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We compute the Hodge filtration on cohomology groups of complements of complex subspace arrangements.
By means of this result we construct integral representations of holomorphic functions such that kernels
of these representations have singularities on subspace arrangements.
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Introduction

A study of topology of coordinate subspace arrangements appears in different areas of math-
ematics: in toric topology and combinatorial topology [3,4], in the theory of toric varieties,
where complements to coordinate subspace arrangements play the role of homogeneous coordi-
nate spaces [5, 6], in the theory of integral representations of holomorphic functions in several
complex variables, where coordinate subspace arrangements play the role of singular sets of
integral representations kernels [1,10].

The universal combinatorial method for the computation of cohomology groups of comple-
ments to arbitrary subspace arrangements was developed in the book of Goresky and Macpher-
son [8] (see also [11]), but this method often leads to cumbersome computations. In the study of
toric topology, in particular, in works of Buchstaber and Panov [3,4], the method for the compu-
tation of the cohomology of complements to coordinate subspace arrangements was developed,
this method is simpler than the universal method and allows to get some additional topological
information.

The main purpose of this article is to compute the Hodge filtration on the cohomology rings
of complements to complex coordinate subspace arrangements. We will show that the Hodge
filtration is described by means of a special bigrading on the cohomology rings of complements
to complex coordinate subspace arrangements, which was introduced in [3, 4], this bigrading
was obtained originally from the combinatorial and topological ideas. We use these results to
construct the integral representations of holomorphic functions such that the kernels of these
representations have singularities on coordinate subspace arrangements.

The first section of this paper consists of different facts about topology of complements to
complex coordinate subspace arrangements, in the text of this section we follow [3,4]. Let Z be
a complex coordinate subspace arrangement in C". In [3,4], from the topological reasons, the
differential bigraded algebra R was introduced (R is determined by combinatorics of Z) such
that the ring of cohomology H*(C"\ Z) is isomorphic to the ring of cohomology H*(R). Denote
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by HP9(R) the bigraded cohomology of the algebra R, then

HY(C"\ Z)~ @ H"(R).

ptg=s

Thus, we get a bigrading on the cohomology ring H*(C" \ Z).

In the second section we recall some facts and concept from differential topology and complex
analysis. These facts we use in the last two sections.

In the third section the main theorem of this paper is proved. We will show that the bigrading
on the cohomology of R and, consequently, the bigrading on the cohomology H*(C™\ Z) appear
naturally from the complex structure on the manifold C"\ Z. In particular, denote by F*¥H*(C™\
Z,C) a k-th term of the Hidge filtration on H*(C™\ Z,C). Then there is the following theorem.

Theorem 1.
FFHA(C™\ 2,C) = (P HP*?(R,C).

p>k

In the last section we construct integral representations of holomorphic functions such that
kernels of these representations have singularities on coordinate subspace arrangements.

1. General facts on topology of coordinate subspace ar-
rangements

In this section different facts about topology of complements to coordinate subspaces arrange-
ments are gathered. All statements of this section are taken from [4].
Let K be an arbitrary simplicial complex on the vertex set [n] = {1,...,n}. Define a coordi-
nate planes arrangement
T 1= U Lo,

oK
where o = {i1,...,i,} C [n] is a subset in [n] such that o does not define a simplex in K and
LU:{ZE(CnZZil = =2, :0}

Any arrangement of complex coordinate subspaces in C" of codimension greater than 1 can be
defined in this way.
Consider a cover Ux = {Uy }rerc of C™ \ Zx, where

Uy =C"\ | J{zi = 0}.
o
By D2 x S denote the following chain
Df,XS$:{|21-|gl:iea;\zj|:1:j€’y7zk:1:k§1’yUa},
where o, C [n] and o Ny = (). We define the form

dzy  dz, A dz;,

ZI le Zik

, (1)

where I C [n|,|[I| =k, I ={i1,...,ig}, and i1 < -+ < ip.
The orientation of the chain D? x S% is such that the restriction of the form

A N\ (V=1dz; A dz;)
jEo

L dz

V=DM 2
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on D2 x Si is positive. Then the boundary of this chain equals

0D} x S = Sics(=1) D2\, x S,
where (i,7) is the position of 7 in the naturally ordered set v U .

Definition 1. The topological space

_ 2 1
Z}C = U Do’ X S[n]\a
ceK

1s called a moment-angle complez.

Theorem 2 ( [4]). There is a deformation retraction from C™\ Zx to Zk.

Definition 2. A Stanley—Reisner ring of a simplicial complex K on the vertex set [n] is a ring
ZIK]) = Zv1, . .., 0]/ Ik,

where Tic is a homogeneous ideal generated by the monomials vy = [[,., vi such that o & K :

i€
I}C = ('Uil R OF S {Zl,,lm} gIC)
Consider a differential bigraded algebra (R(K),dr) :
R/C = A[ula cee aun] & Z[K]/j7

where Afui,...,u,] is an exterior algebra, J is the ideal generated by monomials v?, U; @V, 1 =
1,...,n. Bidegrees of generators v;,u; of this algebra are equal to

bideg v; = (1,1), bideg u; = (1,0).
The differential § is defined on the generators as follows
6Rui = ’Ui,(SR’Ui =0.

Remark 1. In [4] a different bigrading on the algebra Rx was used, but our bigrading is equiv-
alent to the bigrading from [4].

We denote by Ri?? the homogeneous component of the algebra Ri of the bidegree (p,q). The
differential dy is compatible with the bigrading, i.e., dp(RR?) C R%qﬂ. Consider the complex

6 -1 06 y § y 1 6
. 2R, gRa~l OF, pha OR, phatl 0RO

denote by HP'9(Ry) a cohomology group of this complex. It is clear that the cohomology of Rx
are isomorphic to

H*(Rx) = @ H"(Rx).

ptg=s
Theorem 3 ( [4]). The cohomology ring H*(C™ \ Zi) is isomorphic to the ring H*(Ry).

Remark 2. The relation between Theorem 3 and the results of Goresky and Macpherson [8] on
cohomology of subspace arrangements is described in [4, Ch. 8].
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Now we describe the explicit construction of the isomorphism of Theorem 3. First, we con-
struct a cell decomposition of Zi. Define a cell

Eoy={lzil <l:ii€oilzj| =1,z #1:jev;zp=1:k&yUo},

where 0,7 C [n] and o N~ = (). The closure of this cell equals E,, = D2 x Si. The orientation
of E,. is defined by the orientation of DZ x S’i. We obtain the cell decomposition

Ze=  |J B
o€k ACIn\o

Let C.(Zx) be the group of cell chains of this cell decomposition, then denote by C*(Z)) the
group of cell cochains. Let E_ be a cocell dual to the cell E,., i.e., £ is a linear functional
from C.(Zx) such that (E., Eor,r) = d,., (the Kronecker delta).

Denote urvy 1= u, ... u;, @y, ...vj,, where I = {i1,...,ig}, i1 < - <ig, J = {j1,...,Jp},
and INJ=0,1,J C [n], (we suppose that ugvy = 1).

Proposition 1 ( [4]). The linear map ¢ : Rx — C*(2k), ¢(vouy) = E,., is an isomorphism of
differential bigraded modules. In particular, there is an additive isomorphism H*(Ry) L g (Zx).

From the structure of the cell decomposition of Zx and Theorem 2 we obtain that every cycle
I' € Hy(C™\ Zx) has a representative of the form

I'= Z Ly, (2)

ptq=s

where I, 4 is a cycle of the form

Tpy = § Cor - D2 x 5. (3)
lol=¢
[v]=p—q

A group generated by all cycles of the form (3) is denoted by Hp (C™ \ Zx ). Obviously we have

H(C"\ Zx) = D Hpq(C"\ Zx).

p+q=s

It follows from Proposition 1 that (I, 4, ¢(w? 7)) = 0 for any T, € H,,(C*\ Zx) and
wh e Hp/’q/(R;C), p' # p and ¢ # ¢. Hence, the pairing between I', , and qb(wp/’ql) can be
nonzero only if p’ = p, ¢’ = ¢. Therefore the pairing between the vector spaces H ,(C" \ Zx,R)
and ¢(le’q,(R;< ® R)) is nondegenerate if p = p’, ¢ = ¢’ and equals to zero otherwise.

2. Cech cohomology, filtrations and cochains

In this section we recall some facts from differential topology and complex analysis, we mainly
use a material from the books [2,9]. Let X be a complex manifold and U = {Uy, }aca is an open,
countable, locally finite cover of this manifold. Now we introduce the following notation for
sheafs on X: £° denotes the sheaf of C°°-differential forms of degree s, EP*9 denotes the sheaf of
C*°-differential forms of bedegree (p,q), QP denotes the sheaf of holomorphic differential forms
of degree p.
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Definition 3. The decreasing filtration

Fres =perer,

p>k
on the de Rham complex (£°,d) is called the Hodge filtration.

The Hodge filtration induces a filtration F*H?*(X,C) on a de Rham cohomology, i.e.,
FFH®(X,C) =Im(H*(FFE*(X),d) — H*(E*(X),d)),

where H*(£°(X),d) is the cohomology of the de Rham complex and H*(F*&*(X),d) is the
cohomology of k-th term of the Hodge filtration. In other words, if w lies in F*H*(X,C) then
there is a form @, [0] = w such that

5=y

p>k

where W0P? € EP9(X).

Let C*(€%,U) be the Cech-de Rham double complex for the cover U: C*(£%,U) with a Cech
coboundary operator § : CY(E5,U) — C'T1(£%,U) and a de Rham differential d : C*(E%,U) —
C'(&*+1,U) on this complex, i.e.,

t+1

(5w)ig,...,it+1 = (_1)8 Z(_]‘)jwio,...,’fj,...,it+1 uiom'“muiwrl’
7=0

(dw)i(),...,it = d(w)i0>~~-7it'
The associated single complex is defined by
K"Wu,e%) = @ c'(&u)
s+t=r
the operator D = § + d is the differential of this complex. Notice that our definition of Cech
coboundary ¢ is different from the standard one by the factor (—1)*%, with this choice of sign we
get D? = 0, hence (K*(U,£*), D) is a complex. There is a natural inclusion of the de Rham

complex ¢ : £*(X) — CO(E*,U), £(w)j, = wlu,, , also we denote the induced map from £*(X) to
K*(U,E%) by e.

Theorem 4 ( [2]). The inclusion e : £*(X) — K*(U) is a quasi-isomorphism of complexes, i.e.,
H*(X,C) ~ H*(K*(U,E*), D).

The Hodge filtration F*K*(U,E®) is defined naturally on (K*(U,E*), D). This filtration

induces a filtration on cohomology F*H*(K*(U,E*), D). There is an isomorphism F*H*(X,C) ~
FRHS(K*(U, %), D).
Consider a subcomplex K" (U, Q°®) of the complex K"(U,E®)

KU, Q%) = @ c'(Q*,u),

s+t=r
and an inclusion map 7 : K" (U, Q) — K" (U, E®). It is easy to get the following statement.
Theorem 5. Suppose U is a O-acyclic cover of X then the inclusion T is a quasi-isomorphism

of the complexes K*(U,Q°*) and K*(U,E®).
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Let F*QP be a stupid filtration on the de Rham complex of holomorphis forms (Q°,d), i.e

QP forp>k
kop p=ZK,
FQ_{O for p < k.

_ The stupid filtration induces filtration on cohomology F FH*(K*(U,Q%), D). Suppose U is a
0-acyclic cover of X then FFH®(K*(U,Q*), D) ~ FFH*(X,C).

From now until the end of this section we will follow the paper [7].
Definition 4. A U-chain of degree t and of dimension s on the manifold X is an alternating

function T from the set of indexes A to the group of singular chains in X of dimension s such
that T is nonzero on a finite number of points from ATt and

supp(Lsy,.. i) CUso N - N U,

for every (g, ...,i;) € A", where supp(Li,...i,) is the support of the chain T,

.....

Let Cy s(U) be an additive group of U-chains of degree ¢ and of dimension s on the manifold
X. Define maps 6’ : Cy s(U) — Cy—1,s(U)

(JIF)io7-~,it71 = (_1)S Z Fi»iO,uwit—l’
i€A
and 0 : Cy s(U) — Cy s—1(U)
(O)ig,...sie = O(D)ig,...si»

i.e., the operator J is a boundary operator on each chain I';; ;. The groups Cis(U),t,s 20
together with the differentials ¢, 9 form a double complex. Define a map &’ : Cp s(U) — Cs(X)
in the following way

'T)=> T

i€A

Now we will construct a pairing between elements of Cy (i) and C*(E%,U). Suppose I' €
Cis(U) and w € C*(E%,U), then

1
{w, 1) = (t+1)! > / w““

(G050t ) EAPFL T 22000

There are the following relations for the pairing:

<wt,s, 8Ft,s-‘r1> <dw " Ft s+1>
(0w, Tiy1,s) = (W, 8 Tip1s),

/ w® = (ew®, Ty s),
EI(F()’S)
where w"* € C*(E5,U), w® € E5(X), and I'y s € Cy 5(U).

Definition 5. Let I' be a singular cycle of dimension s on X, then a U-resolvent of length k
of the cycle T is a collection of U-chains T € C; s_i(U),0 < i < k such that T = &'T° and
ot = —§'T L,

Proposition 2. Given an s-dimensional cycle T, a closed differential form w of degree s, a

U-resolvent T, ... Tk of the cycle T and a cocycle @ € K*(U) such that © = Y b3~ Ghs~1
i<k
CH(E*~% U) and the cocycle ew is cohomologous to @ in H*(K*U,E®), D), then

/W*Z zszl—w

i<k

This proposition follows directly from the properties of the pairing.
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3. The Hodge filtration of cohomology of complements
to coordinate subspace arrangements

In this section we compute the Hodge filtration of the cohomology ring H*(C" \ Zx, C).
follows from Theorem 3 and Proposition 1 that there is the isomorphism H*(C™ \ Zy,C)
H*(Rx ® C).

Theorem 1. Let H?9(Ryx ® C) be the bigraded cohomology group of the complex RY:* @ C, then
there is an isomorphism

e =

FFH(C"\ Zx,C) £ @) HP*P(Rx @ ©).
p>k

Proof. First, we will prove the lemma.

Lemma 1. Let

be a cycle in C" \ Zx. Then there is a Ux-resolvent of the cycle Ty, 4 of length q:
1'\0

p,q’ "

T

)
p,q’

where F]ziq is a Ux-chain of dimension q + p — k and of degree k of the form

k _ § 2 1
(Fp,q)ao ----- [e7 Ca'y,ao...ak ' ‘DG‘ X S’y'

lo|=q—k
[v|=p—q+k

Proof. We will use the induction on the length k of the resolvent. We going to construct the
resolvent of the special form

k _ 2 1
(Fp,q)0k70k—17---,00 - E : Cdk%cfk»--do 'Dak X S’yV

[vlI=p—q+k
for |oj| =q—j,0; Cow,j >tj=0,...,k (in other words, {o;} is a chain of subsets o, C --- C 0y,
and |o;] = ¢ — j); and (T'% ) a.....a, = 0 for any other indexes a, ..., .
The base of induction: define (T )5, = | |Z Cooy - D2, x S} with |og| = g and (T )a =0
Vl=p—q

for any other indexes a.. We get

Tpg= D2 Cowy Doy x 8= 3 ()0 =Ty

lool=q oek
[v|=p—q

therefore I‘g’q is the resolvent of length 0.
Suppose that the resolvent F% P ,F’;, o of length k is already constructed. Recall that (i, )
is the position of i in the naturally ordered set y U i. Define

(F];:gl)ok\i,ak.‘.ao = (_1)p+q_k Z (_1)(i’7)00k%0k---‘70Dik\i X S}/Ui’
[v|=p—q
for i € oy, |oj| = q—j, 0j41 C 0, and

(Fﬁ,—gl)aopwakﬂ =0,
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for any other indexes ay, ..., ak4+1. Let us show that Fp PR I";"Zl is a resolvent of length k+1 :
k41 k k )
- (6/Fp7q )ak...o'o p+q Z FP:Z ok \1,0k...00
1€0}
1 2 1 k
= Z ( ) IV)OUIJY Ok-- UoDak\z X S'yUz = Z CUk’Y7Uk---O'OaDUk X Sfy = (8Fp,q)0'k~~-0'0'
i€oy, [vI=p—q
[v|=p—q
For any indexes «y, ..., ay different from oy, ...,0m4+1,0m-1,--.,00, 0 < m < k, directly from
k fb1
definition of I'y /,I';7 ", we get
k k+1
(arp,q)a07~--»ak = _(5/Fp,—z )0407---;0% =0.
Consider the last case ox \ %,0%, ..., 0m+1,0m—1,--.,00, for 0 < m < k. Since by the induction
hypothesis Fg,q .. .F’;’q is a resolvent, —(5’F’;’ = BF’; ql, hence we have (5’81"k =0, and

(6'0T% o -

Om+10m—1---00

= (_1)p+q7k+1 Z Z Z -1 ’Y)Cgk’}’ Ok---00 Dok\z X S}/Uz

Om+1CO0m COm—1 |y|=p—q+k i€ok
lom|=g—m

Therefore, for a fixed ¢ € o, we get

Z Z ( )(lﬂ)cffk“/ Ok---00 Dak\z X S’#Uz

Om4+1ComCom—1 ‘fy‘:p—q-‘,—k
lom|=q—m

On the other side,

0k \t0k---Om410m—1---00

= (_1)p+q_k+1 Z Z (= ) )’Y)C(Tk'}’ Ok...00 Dak\z x S’yUz’

Om4+1ComCom—1 |y|=p—q+k
lom|=g—m

k+1
(6'Tyth)

hence (8'Th 1) o \iion..omsrom1..0o = 0- We have shown that oLy = —¢'TktL. O
It follows from Theorem 2 and the construction of the cell decomposition of the moment-angle
complex Zj that any cycle I'y € Hi(C™ \ Zx) can be represented as a sum of the cycles I, , :

Z Ly

ptg=s
p>q
where I',, , is the cycles of the form (3). From Lemma 1 we have the construction of the resolvent
). T2, of the cycle T'p 4.

P
The cover Uy is O-acyclic. Indeed, all elements of the cover and their intersections are
isomorphic to C"~* x (C*)* for appropriate choice of k and consequently are a Stein manifolds.
From Theorem 4 and Theorem 5 we obtain that H®(K*(Ui,Q2*), D) is isomorphic to the
de Rham cohomology group H*(C" \ Zi, C). Recall that we use the following notation for the
inclusions of complexes
e:E(C"\ Zx) — K* (U, E°),
7 K (U, Q%) — K* (U, E®).

We will use the same notation for the induced isomorphisms on the cohomology groups:

H*(C"\ Zx,C) < H*(K*(Uy, E*), D) ~ H*(K* (U, Q"), D).
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Lemma 2. Let w € H*(K*Uk,N°%),D), then there is a cocycle © such that @ = w in
H*(K*(Ux,Q°%),D), =3, &, &7 e Uk, ), and

- dzg
(wp’q)cro,...,aq = E CI,JO,...,Uq )
2T
[I|=p
where DwP4 =0 for any p and q.

Proof. Consider an arbitrary element w of H*(K*®(Ux,*), D), this element is representable
by cocycle w =7\ wP?, where wP? € C(Uy, ) and dwP = —dwP~H9T1. The cocycle w
has a unique decomposition w = w + 1), where (WP9),,. .. 5, is the following form

(w%q)do,mﬁq = Z CI,UOW-,Uq ) (4)
Zr
[I|=p
. . dZ[
and the Laurent expansion of (wp’q)go,waq does not contain summands —.
21

Let us show that @ and 1 are cocycles. Since w is a cocycle, we have dwP? + JyP? =

. dz ~ .
—dp=tatl _ gyp—1.a+1 The forms —— are closed, hence dP~19+! = 0. Since the Laurent
Z1

. . . dz .
expansions of the components of the cochain §1?'? do not contain summand =L and the cochain
27
0wP 9 can be exact if and only if 6&P? = 0 (because nonzero linear combinations of the forms

dz ~ ~ ~
=L are nonexact on any elements of the cover Ux), 0wP? = 0. We get that dwP? = dwP? = 0,

zr
consequently, @ is a cocycle. The cochain ¥ = w — w is a difference of two cocycles, hence v is a
cocycle.

Now we going to show that 1 is a coboundary.
Lemma 3. Let I’ € Hy(C\ Zg), then [e~'or(¢)) = 0.

Proof. For the cycle I' we have the expansion to the sum I' = >~ T, ,. Lemma 1 gives the
ptq=s

explicit construction of the resolvent I' I, of the cycle I'p 4. Let us construct a cocycle

o> AT
Yy = +Z 1/)k' cohomologous to 7(1) of K*® (Ui, E®)
pHg=s
B PP for q<k,
Gpt = { s 5T (gl - 5T (R — 5T — d5T (W0)))  for gk,
0 for ¢>k.

From Proposition 2 we obtain

/FE =S ST, gy,

P+q=s k<q

Let k¥ < ¢ and w € QPYI7%(UY,/), it is easy to see, that W‘D(Q;XS’IY =0 for o] =q—k >
0,|v|=p—q+k,0 C o' The forms (@S_k’k)ao, .y are holomorphic on Uy, N+ - NU,, , indeed,
(@ZZ‘k’k)ao,...,ak (15~FF) . an, On the other side, (Fp )
chains D2 x 52, |o| = g—k > 0,|y| = p—q+Fk, combining these two facts we get (I'}. q,wé kky = 0.

Consider the case k = ¢. From the definition of 1Z it follows that Jg’q = P4 4 dp for some
@ € CUEPHU). Since (T )ay.....a, is a linear combination of the cycles S!, |y =p

ao,....a, 18 @ linear combination of the
s

St=A{lzl=1:1jev,m=1:k&r}
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<Fg’q71;;_q’q> = (I'g ,,¥* 29). Indeed, by the Stokes formula [g, dp = 0, hence (I']
vy

p,q’

dp) = 0.

Expand the from (¢°7%9),, .. a, to the Laurent series,

dZ[

S— a a

(¥ q’q)ao,-u,a = CuLag...0q?1" -+ 20" .
q q

21
a=(a1,...,an)€L™ [I|=p

dz
The integral / 21t zf;"—l is nonzero only if I = v and a = 0, i.e., for the forms %, but
s 21

by the construction of 1*~%% the Laurent expansion of (1)°7%9)4, . o, does not contain the

[CRERES)

dz
summands —~. Consequently, (L 4 p*~09) = 0.

.
We have shown that [.e™! o 7(¢) = 0. Lemma 3 is proved. O
By the de Rham Theorem any closed form w of degree s on C™ \ Zx is exact if and only if

Jrw = 0for any cycle I' € Hy(C™\ Zx). It follows from Lemma 3 that e~ o7(¢)) is cohomologous

to zero, hence 1) is a coboundary . Lemma 2 is proved. O
By Lemma 2 any cocycle w € H*(K*(Uyx,$2*), D) is cohomologous tow = > . _ w9, where

WP is of the form (4). Moreover, W% € C4 (U, Q) is a cocycle, i.e., DwP? = 0. We denote by

HP1(K* (U, *), D) a subspace of H*(K*®(Ux,*), D) generated by cocycles P9, We obtain

HY(K*(Ux,Q°),D) = P H"(K*Usc,Q), D).
pt+g=s

Then the filtration F*H*(K* (Ui, Q2*), D) equals

FFH®(K* (U, %), D) = @ HP*P(K* (U, Q*), D).

p>k
Hence,
e tor
FFH*(C"\ Zx,C) "~ @ HP*7P(K* Uk, Q*), D).
p=k

By the same argument as in Lemma 3 we obtain that for every cycle ', ; € H, ((C™ \ Zk),
and every cocycle P 7 € Hp”q/(K’ (Uk,Q%), D), the following equality holds

/ e lor (@) =0,
r

p,q

for p # p', q # ¢ . It follows from nondegeneracy of the pairing between cohomology and homology
that the pairing between elements of H, ,(C™\ Zx,C) and e~ ' or(HP"9 (K* (U, Q*), D)) is non-
degenerate if p = p’, ¢ = ¢’ and equals to zero otherwise. Thus, ¢! OT(HP/"I' (K*(Ux,0%),D)) =
¢(HP 7 (R ® C)). O

4. Integral representations of holomorphic functions

In the last section we study integral representations of holomorphic functions such that kernels
of these integral representations have singularities on coordinate subspace arrangements in C”.
The examples of such integral representations are the multidimensional Cauchy integral represen-
tation, whose kernel has singularity on ({z; =0} U--- U {z, = 0}), and the Bochner-Martinelli
integral representation, whose kernel has singularity on {0}. In [10] a family of new integral
representations of this kind was obtained, the kernels of these integral representations have sin-
gularities on the subspace arrangements defined by simple polytopes.
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Denote by U the unit polydisc in C™ :
U={z=(z1,...,20) €C" 1 |z5| < 1,i=1,...,n}.
Notice that the moment-angle complex Zi is lying on the boundary 0U of the polydisc.

Theorem 6. Given a nontrivial element ' from F"H*(C"\ Zx,C). Then there exists a closed
(n,s—n)-form w, [w] = w" and an s-dimensional cycle T in C™\ Zic with support in Zx, such that
for any function f holomorphic in some neighborhood of U the following integral representation

holds
Q)= [ ferte—
for ¢ € U.

Proof. Since w’ € F"H?*(C"\ Z,C), by Theorem 1 there is a cycle I' € Hy(C™ \ Z,C),
> Coy-D2x Sl

lo|=s—n
Iy/=2n—s

such that (I, w’) = 1. It follows from Lemma 2 that there exists a cocycle w™*~" € C*~" (U, Q™),
dzy dz,
A

g, Qs Ba[}a'“)asfn AR ’

s
( ) - o

that is cohomologous to 7~ log(w’) in H*(K*® (U, *), D). The form w = e~ 1o (=95~ 1) nwms—n

is cohomologous to w’, so / w=1.
r

Let us show that w and - define an integral representation. Consider the integral / w(z—0),

where ¢ € U, here the notation w(z — ) stands for the form w after the change of coordinates
z — z—(. Notice that the form w(z—() is closed in U, thus the integral of this form depends only
on the homological class of the integration cycle. Let us make a change of coordinates w(z)
r—¢

where I'—( is a cycle I" shifted by the vector —(. In the sequel we will use the subindex —( to
denote chains, cycles, and sets in C" shifted by the vector —(.

Let us show that I’ — ¢ is homologous to I'. Notice that (2 — () N Zx = & for any ¢ € U.
Indeed,

Z)C_CZ U(Dgxs[ln]\a_C)a Z/C: UL0'7

ceK oK
we see that (D2 x S[ln]\g O)NLy =0 for any 0 € K,0/ € K and ¢ € U. Consider the
chain T, c={y:y=2o- t(,x € I',t € [0,1]}, the support of the chain I, ¢ is a subset of
Ute 0,11(Zx — 1(), therefore r_, ¢ is a subset of C\ Zi. Its boundary equals ar_¢ c=T-=¢ -

, (I'=¢) and T" are homologous. So we have returned to the case fr , which was already

considered. We get
/w(z—C)z/ w(z)=1.
r r—¢

By dentition w(z — () is an (n,s — n)-form. Let f(z) be a function holomorphic in some
neighborhood of unit polydisc U. Since the operators 9 and § are interchangeable with the
multiplication by a holomorphic function, we get f(2) - w(z — () = 71 o (=0571)*"f(2) -
W~ (z — (). By Lemma 1 there is a resolvent I'?,... T'*~" of the cycle I such that

ool =C, 'S[ln]v S[ln] :{|Z1|:"':‘ZTL|:1}'

X0,y Ns—m QQ,.e oy As—m
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Since

/w(z — Q=W (z = () = 1,
r

from the Cauchy integral representation formula we get

/F F@w(z =€) = (L5, f(2) - W™= (s — O)) = £(C).

O
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OuiabTpanusa Xo/axKa Ha JOMOJITHEHNIX K HabopaM
KOMILJIEKCHBIX KOOPIMHATHBIX IIOJIPOCTPAHCTB

1 WHTEerpaJbHbIe ITPeJICTaBJIeHUsI TOJIOMOP(MHBIX (PYyHKIIHI

FOpwuit B. Qnusainen

B cmamuve svuucasemes gusvmpayus Xo0atca Ha K020MON0UAL JONOAHEHRUT K HAOOPAM KOMNACKCHHLT

noop(?unamumm nodnpocmpaﬂcme. Omu pe3yavmamovl UCNoAb3YmMCAa 0N HATOAHCOCHUA UHMEPANDBHOLL

npedcmasaerutl 2040MOpPHHHIT GyHKUUT, 6 KOMOPHLT A0PA UMEIOM CUHZYAADPHOCTIU Ha HabOPaT KoOpou-

HAMHDLT noanpocmpaucme .

Karoueswie crosa: guavmpayus Xodoica, kKongueypayuu naiockocmeti, UHMeE2pasbHsle NPpedcmasiernus,

mopuvecrkasn monono2usl.
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