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The paper proposes a numeric-analytical method for determining the communication equations 
of Laplace’s transformants of dynamic functions of the universal unit of radial externally-
pressurized gas bearings which movable element makes small radial oscillations in the locality in 
its central position. Method and obtained dependences provide links between integro-differential 
Laplace’s transformants of the unit such as load capacity and local input and output mass flow 
rates with transformants of eccentricity and gas lubricant pressure at inlet and outlet of the 
unit. It is shown that the local transfer functions of the unit model are rational functions of the 
Laplace’s transform variable and all such functions have a common denominator in the form of 
a polynomial of this variable. The method allows to calculate the required dynamic criterion of 
gas bearings containing this unit with prescribed accuracy. Founded dependences give ready 
formulas for calculation dynamic criteria of radial single-row or multi-row ordinary passive or 
active externally-pressurized gas bearings in which this unit can be used for description of radial 
movement of its movable element.

Keywords: externally-pressurized gas bearing, numeric-analytical method, dynamic functions.

Introduction
In the study of dynamic quality of externally-pressurized gas bearings is used nonstationary 

Reynolds’ differential equation [1] which describes the dynamic pressure distribution in the thin 
gas lubricating gap of loading or throttle unit. Solution of this equation allows to determine the 
load capacity of the unit and gas flow rate at its inlet and outlet. The main difficulties in the 
calculation of the dynamics of bearings, relate to obtaining solutions of the equation in view of 
its nonlinearity.

Within the linear theory, in which integral Laplace transform [2] is applied for research of dynamics 
of bearings, the solution of the corresponding linearized differential boundary value problems lies 
approximately as the such problems have no analytical quadratures. Known approximate methods 
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differ in bulkiness, complexity of the received solution and lack of an assessment of its accuracy 
[3,4]. If it is considered that the solution of these problems is only intermediate element, obtaining the 
solution of the general integro-differential problem of finding load capacity and gas flow rates deals 
with greater difficulties. 

Taking into account a tendency of complication of the designs using gas-lubricated units and, 
as a result, complication of the corresponding mathematical models, the search of methods for 
approximate solutions of noted boundary value problems, which allow to find their decision with 
a prescribed accuracy is actual. In this regard numerical methods, for which there is no problem 
of analytical quadratures [5], attract attention. The application of these methods allows to receive 
the solution of differential problems with an accuracy demanded for practice and possibility of its 
assessment. 

However the circumstance that the structure of linearized and Laplace’s transformed differential 
equation, includes beforehand unknown Laplace’s variable and some Laplace’s transformants for unit 
functions, is an obstacle for numerical search of the solution. In this regard numerical and analytical 
approach to the solution of the specified problems which will allow to find the solution of the boundary 
value problems deserves attention.

Below it is given a method solving this problem with the example of the universal radial gas-
lubricated unit, making radial movements concerning the central equilibrium position.

Mathematical modeling of unit radial movement

The settlement scheme of the unit is shown in Fig. 1.
The unit consists of the cylindrical plug 1 and shaft 2, making movement at which axes of these 

elements keep a parallel arrangement. These elements are separated by a thin gap of compressed gas 
under pressure p (z, φ, t); gap thickness h (φ, t) = h0 – e (t) cos (φ), where h0 – gap thickness at a coaxial 
arrangement of elements, e – eccentricity of shaft; z, φ – longitudinal and circumferential coordinates, 
t – current time.

The boundary value problem for function of pressure, which satisfies to Reynolds’s differential 
equation [1], has the form
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Fig.1. Settlement scheme of radial gas-lubricated unit 

 

Fig. 1. Settlement scheme of radial gas-lubricated unit
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where p1, p2 – functions of gas pressure at inlet and outlet of the unit, p0(z) – gas pressure at a 
coaxial arrangement of elements, r – the radius of a shaft, l – unit length, μ – viscosity of gas 
lubricant.

Having taken for scales: pa – environment pressure for pressures; set from the outside h* – 
thickness of a lubricant gap, r* – the size and t* – time scale constants, we will lead a problem (1) to a 
dimensionless form
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where 0( , ) ( ) ( )H H Cosϕ τ ε τ ϕ= −  – the dimensionless thickness of a lubricant gap, ε – shaft eccentricity, 

* */ , /L l r R r r= =  – dimensionless length of the unit and shaft radius; ,Z τ  – dimensionless longitudinal 

coordinate and current dimensionless time; 
2

*
2
* *

12

a

r
p h t
µσ =  – number of squeezing of a gas film [6]. 

Hereinafter dimensionless sizes are designated by capital letters.
Let’s consider small fluctuations of a shaft concerning its central position. In this case the square 

of pressure function can be presented in the form

 
2 2

0( , , ) ( , , ) ( ) ( , ) ,P Z Z P Z Z Cosϕ τ ϕ τ τ ϕ= Ψ = + ∆Ψ  (3)

where ∆Ψ  – a projection function of a deviation from state at a coaxial arrangement of unit elements.
Assuming that eccentricity ε ε= ∆  will be small also, after linearization of a problem (2) and 

applications to it Laplace’s transform, linearized problem for Laplace’s transformants can be written 
as follows

2
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where new variable X = Z/R, B = L/R, 2 3
0 0/ , / 2R H Hα σ β= = , s – beforehand unknown variable of 

Laplace’s transform, 

( )2 2 2
0 10 20 10( ) XP X P P P

B
= + −  (5)
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– function of lubricant static pressure at a coaxial arrangement of elements, 10 20,P P  – known values 
of static pressure at unit inlet and outlet. 

Boundary functions in (4), as it appears from (3), are related with transformants of pressure 
deviations by relationships

1 1 2 210 202 , 2 .P P P P∆Ψ = ∆ ∆Ψ = ∆  (6)

Here line from above marked Laplace’s transformants of the corresponding deviations.

Numeric- analytical method of the solution  
of a boundary problem (4)

As it is mentioned above, the boundary problem (4) has no analytical decision. It is impossible 
to apply to it also numerical methods because boundary transformants and Laplace’s variable s aren’t 
known beforehand. Numeric-analytical method of its solution is given below.

According to the principle of superposition [7] we will find a solution of the problem (4) in the 
form 

1 21 2( , ) ( , ) ( , ) ,T Z s T Z s T Z sε ε∆Ψ = ∆Ψ + ∆Ψ + ∆  (7)

Having substituted (7) in (4) and having executed separation of functions, we will receive three 
boundary problems for T-functions:
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 (8)–(10)

Solution of a problem (8)

Having divided the segment [0, B] into even number of parts n we will execute replacement of a 
differential problem (8) on finite-differential problem [5]. System of the linear equations concerning 
values of required function for internal nodal points can be written as

( )1, 1 1, 1, 1

1,0 1,

0,

1, 0,
( 1, 2,..., 1),

j j j j

n

T a b s T T

T T
j n

+ −
 − + + =
 = =
 = −

 (11)

where 
2

2

0

2 , ,
( )j

Ba b
P j n
αβνν ν

ν
= + = =  – step of finite-differential grid.

Having excluded known values of function on the interval ends, we will receive three-diagonal 
system of the equations
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We solve this system by using idea of Cramer’s rule [8].
At first we will find Cramer’s determinant 1, 1nT −∆ . In a matrix of the system (12) its last 

column we will replace with a column of free members and find determinant of the received 
matrix, having opened it on the last column. As n is even, we will receive product of number 
–1 and determinant with the upper triangular matrix, on the main diagonal of which units 
are located. As such determinant is equal to 1, then 1, 1nT −∆  = –1. Using a boundary condition  

1,nT  = 0, by means of reverse motion and simple machine-analytical transformations we will 
find expressions for missing Cramer’s determinants by a recurrent formula, which follows from 
(11)

( )1, 1 1, 1, 1,

( 1, 2,...,1).
j j j jT a b s T T

j n n
− +

∆ = + ∆ −∆


= − −
 (13)

As 0 1T = , determinant of a matrix of system (12) is equal to 1,0( ) ( ).D s T s∆ = ∆

As an example the solution of the system (12) is found at R = 1.2, L = 1.5, H0 = 1.2, P10 = 4; P20 = 1; 
σ = 50; n = 4. The solution of then system is provided by Cramer’s determinants which are polynomials 
of variable s:

2 3
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2 3
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Thus, values of the T1 function in each nodal point represent the relation of polynomials 

1,
1, , ( 0... ),j

j

T
T j n

D
∆

= =
∆  (14)

i. e. they are rational functions of variable s. Functions (14) have the identical denominator which is 
equal to a polynomial of matrix determinant of system (12).

In Fig. 2. and Fig. 3 graphs of the real and imaginary parts of the T1(X, s) function at various values 
n and at constant complex value s = 1– i ( 1i = − ) are shown.

The graphs show that the accuracy of calculations accepted for practice is provided at rather small 
number n of division of the integration interval. So, even at n = 4 error of calculations for graph curves 
doesn’t exceed 1 %.
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Solution of a problem (9)

Differential system of linear equations for the values   of T2 function at the nodal points has the 
form
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For this system Cramer’s determinant 2,1T∆  = –1. Really, if one opens this determinant on 
the first column, we’ll receive product of number –1 and determinant with the lower triangular 
matrix on which main diagonal units are located. Such determinant is equal to unit that proves 
the statement.

Using a boundary condition 2,0T  = 0, by forward stroke we will find expressions for missing 
Cramer’s determinants on a recurrent formula, which follows from (15)
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The system (16) has identical with (12) matrix of the system and its determinant.
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The solution of then system for the same as at 3.1 parameters is provided by Cramer’s determinants 
which also are polynomials of variable s:

2,0

2,1

2,2

2
2,3

2 3
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Values of the T2 function in nodal points also represent the rational expressions
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Solution of a problem (10)

By analogy to 3.1 and 3.2 we will write the system of the linear equations concerning values of 
the Tε function in nodal points
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Now we will find Cramer’s determinant 
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Having opened (21) on the first column, we will find out that minors of the received sum are equals 
to opposite on a sign Cramer‘s determinants of the system (12). On this basis
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Using a boundary condition ,0Tε  = 0, by a forward stroke we will find expressions for missing 
Cramer‘s determinants on a recurrent formula, which follows from (19)
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At numeric-analytical definition of polynomials (22) their members at j > n are equal to zero, 
therefore they can be dropped.

For the same as at 3.1 and 3.2 values of parameters corresponding Cramer’s determinants are 
equal to
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Values of Tε function in nodal points are determined by a formula

,
, , ( 0... ).j
j

T
T j n

D
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ε

∆
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Transformant of unit load capacity deviation

Load capacity of the unit is defined by a formula [1]

( )
2

0 0

cos( ) .
l

aw r d p p dz
π

ϕ ϕ= −∫ ∫  (23)

Having taken for scale of forces complex 2
* * af r pπ=  according to (3), (6), (7) we will receive a 

formula for Laplace’s transformant of dimensionless load capacity deviation of the unit

2

1 21 2
00

( , ) ,
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BR X sW dX W P W P W
P X ε ε∆Ψ

∆ = = ∆ + ∆ + ∆∫  (24)

where

2
2 21 2

1 10 2 20
0 0 00 0 0

, , .
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ε
ε= = =∫ ∫ ∫  (25)

As T-functions are rational functions and they have common polynomial ΔD(s) of their 
denominators, having applied to their numerators Simpson’s rule [9] for numerical integration of grid 
functions, we will find first Laplace’s transformant dynamic equation of the unit

1 21 2( ) ( ) ( ) ( ) 0,D s W W s P W s P W sε ε∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ =  (26)
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where 1 2, ,W W Wε∆ ∆ ∆  – the polynomials of variable s received by elementary transformations at 
numeric-analytical integration of Cramer’s determinants of (13), (15), (22) on Simpson’s rule calculation 
process.

In that case for the examples of calculations, given above, polynomials are received

2 3
1

2 3
2

2 3

( ) 5.051 4.757 1.368s 0.098s ,

( ) 2.079 2.438 0.886s 0.098s ,

( ) 21.760 14.6876s 2.335s .

W s s
W s s
W s sε

∆ = + + +

∆ = + + +

∆ = + +

Local transfer functions (25) are clearly equal to

1 2
1 2, , .WW WW W W

D D D
ε

ε
∆∆ ∆

= = =
∆ ∆ ∆

Submission about impact of number n on the accuracy of carrying capacity transformant for 
different values of variable s give graphs in Fig. 4 and Fig. 5.

From these graphs it is visible that sufficient accuracy for practical calculations is provided at 
n = 4.

Transformant of longitudinal deviation  
of local flow rates on inlet and outlet of unit

The mass flow rate in the direction of longitudinal coordinate on a chord r ϕ∆  of the small length, 
given to its angle, is defined by a formula [1]

2
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,
12 T
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j

r pq h p d
z

ϕϕ

ϕϕ

ϕ
µ ϕ

∆
+

∆
−

∂
= −

ℜ ∆ ∂∫  (27)

where ,T,µℜ  – universal gas constant, absolute temperature of gas and its viscosity.
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5 Transformant of longitudinal deviation of local flow rates on inlet and outlet of unit 

The mass flow rate in the direction of longitudinal coordinate on a chord r ϕΔ  of the small 

length, given to its angle, is defined by a formula [1] 
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Assuming that temperature and viscosity as constants and having taken for the scale of mass flow 

rates a complex 
3 2
*

* 6 T
ah pq

µ
=

ℜ
, we will receive a formula for defining the corresponding dimensionless 

mass flow rate in any cross section of the unit

2
3 .PQ RH

Z
∂

= −
∂

 (28)

Taking into account (3), (5), (6) after linearization of formula (28) Laplace’s transformant of flow 
rate deviation can be written as

3
0 0( , ) .Q

dQ X s D H
dX

ε
 ∆Ψ

∆ = − ∆ + 
 

 (29)

where ( )2 2 2
0 0 10 203 / .QD H P P B= −

Transformant of a local flow rate deviation at a unit inlet

For definition of this transformant we will use the relation (7). We will find derivative of function 
∆Ψ  using initial unilateral trinomial formulas for Cramer’s determinants of the corresponding grid 
T-functions [5]

,2 ,1 ,0
1,

(0, ) 4 3
, ( 1,2, ).

2
j j j j

j

d T s T T T
D j

dX
ε

ν
∆ −∆ + ∆ − ∆

∆ = ≈ =  (30)

Formulas (30) provide the second order of accuracy concerning a grid step v.
Using (29), (30) we will receive a second communication formula of unit model for transformant 

of input flow rate deviation 1( )Q s∆  with corresponding transformants of eccentricity and both pressures 
at inlet and outlet of unit

1 21,1 1,2 1,1( ) ( ) ( ) ( ) 0,D s Q Q s P Q s P Q sε ε∆ ∆ + ∆ ∆ + ∆ ∆ + ∆ ∆ =  (31)

where 3 3 3
1,1 10 0 1, 1,2 20 0 1,2 1, 0 0 ,( ) 2 , ( ) 2 , ( ) .j Q TQ s P H D Q s P H D Q s D D H Dε ε∆ = ∆ ∆ = ∆ ∆ = ∆ + ∆

For the above examples we obtain polynomials

2 3
1,1

1,2

2 3
1,

( ) 79.65 316.1 237.6s 43.42s ,
( ) 10.52 3.857 ,

( ) 261.0 1141.8 857.9s 156.0s .

Q s s
Q s s

Q s sε

∆ = + + +

∆ = − +

∆ = − + − −

The submission of influence of number n on accuracy of calculation of a transformant of input 
local flow rate at various values of Laplace’s variable s is given by graphs in Fig. 6 and Fig. 7.

The graphs show that to ensure acceptable accuracy of the real part of Q1 function n = 4 is enough, 
the imaginary part in this case requires n > 4.

Transformant of a local flow rate deviation on a unit outlet

We will define derivative of function (29) using end unilateral trinomial formulas for Cramer’s 
determinants of the corresponding grid T-functions [5]
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, , 1 , 2
2,

( , ) 3 4
, ( 1,2, ).

2
j j n j n j n

j

d T B s T T T
D j

dX
ε

ν
− −∆ ∆ − ∆ + ∆

∆ = ≈ =  (32)

Formulas (32) also have the second order of accuracy. 
As a result we will receive a third communication formula of unit model for transformant of an 

output flow rate deviation 2 ( )Q s∆  with corresponding transformants of the unit

1 22,1 2,2 0 2,2( ) ( ) ( ) ( ) ,QD s Q Q s P Q s P D Q sε ε ∆ ∆ = ∆ ∆ + ∆ ∆ + + ∆ ∆ 

where 3 3 3
2,1 10 0 2, 2,2 20 0 2,2 2, 0 2,( ) 2 , ( ) 2 , ( ) .jQ s P H D Q s P H D Q s H Dε ε∆ = − ∆ ∆ = − ∆ ∆ = − ∆

For the examples given above polynomials are received

2,1

2 3
2,2

2 3
2,

( ) 42.07 24.78 ,

( ) 19.91 96.29 67.24s 10.86s ,

( ) 261.0 23.59 29.47s 2.261s .

Q s s

Q s s

Q s sε

∆ = −

∆ = − − − −

∆ = − − − −

Submission of influence of number n on accuracy of calculation of a transformant of output local 
flow rate at various values of Laplace’s variable s is given in Fig. 8 and Fig. 9.

For the given values of parameters sufficient accuracy for practice is provided at n = 4–8.

Conclusion

The equations (26), (31), (32) allow to establish relations of integro-differential Laplace’s 
transformants of carrying capacity ( )W s∆  and local mass flow rates 1 2( ), ( )Q s Q s∆ ∆  at inlet and outlet 
of the unit with transformants 1 2( ), ( ), ( )s P s P sε∆ ∆ ∆  of eccentricity and pressures at inlet and outlet of 
unit. Required accuracy of the calculation of T-functions can be provided by selecting the number n of 
partitions of integration interval. 

These equations give ready formulas for calculating the dynamic criteria containing such units of 
radial one-row, multi-row ordinary passive or active (with zero or negative compliance of carrier gas 
films [10]) externally pressurized and other gas bearings, in which radial movement of their movable 
elements is made.

Fig. 6. Real part of Q1,1 function, s = X (1–i)
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The submission of influence of number n on accuracy of calculation of a transformant of input 

local flow rate at various values of Laplace’s variable s is given by graphs in Fig. 6 and Fig. 7. 

Fig. 6. Real part of 

Q1,1 function, s = X (1–i) 

Fig. 7. Imaginary part of 

Q1,1 function, s = X (1–i) 

The graphs show that to ensure acceptable accuracy of the real part of Q1 function n = 4 is 

enough, the imaginary part in this case requires n > 4. 

 

5.2 Transformant of a local flow rate deviation on a unit outlet 

We will define derivative of function (29) using end unilateral trinomial formulas for 

Cramer's determinants of the corresponding grid T-functions [5] 

, , 1 , 2
2,

( , ) 3 4
, ( 1,2, ).

2
j j n j n j n

j

d T B s T T T
D j

dX
ε

ν
− −Δ Δ − Δ + Δ

Δ = ≈ =                               (32) 

Formulas (32) also have the second order of accuracy.  

As a result we will receive a third communication formula of unit model for transformant of 

an output flow rate deviation 2 ( )Q sΔ  with corresponding transformants of the unit 

1 22,1 2,2 0 2,2( ) ( ) ( ) ( ) ,QD s Q Q s P Q s P D Q sε ε⎡ ⎤Δ Δ = Δ Δ + Δ Δ + + Δ Δ⎣ ⎦                           (32) 

where 3 3 3
2,1 10 0 2, 2,2 20 0 2,2 2, 0 2,( ) 2 , ( ) 2 , ( ) .jQ s P H D Q s P H D Q s H Dε εΔ = − Δ Δ = − Δ Δ = − Δ  
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Submission of influence of number n on accuracy of calculation of a transformant of output 
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For the given values of parameters sufficient accuracy for practice is provided at n = 4–8. 

 

6 Conclusion 

The equations (26), (31), (32) allow to establish relations of integro-differential Laplace’s 

transformants of carrying capacity ( )W sΔ  and local mass flow rates 1 2( ), ( )Q s Q sΔ Δ  at inlet and 

outlet of the unit with transformants 1 2( ), ( ), ( )s P s P sεΔ Δ Δ  of eccentricity and pressures at inlet and 

outlet of unit. Required accuracy of the calculation of T-functions can be provided by selecting the 

number n of partitions of integration interval.  

These equations give ready formulas for calculating the dynamic criteria containing such units 

of radial one-row, multi-row ordinary passive or active (with zero or negative compliance of carrier 

gas films [10]) externally pressurized and other gas bearings, in which radial movement of their 

movable elements is made. 
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Численно-аналитический метод определения  
уравнений связи лапласовых трансформант  
обобщенного радиального блока  
газостатических подшипников 

В.A. Коднянко
Сибирский федеральный университет, 

Россия 660041, Красноярск, пр. Свободный, 79

Предложен численно-аналитический метод определения лапласовых трансформант 
динамических функций для универсального радиального блока газостатических подшипников, 
подвижный элемент которого совершает малые радиальные колебания в окрестности его 
центрального положения.
Метод и полученные зависимости позволяют установить связь интегро-дифференциальных 
лапласовых трансформант несущей способности и локальных массовых расходов на входе и 
выходе блока с трансформантами эксцентриситета и давлений смазывающего газа на входе 
и выходе блока. Показано, что локальные передаточные функции блока представляют собой 
рациональные функции переменной преобразования Лапласа и что все такие функции имеют 
общий знаменатель в виде полинома относительно этой переменной.
Метод позволяет вычислять требуемый критерий качества динамики подшипников, 
содержащих данный блок, с наперед заданной точностью. 
Найденные уравнения связей дают готовые формулы для расчета критериев качества 
динамики содержащих такой блок радиальных однорядных, многорядных обычных пассивных 
или активных газостатических подшипников, в которых совершается радиальное движение 
их подвижных элементов.

Ключевые слова: газостатический подшипник, численно-аналитический метод, динамические 
функции.


