgroup A of order p?. That is A = (a, z) where z = [a,b] € Z(P).
Under the automorphism group Aut(P) of P, the element a has p? — p images while b has
p? — p? images. The elements ¢ and b can be mapped to those elements independently and so
we have |Aut(P)| = p?(p — 1)?. We know the inner automorphism group |Inn(P)| = p* and
|Out(P) = p(p — 1)%. We have Out(P) C GLz(p) and Out(P) N SLa(p) centralizes z. Therefore,
if Na(P)/Cq(P)P is not embedded in SLy(p), then z will not be an isolated element.

Next assume the stronger Desired Result No.2. Namely, assume that there is no conjugation
isolated subgroups of order p. Obviously, then (z) is conjugate in G to another subgroup (y) of
P in G. Since all elements of order p is contained in A = (a, z), we have y € A. By a simple
application of Sylow’s theorem (or using conjugation family), we see that (z) is conjugate to (y)
in Ng(A). Let N = Ng(A)/Ca(A) C GLa(p). Since (z) is conjugate to (y) in Ng(A), N does
not have a normal Sylow p-subgroup. This implies that N D SLy(p). Considering the normalizer
of the matrix -I (minus of the (2 x 2) identity matrix), we conclude that there exists an element
of order p outside of A, which is against the structure of P = p'™2. So (z) is always isolated.
Therefore, if the Desired Result No.2 is assumed with P & p1f2, then we reach a contradiction.
Conclusion. If P 2= p'™? is a Sylow p-subgroup of a finite group G, then the center Z(P) of P
is always conjugation isolated. That is Z(P)% N P C Z(P) always.

Case 2. P = p\2

In this case, P = (a,b | a? = b = 1,[a,b]? = 1,[a,b,a] = [a,b,b] = 1) and P is of exponent p.
The automorphism group Aut(P) of P is isomorphic to Z, x Z, - GLa(p) with Inn(P) = Z, x Z,,.
We assume that the Desired Result No. 2 and that G is not a counter-example. Mimicking the
argument for the case P 2 p'™2 and using Alperin’s theorem of conjugation family, we conclude
that there exists A & Z, x Z, such that N = Ng(A4)/Cg(A) D SLa(p). In particular, all
nonidentity elements of A are conjugate under Ng(A). The Desired Result No.2 takes us this
much but no farther.

So assume the Desired Result No.3 and that G is not a counter-example. In particular, A
mentioned above is not a strongly closed subgroup of P. This forces that there is a second
subgroup B = Z, x Z, such that Ng(B) = Ng(B)/Cq(B) D SLs(p). Looking at the list of
known simple groups, we see that this possibility actually occurs in L3(p) and Us(p). In fact,
for these two series of simple groups, there exist exactly two subgroups A, B of order p? in P
such that the normalizer of each of them involves SLs(p). Those two subgroups A, B are not
arbitrary. In fact, B is the unique subgroup (other than A itself) of P of order p? normalized by
a cyclic subgroup of order p — 1 of SLy(p) C Ng(A) (strictly speaking B is the inverse image of
a subgroup of order p of Ng(A) in P.)

Next we consider the cases where there are at least three subgroups isomorphic to Z, x Z,, in P
which involves SLy(p) in their normalizers. We first state a well known result of L.E. Dickson [21]
below. More than half a century before Dickson’s result, E. Galois claimed that the group
PSLy(p) possesses a subgroup of index < p only when p = 3,5,7, and 11. Dickson completely
determined all subgroups of PSLy(q) where ¢ is a power of a prime, and he also determined
how those subgroups extend in PGLs(q). But for simplicity we list only maximal subgroups of
PSLs(p), p an odd prime, and their extensions in PG La(p).

Theorem (Dickson [21]). Mazimal subgroups of PSLs(p) with p odd (and how they extend in
PGLy(p)) are as follows.
p(p—1)

(1). semi-direct product of order 5 (p(p — 1) in PGLy(p),)
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(2). dihedral group of order p—1, (2(p — 1) in PGLs(p),)

(8). dihedral group of order p+ 1, (2(p+1) in PGL2(p),)

(4). for p=+1 mod 8, two conjugacy classes of the symmetric group Sy of degree 4, (one class
in PGLy(p),)

(5). for p==43 mod 8, the alternating group A4 of degree 4, (S4 in PGLs(p),)

(6). for p = £1 mod 10, two conjugacy classes of the alternating group As of degree 5, (one
class in PGLa(p).)

Remark. If p =5, then PSLy(5) = A5 and PGL2(5) & Ss.
Next we give a small lemma concerning an extension of Z, x Z, by SLa(p).

Lemma. Let N be a nontrivial extension of (a normal subgroup) A =2 Z, x Z, by SLa(p). Then:
(1). N splits over A, and so N is a semi-direct product of A= Z,, x Z,, by SLa(p),

(2). if P is a Sylow p-subgroup of N, then P = pf‘z,

(8). P possesses p + 1 subgroups isomorphic to Z, x Z,. Let Q be the set of all such p+ 1
subgroups,

(4). if C is a cyclic subgroup of SLy(p) of order p — 1, then the faithful action C* of C' on Q is

if 8 divides p — 1, and cyclic of order p — 1 otherwise,

a cyclic group of oder L
(5). let v = |C%|. Then the orbit lengths of C* on Q are {1,1,r,r,7} or {1,1,7} depending on
r= p; orr =p—1. The first orbit of length 1 is A. The second orbit of length 1 is B = (z,b)
where b € SLa(p). Therefore, B is uniquely determined in P if A is chosen.

Proof. The proof is an easy exercise (using matrices.)

Theorem. Suppose there are at least three subgroups isomorphic to Z,, x Z,, in P such that the
normalizer of each of them involves SLa(p). Then p =3,5,7,11 or 13.

Proof. Let
N={A=Z,xZ,|AC P}

Our Sylow p-subgroup P =2 plﬁ'2 contains exactly p + 1 subgroups isomorphic to Z, x Z, and so

|2] = p+ 1. The normalizer Ng(P) of P acts on  and let us denote by Ng(P)* the faithful
action of Ng(P) on Q. We have Ng(P)* € PGLy(p). Now let B € Q such that Ng(B) involves
SLy(p). Then,

N = Ng(B)/Oy (NG (B)) 2 (Zp x Zp) - SLa(p).

Now choose R C Ng(B) N Ng(P) such that R is a cyclic subgroup of N of order p — 1. R acts
on . As seen in the statement (4) of the previous lemma, we conclude that the faithful action

—1
R%(C Ng(P)?) is of order p — 1 if p — 1 is not divisible by 3, and is of order b
divisible by 3.
Suppose p > 17. Then

Ng(P)® € PGLy(p). We note that p does not divide the order of Ng(P)%, since P is a Sylow
p-subgroup of G. Now, from Dickson’s list of subgroups, only subgroups of PG Ls(p) that contain
a cyclic subgroup of order at least 6 are S5, cyclic, or dihedral groups. The first possibility does
not occur in our case and in the latter two possibilities, there exists only one cyclic subgroup of
order at least 6. But in our case, there should be more than one cyclic group of order at least
6, since we assumed that there are at least three subgroups of P isomorphic to Z, x Z, each of
whose normalizer involves SLz(p). This contradiction proves the theorem.

The last theorem would suggest that if p > 17, then we should be lead (though not yet
proved) towards the linear groups Ls(p) and Us(p). But there are varieties of groups if p < 13.
There are, indeed, surprising varieties of groups as shown below: List taken from [20] (see [22]

ifp—1is

L > 6. Therefore, R is a cyclic group of order at least 6 in
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also,) but not all possibilities of their lists are shown here.
p =3, Tits’ group;

p =5, Thompson’s group;

p =17, O’Nan’s group;

p =11, Janko’s fourth group Jy;

p = 13, Monster group.

In order to get the reader interested in this kind of work, let us investigate the following
special subproblem.
Problem. Suppose a finite group G possesses a Sylow p- subgroup P & pfz for an odd prime
p. Moreover, assume that all nonidentity elements of P are conjugate in G. What can we say
about G or p-local subgroups.

Again we note that the most work below is contained in [20], where the work is presented
with the language of fusion systems. We will write here in the language of ‘standard’ group
theory.

Let G be such a group and P be one of its Sylow p-subgroups. By our assumption, if
1 # z € Z(P), then z is conjugate in G to every nonidentity element of P. Choose an arbitrary
element a € P — Z(P) and put A = (z,a). Using Alperin’s conjugation faimily, we see that a
is conjugate to z in Ng(A). This in turns implies that N = Ng(A)/Cg(A) contains a subgroup
isomorphic to SLy(p).

Let M = Ng(P) N Ng(A) and M be the faithful action of M on . We know that M

-1
contains a cyclic subgroup R of order p—1 or b . Let us again denote r = p—1if p—1 is not

otherwise. As seen above, R acts on Q and orbit lengths are 1,1, 7,

divisibe by 3, and r = L

or 1,1,r,r,r This is true with any subgroup of P isomorphic to Z, x Z,, and so M$ contains
p+1

such cyclic subgroups of order r. By the preceding theorem, we already know that p < 13,

since there are p + 1 subgroups of order p? each of whose normailizer involves SLs(p). Let us
deal with the remaining primes one by one.

Case p = 13. In this case, 7 = 4 and M must contain at least = 7 cyclic subgroups

of order 4. Dickson’s list shows this is impossible.

11+1
Case p = 11. In this case, r = 10. We need at least T 6 cyclic subgroups of order 10.

This is not possible by Dickson’s result.
7T+1
Case p = 7. In this case, r = 2 and we need at least % = 4 cyclic subgroups of order

2 in M € PGLo(7). These subgroups of order 2 fixes two elements of 2, and so they are not
contained in PSLy(7). We have three possible subgroups for Ng(P)%, i.e. Ng(P)* = Dg, Dsg,
or Dys. These three configurations have not been eliminated locally but there is no corresponding
(known) simple groups. In the language of fusion systems, they are called ezotic fusion systems
(see [20].)

Case p = 3,5. For these cases, there are known examples. Namely, if p = 3, then Tits’ group
has the property required, and if p = 5, then Thompson’s groups have the required property.

It is a very interesting problem to characterize Tits’ group or Thompson’s group by this
property. But no essential progresses appears having been obtained yet.

6. Notes on fusion systems

To learn the theory of fusion systems (for the first time,) one may wish to read Markus
Linckelmann’s article [23], and continue on reading two books reviewed by him.
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Bob Oliver [4] has recently determined all possible structures of 2-groups of sectional rank
at most 4 under the assumptions that the corresponding fusion systems are reduced and inde-
composable. This is in some sense a ‘revision’ of the result of Gorenstein and Harada [24]. The
structures of simple groups themselves are not determined in the Oliver’s work.

As mentioned a few times in the previous section, Ruiz and Viruel [20] investigated finite
groups having an extra-special Sylow p-subgroup of order p? of exponent p. They have found three
exotic fusion systems for p = 7, which have so far not been eliminated unless the classification of
all finite simple groups is used. These three cases (i.e. Ng(P) = Dg, D1g, or D15) were touched
on in this notes before.

Modular representation theory on finite groups having an extra-special Sylow p-subgroup of
order p? of exponent p have been studied. For example see [22]| and its extensive references in it.
The exotic fusion systems occurring for p = 7 appear not have been investigated from modular
representation theoretic view points in [22].
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IIpocThbie rpyniibl U CUJIIOBCKHUE TIOJATPYNHbI

Kouxupo Xapamga

Pacemampueaemes npobaema Taparmepusauuy Cusosckur 2-nodepynn (nebosvuwozo nopadka < 2'°)

KOHEYHDIT NPOCTNDLT 2PYNNn. Onucwisaromesn HEKOMOPLLE (GOSMOZHCHO H€06$00UM’I)L€) waz2u no ee peaynuuu.

Ocmasuwancs 4acms cmamsbu noceAUEHA KOHEYHBIM 2pynnam, CUL0BCKUMU nodzpyrmamu nopﬂdna p5 8

KOMOPHBLL ABAANOMCA IKCMPACNEUUANDHDLE p—noz?epynnm.

Karoueswie caosa: npocmoie 2pynnovl, CuA0BCKUE NOOZPYNIbL.
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