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Introduction

A study of topology of coordinate subspace arrangements appears in different areas of math-
ematics: in toric topology and combinatorial topology [3, 4], in the theory of toric varieties,
where complements to coordinate subspace arrangements play the role of homogeneous coordi-
nate spaces [5, 6], in the theory of integral representations of holomorphic functions in several
complex variables, where coordinate subspace arrangements play the role of singular sets of
integral representations kernels [1, 10].

The universal combinatorial method for the computation of cohomology groups of comple-
ments to arbitrary subspace arrangements was developed in the book of Goresky and Macpher-
son [8] (see also [11]), but this method often leads to cumbersome computations. In the study of
toric topology, in particular, in works of Buchstaber and Panov [3,4], the method for the compu-
tation of the cohomology of complements to coordinate subspace arrangements was developed,
this method is simpler than the universal method and allows to get some additional topological
information.

The main purpose of this article is to compute the Hodge filtration on the cohomology rings
of complements to complex coordinate subspace arrangements. We will show that the Hodge
filtration is described by means of a special bigrading on the cohomology rings of complements
to complex coordinate subspace arrangements, which was introduced in [3, 4], this bigrading
was obtained originally from the combinatorial and topological ideas. We use these results to
construct the integral representations of holomorphic functions such that the kernels of these
representations have singularities on coordinate subspace arrangements.

The first section of this paper consists of different facts about topology of complements to
complex coordinate subspace arrangements, in the text of this section we follow [3,4]. Let Z be
a complex coordinate subspace arrangement in C

n. In [3, 4], from the topological reasons, the
differential bigraded algebra R was introduced (R is determined by combinatorics of Z) such
that the ring of cohomology H∗(Cn \Z) is isomorphic to the ring of cohomology H∗(R). Denote
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by Hp,q(R) the bigraded cohomology of the algebra R, then

Hs(Cn \ Z) ≃
⊕

p+q=s

Hp,q(R).

Thus, we get a bigrading on the cohomology ring H∗(Cn \ Z).
In the second section we recall some facts and concept from differential topology and complex

analysis. These facts we use in the last two sections.
In the third section the main theorem of this paper is proved. We will show that the bigrading

on the cohomology of R and, consequently, the bigrading on the cohomology H∗(Cn \Z) appear
naturally from the complex structure on the manifold C

n\Z. In particular, denote by F kHs(Cn\
Z,C) a k-th term of the Hidge filtration on Hs(Cn \Z,C). Then there is the following theorem.

Theorem 1.

F kHs(Cn \ Z,C) =
⊕

p≥k

Hp,s−p(R,C).

In the last section we construct integral representations of holomorphic functions such that
kernels of these representations have singularities on coordinate subspace arrangements.

1. General facts on topology of coordinate subspace ar-

rangements

In this section different facts about topology of complements to coordinate subspaces arrange-
ments are gathered. All statements of this section are taken from [4].

Let K be an arbitrary simplicial complex on the vertex set [n] = {1, . . . , n}. Define a coordi-
nate planes arrangement

ZK :=
⋃

σ 6∈K

Lσ,

where σ = {i1, . . . , im} ⊆ [n] is a subset in [n] such that σ does not define a simplex in K and

Lσ = {z ∈ C
n : zi1 = · · · = zim

= 0}.

Any arrangement of complex coordinate subspaces in C
n of codimension greater than 1 can be

defined in this way.
Consider a cover UK = {Uσ}σ∈K of C

n \ ZK, where

Uσ = C
n \

⋃

i6∈σ

{zi = 0}.

By D2
σ × S1

γ denote the following chain

D2
σ × S1

γ = {|zi| 6 1 : i ∈ σ; |zj | = 1 : j ∈ γ, zk = 1 : k 6∈ γ ∪ σ},

where σ, γ ⊆ [n] and σ ∩ γ = ∅. We define the form

dzI

zI

=
dzi1

zi1

∧ · · · ∧ dzik

zik

, (1)

where I ⊆ [n], |I| = k, I = {i1, . . . , ik}, and i1 < · · · < ik.
The orientation of the chain D2

σ × S1
γ is such that the restriction of the form

1

(
√
−1)|γ|

dzγ

zγ

∧
∧

j∈σ

(
√
−1dzj ∧ dzj)
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on D2
σ × S1

γ is positive. Then the boundary of this chain equals

∂D2
σ × S1

γ = Σi∈σ(−1)(i,γ)D2
σ\i × S1

γ∪i,

where (i, γ) is the position of i in the naturally ordered set γ ∪ i.

Definition 1. The topological space

ZK =
⋃

σ∈K

D2
σ × S1

[n]\σ

is called a moment-angle complex.

Theorem 2 ( [4]). There is a deformation retraction from C
n \ ZK to ZK.

Definition 2. A Stanley–Reisner ring of a simplicial complex K on the vertex set [n] is a ring

Z[K] = Z[v1, . . . , vn]/IK,

where IK is a homogeneous ideal generated by the monomials vσ =
∏

i∈σ vi such that σ 6∈ K :

IK = (vi1 · . . . · vim
: {i1, . . . , im} 6∈ K).

Consider a differential bigraded algebra (R(K), δR) :

RK := Λ[u1, . . . , un] ⊗ Z[K]/J ,

where Λ[u1, . . . , un] is an exterior algebra, J is the ideal generated by monomials v2
i , ui ⊗ vi, i =

1, . . . , n. Bidegrees of generators vi, ui of this algebra are equal to

bideg vi = (1, 1),bideg ui = (1, 0).

The differential δR is defined on the generators as follows

δRui = vi, δRvi = 0.

Remark 1. In [4] a different bigrading on the algebra RK was used, but our bigrading is equiv-
alent to the bigrading from [4].

We denote by Rp,q
K the homogeneous component of the algebra RK of the bidegree (p, q). The

differential δR is compatible with the bigrading, i.e., δR(Rp,q
K ) ⊆ Rp,q+1

K . Consider the complex

· · · δR−→ Rp,q−1
K

δR−→ Rp,q
K

δR−→ Rp,q+1
K

δR−→ . . . ,

denote by Hp,q(RK) a cohomology group of this complex. It is clear that the cohomology of RK

are isomorphic to

Hs(RK) =
⊕

p+q=s

Hp,q(RK).

Theorem 3 ( [4]). The cohomology ring H∗(Cn \ ZK) is isomorphic to the ring H∗(RK).

Remark 2. The relation between Theorem 3 and the results of Goresky and Macpherson [8] on
cohomology of subspace arrangements is described in [4, Ch. 8].
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Now we describe the explicit construction of the isomorphism of Theorem 3. First, we con-
struct a cell decomposition of ZK. Define a cell

Eσγ = {|zi| < 1 : i ∈ σ; |zj | = 1, zj 6= 1 : j ∈ γ; zk = 1 : k 6∈ γ ∪ σ},

where σ, γ ⊆ [n] and σ ∩ γ = ∅. The closure of this cell equals Eσγ = D2
σ × S1

γ . The orientation
of Eσγ is defined by the orientation of D2

σ × S1
γ . We obtain the cell decomposition

ZK =
⋃

σ∈K,γ⊆[n]\σ

Eσγ .

Let C∗(ZK) be the group of cell chains of this cell decomposition, then denote by C∗(ZK) the
group of cell cochains. Let E′

σγ be a cocell dual to the cell Eσγ , i.e., E′
σγ is a linear functional

from C∗(ZK) such that 〈E′
σγ , Eσ′γ′〉 = δσγ

σ′γ′ (the Kronecker delta).

Denote uIvJ := ui1 . . . uiq
⊗ vj1 . . . vjp

, where I = {i1, . . . , iq}, i1 < · · · < iq, J = {j1, . . . , jp},
and I ∩ J = ∅, I, J ⊆ [n], (we suppose that u∅v∅ = 1).

Proposition 1 ( [4]). The linear map φ : RK → C∗(ZK), φ(vσuγ) = E′
σγ is an isomorphism of

differential bigraded modules. In particular, there is an additive isomorphism H∗(RK)
φ≃ H∗(ZK).

From the structure of the cell decomposition of ZK and Theorem 2 we obtain that every cycle
Γ ∈ Hs(C

n \ ZK) has a representative of the form

Γ =
∑

p+q=s

Γp,q, (2)

where Γp,q is a cycle of the form

Γp,q =
∑

|σ|=q
|γ|=p−q

Cσγ ·D2
σ × S1

γ . (3)

A group generated by all cycles of the form (3) is denoted by Hp,q(C
n \ZK). Obviously we have

Hs(C
n \ ZK) =

⊕

p+q=s

Hp,q(C
n \ ZK).

It follows from Proposition 1 that 〈Γp,q, φ(ωp′,q′

)〉 = 0 for any Γp,q ∈ Hp,q(C
n \ ZK) and

ωp′,q′ ∈ Hp′,q′

(RK), p′ 6= p and q′ 6= q. Hence, the pairing between Γp,q and φ(ωp′,q′

) can be
nonzero only if p′ = p, q′ = q. Therefore the pairing between the vector spaces Hp,q(C

n \ ZK,R)

and φ(Hp′,q′

(RK ⊗ R)) is nondegenerate if p = p′, q = q′ and equals to zero otherwise.

2. Cech cohomology, filtrations and cochains

In this section we recall some facts from differential topology and complex analysis, we mainly
use a material from the books [2,9]. Let X be a complex manifold and U = {Uα}α∈A is an open,
countable, locally finite cover of this manifold. Now we introduce the following notation for
sheafs on X: Es denotes the sheaf of C∞-differential forms of degree s, Ep,q denotes the sheaf of
C∞-differential forms of bedegree (p, q), Ωp denotes the sheaf of holomorphic differential forms
of degree p.
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Definition 3. The decreasing filtration

F kE• =
⊕

p≥k

Ep,•−p,

on the de Rham complex (E•, d) is called the Hodge filtration.

The Hodge filtration induces a filtration F kHs(X,C) on a de Rham cohomology, i.e.,

F kHs(X,C) = Im(Hs(F kE•(X), d) → Hs(E•(X), d)),

where Hs(E•(X), d) is the cohomology of the de Rham complex and Hs(F kE•(X), d) is the
cohomology of k-th term of the Hodge filtration. In other words, if ω lies in F kHs(X,C) then
there is a form ω̃, [ω̃] = ω such that

ω̃ =
∑

p≥k

ω̃p,s−p,

where ω̃p,q ∈ Ep,q(X).
Let Ct(Es,U) be the Cech-de Rham double complex for the cover U : Ct(Es,U) with a Cech

coboundary operator δ : Ct(Es,U) → Ct+1(Es,U) and a de Rham differential d : Ct(Es,U) →
Ct(Es+1,U) on this complex, i.e.,

(δω)i0,...,it+1
= (−1)s

t+1∑

j=0

(−1)jωi0,...,îj ,...,it+1
|Ui0

∩···∩Uit+1
,

(dω)i0,...,it
= d(ω)i0,...,it

.

The associated single complex is defined by

Kr(U , E•) =
⊕

s+t=r

Ct(Es,U)

the operator D = δ + d is the differential of this complex. Notice that our definition of Cech
coboundary δ is different from the standard one by the factor (−1)s, with this choice of sign we
get D2 = 0, hence (K•(U , E•),D) is a complex. There is a natural inclusion of the de Rham
complex ε : E•(X) → C0(E•,U), ε(ω)j0 = ω|Uj0

, also we denote the induced map from E•(X) to
K•(U , E•) by ε.

Theorem 4 ( [2]). The inclusion ε : E•(X) → K•(U) is a quasi-isomorphism of complexes, i.e.,

Hs(X,C)
ε≃ Hs(K•(U , E•),D).

The Hodge filtration F kK•(U , E•) is defined naturally on (K•(U , E•),D). This filtration

induces a filtration on cohomology F kHs(K•(U , E•),D). There is an isomorphism F kHs(X,C)
ε≃

F kHs(K•(U , E•),D).
Consider a subcomplex Kr(U ,Ω•) of the complex Kr(U , E•)

Kr(U ,Ω•) =
⊕

s+t=r

Ct(Ωs,U),

and an inclusion map τ : Kr(U ,Ω•) → Kr(U , E•). It is easy to get the following statement.

Theorem 5. Suppose U is a ∂-acyclic cover of X then the inclusion τ is a quasi-isomorphism
of the complexes K•(U ,Ω•) and K•(U , E•).
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Let F kΩp be a stupid filtration on the de Rham complex of holomorphis forms (Ω•, d), i.e.,

F kΩp =

{
Ωp for p ≥ k,
0 for p < k.

The stupid filtration induces filtration on cohomology F kHs(K•(U ,Ω•),D). Suppose U is a
∂-acyclic cover of X then F kHs(K•(U ,Ω•),D) ≃ F kHs(X,C).

From now until the end of this section we will follow the paper [7].

Definition 4. A U-chain of degree t and of dimension s on the manifold X is an alternating
function Γ from the set of indexes At+1 to the group of singular chains in X of dimension s such
that Γ is nonzero on a finite number of points from At+1 and

supp(Γi0,...,it
) ⊂ Ui0 ∩ · · · ∩ Uit

,

for every (i0, . . . , it) ∈ At+1, where supp(Γi0,...,it
) is the support of the chain Γi0,...,it

.

Let Ct,s(U) be an additive group of U-chains of degree t and of dimension s on the manifold
X. Define maps δ′ : Ct,s(U) → Ct−1,s(U)

(δ′Γ)i0,...,it−1
= (−1)s

∑

i∈A

Γi,i0,...,it−1
,

and ∂ : Ct,s(U) → Ct,s−1(U)
(∂Γ)i0,...,it

= ∂(Γ)i0,...,it
,

i.e., the operator ∂ is a boundary operator on each chain Γi0,...,it
. The groups Ct,s(U), t, s > 0

together with the differentials δ′, ∂ form a double complex. Define a map ε′ : C0,s(U) → Cs(X)
in the following way

ε′(Γ) =
∑

i∈A

Γi.

Now we will construct a pairing between elements of Ct,s(U) and Ct(Es,U). Suppose Γ ∈
Ct,s(U) and ω ∈ Ct(Es,U), then

〈ω,Γ〉 =
1

(t+ 1)!

∑

(i0,...,it)∈At+1

∫

Γi0,...,it

ωi0,...,it
.

There are the following relations for the pairing:

〈ωt,s, ∂Γt,s+1〉 = 〈dωt,s,Γt,s+1〉,
〈δωt,s,Γt+1,s〉 = 〈ωt,s, δ′Γt+1,s〉,∫

ε′(Γ0,s)

ωs = 〈εωs,Γ0,s〉,

where ωt,s ∈ Ct(Es,U), ωs ∈ Es(X), and Γt,s ∈ Ct,s(U).

Definition 5. Let Γ be a singular cycle of dimension s on X, then a U-resolvent of length k
of the cycle Γ is a collection of U-chains Γi ∈ Ci,s−i(U), 0 6 i 6 k such that Γ = ε′Γ0 and
∂Γi = −δ′Γi+1.

Proposition 2. Given an s-dimensional cycle Γ, a closed differential form ω of degree s, a
U-resolvent Γ0, . . . ,Γk of the cycle Γ and a cocycle ω̃ ∈ Ks(U) such that ω̃ =

∑
i6k

ω̃i,s−i, ω̃i,s−i ∈

Ci(Es−i,U) and the cocycle εω is cohomologous to ω̃ in Hs(K•(U , E•),D), then
∫

Γ

ω =
∑

i6k

〈ω̃i,s−i,Γi〉.

This proposition follows directly from the properties of the pairing.
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3. The Hodge filtration of cohomology of complements

to coordinate subspace arrangements

In this section we compute the Hodge filtration of the cohomology ring H∗(Cn \ ZK,C). It

follows from Theorem 3 and Proposition 1 that there is the isomorphism H∗(Cn \ ZK,C)
φ≃

H∗(RK ⊗ C).

Theorem 1. Let Hp,q(RK ⊗C) be the bigraded cohomology group of the complex Rp,q
K ⊗C, then

there is an isomorphism

F kHs(Cn \ ZK,C)
φ≃

⊕

p≥k

Hp,s−p(RK ⊗ C).

Proof. First, we will prove the lemma.

Lemma 1. Let
Γp,q =

∑

|σ|=q
|γ|=p−q

Cσγ ·D2
σ × S1

γ

be a cycle in C
n \ ZK. Then there is a UK-resolvent of the cycle Γp,q of length q:

Γ0
p,q, . . . ,Γ

q
p,q,

where Γk
p,q is a UK-chain of dimension q + p− k and of degree k of the form

(Γk
p,q)α0,...,αk

=
∑

|σ|=q−k
|γ|=p−q+k

Cσγ,α0...αk
·D2

σ × S1
γ .

Proof. We will use the induction on the length k of the resolvent. We going to construct the
resolvent of the special form

(Γk
p,q)σk,σk−1,...,σ0

=
∑

|γ|=p−q+k

Cσkγ,σk...σ0
·D2

σk
× S1

γ ,

for |σj | = q−j, σj ⊂ σt, j > t j = 0, . . . , k (in other words, {σj} is a chain of subsets σk ⊂ · · · ⊂ σ0,
and |σj | = q − j); and (Γk

p,q)α0,...,αk
= 0 for any other indexes α0, . . . , αk.

The base of induction: define (Γ0
p,q)σ0

=
∑

|γ|=p−q

Cσ0γ ·D2
σ0

×S1
γ with |σ0| = q and (Γ0

p,q)α = 0

for any other indexes α. We get

Γp,q =
∑

|σ0|=q
|γ|=p−q

Cσ0γ ·D2
σ0

× S1
γ =

∑

σ∈K

(Γ0
p,q)σ = ε′Γ0

p,q,

therefore Γ0
p,q is the resolvent of length 0.

Suppose that the resolvent Γ0
p,q, . . . ,Γ

k
p,q of length k is already constructed. Recall that (i, γ)

is the position of i in the naturally ordered set γ ∪ i. Define

(Γk+1
p,q )σk\i,σk...σ0

= (−1)p+q−k
∑

|γ|=p−q

(−1)(i,γ)Cσkγ,σk...σ0
D2

σk\i × S1
γ∪i,

for i ∈ σk, |σj | = q − j, σj+1 ⊂ σj , and

(Γk+1
p,q )α0,...,αk+1

= 0,
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for any other indexes α0, . . . , αk+1. Let us show that Γ0
p,q, . . . ,Γ

k+1
p,q is a resolvent of length k+1 :

− (δ′Γk+1
p,q )σk...σ0

= (−1)p+q−k
∑

i∈σk

(Γk+1
p,q )σk\i,σk...σ0

=

=
∑

i∈σk

|γ|=p−q

(−1)(i,γ)Cσkγ,σk...σ0
D2

σk\i × S1
γ∪i =

∑

|γ|=p−q

Cσkγ,σk...σ0
∂D2

σk
× S1

γ = (∂Γk
p,q)σk...σ0

.

For any indexes α0, . . . , αk different from σk, . . . , σm+1, σm−1, . . . , σ0, 0 ≤ m 6 k, directly from
definition of Γk

p,q,Γ
k+1
p,q , we get

(∂Γk
p,q)α0,...,αk

= −(δ′Γk+1
p,q )α0,...,αk

= 0.

Consider the last case σk \ i, σk, . . . , σm+1, σm−1, . . . , σ0, for 0 6 m 6 k. Since by the induction
hypothesis Γ0

p,q . . .Γ
k
p,q is a resolvent, −δ′Γk

p,q = ∂Γk−1
p,q , hence we have δ′∂Γk

p,q = 0, and

(δ′∂Γk
p,q)σk...σm+1σm−1...σ0

=

= (−1)p+q−k+1
∑

σm+1⊂σm⊂σm−1

|σm|=q−m

∑

|γ|=p−q+k

∑

i∈σk

(−1)(i,γ)Cσkγ,σk...σ0
·D2

σk\i × S1
γ∪i = 0.

Therefore, for a fixed i ∈ σk, we get
∑

σm+1⊂σm⊂σm−1

|σm|=q−m

∑

|γ|=p−q+k

(−1)(i,γ)Cσkγ,σk...σ0
·D2

σk\i × S1
γ∪i = 0.

On the other side,

(δ′Γk+1
p,q )σk\i,σk...σm+1σm−1...σ0

=

= (−1)p+q−k+1
∑

σm+1⊂σm⊂σm−1

|σm|=q−m

∑

|γ|=p−q+k

(−1)(i,γ)Cσkγ,σk...σ0
·D2

σk\i × S1
γ∪i,

hence (δ′Γk+1
p,q )σk\i,σk...σm+1σm−1...σ0

= 0. We have shown that ∂Γk
p,q = −δ′Γk+1

p,q . 2

It follows from Theorem 2 and the construction of the cell decomposition of the moment-angle
complex ZK that any cycle Γs ∈ Hs(C

n \ ZK) can be represented as a sum of the cycles Γp,q :

Γs =
∑

p+q=s
p≥q

Γp,q,

where Γp,q is the cycles of the form (3). From Lemma 1 we have the construction of the resolvent
Γ0

p,q, . . . ,Γ
q
p,q of the cycle Γp,q.

The cover UK is ∂-acyclic. Indeed, all elements of the cover and their intersections are
isomorphic to C

n−k × (C∗)k for appropriate choice of k and consequently are a Stein manifolds.
From Theorem 4 and Theorem 5 we obtain that Hs(K•(UK,Ω

•),D) is isomorphic to the
de Rham cohomology group Hs(Cn \ ZK,C). Recall that we use the following notation for the
inclusions of complexes

ε : E•(Cn \ ZK) → K•(UK, E•),

τ : K•(UK,Ω
•) → K•(UK, E•).

We will use the same notation for the induced isomorphisms on the cohomology groups:

Hs(Cn \ ZK,C)
ε≃ Hs(K•(UK, E•),D)

τ≃ Hs(K•(UK,Ω
•),D).
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Lemma 2. Let ω ∈ Hs(K•(UK,Ω
•),D), then there is a cocycle ω̃ such that ω̃ = ω in

Hs(K•(UK,Ω
•),D), ω̃ =

∑
p+q=s ω̃

p,q, ω̃p,q ∈ Cq(UK,Ω
p), and

(ω̃p,q)σ0,...,σq
=

∑

|I|=p

CI,σ0,...,σq

dzI

zI

,

where Dω̃p,q = 0 for any p and q.

Proof. Consider an arbitrary element ω of Hs(K•(UK,Ω
•),D), this element is representable

by cocycle ω =
∑

p+q=s ω
p,q, where ωp,q ∈ Cq(UK,Ω

p) and δωp,q = −dωp−1,q+1. The cocycle ω
has a unique decomposition ω = ω̃ + ψ, where (ω̃p,q)σ0,...,σq

is the following form

(ω̃p,q)σ0,...,σq
=

∑

|I|=p

CI,σ0,...,σq

dzI

zI

, (4)

and the Laurent expansion of (ψp,q)σ0,...,σq
does not contain summands

dzI

zI

.

Let us show that ω̃ and ψ are cocycles. Since ω is a cocycle, we have δω̃p,q + δψp,q =

−dω̃p−1,q+1 − dψp−1,q+1. The forms
dzI

zI

are closed, hence dω̃p−1,q+1 = 0. Since the Laurent

expansions of the components of the cochain δψp,q do not contain summand
dzI

zI

and the cochain

δω̃p,q can be exact if and only if δω̃p,q = 0 (because nonzero linear combinations of the forms
dzI

zI

are nonexact on any elements of the cover UK), δω̃p,q = 0. We get that δω̃p,q = dω̃p,q = 0,

consequently, ω̃ is a cocycle. The cochain ψ = ω− ω̃ is a difference of two cocycles, hence ψ is a
cocycle.

Now we going to show that ψ is a coboundary.

Lemma 3. Let Γ ∈ Hs(C \ ZK), then
∫
Γ
ε−1 ◦ τ(ψ) = 0.

Proof. For the cycle Γ we have the expansion to the sum Γ =
∑

p+q=s

Γp,q. Lemma 1 gives the

explicit construction of the resolvent Γ0
p,q, . . . ,Γ

q
p,q of the cycle Γp,q. Let us construct a cocycle

ψ̃k =
∑

p+q=s

ψ̃p,q
k cohomologous to τ(ψ) of K•(UK, E•)

ψ̃p,q
k =





ψp,q for q<k,
ψp,q − dδ−1(ψp−1,q+1 − dδ−1(ψp−2,q+2 − dδ−1(· · · − dδ−1(ψ0,p+q)))) for q=k,
0 for q>k.

From Proposition 2 we obtain
∫

Γ

ε−1 ◦ τ(ψ) =
∑

p+q=s

∑

k6q

〈Γk
p,q, ψ̃

s−k,k
q 〉.

Let k < q and ω ∈ Ωp+q−k(Uσ′), it is easy to see, that ω|D2
σ×S1

γ
= 0 for |σ| = q − k >

0, |γ| = p− q+ k, σ ⊆ σ′. The forms (ψ̃s−k,k
q )α0,...,αk

are holomorphic on Uα0
∩ · · · ∩ Uαk

, indeed,

(ψ̃s−k,k
q )α0,...,αk

= (ψs−k,k)α0,...,αk
, on the other side, (Γk

p,q)α0,...,αk
is a linear combination of the

chainsD2
σ×S1

γ , |σ| = q−k > 0, |γ| = p−q+k, combining these two facts we get 〈Γk
p,q, ψ̃

s−k,k
q 〉 = 0.

Consider the case k = q. From the definition of ψ̃ it follows that ψ̃p,q
q = ψp,q + dϕ for some

ϕ ∈ Cq(Ep−1,U). Since (Γq
p,q)α0,...,αk

is a linear combination of the cycles S1
γ , |γ| = p,

S1
γ = {|zj | = 1 : j ∈ γ, zk = 1 : k 6∈ γ},
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〈Γq
p,q, ψ̃

s−q,q
q 〉 = 〈Γq

p,q, ψ
s−q,q〉. Indeed, by the Stokes formula

∫
S1

γ
dϕ = 0, hence 〈Γq

p,q, dϕ〉 = 0.

Expand the from (ψs−q,q)α0,...,αq
to the Laurent series,

(ψs−q,q)α0,...,αq
=

∑

a=(a1,...,an)∈Zn

∑

|I|=p

Ca,I,α0...αq
za1

1 . . . zan
n

dzI

zI

.

The integral

∫

S1
γ

za1

1 . . . zan
n

dzI

zI

is nonzero only if I = γ and a = 0, i.e., for the forms
dzγ

zγ
, but

by the construction of ψs−q,q the Laurent expansion of (ψs−q,q)α0,...,αq
does not contain the

summands
dzγ

zγ

. Consequently, 〈Γq
p,q, ψ

s−q,q〉 = 0.

We have shown that
∫
Γ
ε−1 ◦ τ(ψ) = 0. Lemma 3 is proved. 2

By the de Rham Theorem any closed form ω of degree s on C
n \ ZK is exact if and only if∫

Γ
ω = 0 for any cycle Γ ∈ Hs(C

n\ZK). It follows from Lemma 3 that ε−1◦τ(ψ) is cohomologous
to zero, hence ψ is a coboundary . Lemma 2 is proved. 2

By Lemma 2 any cocycle ω ∈ Hs(K•(UK,Ω
•),D) is cohomologous to ω̃ =

∑
p+q=s ω̃

p,q, where
ω̃p,q is of the form (4). Moreover, ω̃p,q ∈ Cq(UK,Ω

p) is a cocycle, i.e., Dω̃p,q = 0. We denote by
Hp,q(K•(UK,Ω

•),D) a subspace of Hs(K•(UK,Ω
•),D) generated by cocycles ω̃p,q. We obtain

Hs(K•(UK,Ω
•),D) =

⊕

p+q=s

Hp,q(K•(UK,Ω
•),D).

Then the filtration F kHs(K•(UK,Ω
•),D) equals

F kHs(K•(UK,Ω
•),D) =

⊕

p≥k

Hp,s−p(K•(UK,Ω
•),D).

Hence,

F kHs(Cn \ ZK,C)
ε−1◦τ≃

⊕

p≥k

Hp,s−p(K•(UK,Ω
•),D).

By the same argument as in Lemma 3 we obtain that for every cycle Γp,q ∈ Hp,q(C
n \ ZK),

and every cocycle ω̃p′,q′ ∈ Hp′,q′

(K•(UK,Ω
•),D), the following equality holds

∫

Γp,q

ε−1 ◦ τ(ω̃p′,q′

) = 0,

for p 6= p′, q 6= q′. It follows from nondegeneracy of the pairing between cohomology and homology
that the pairing between elements of Hp,q(C

n \ZK,C) and ε−1 ◦τ(Hp′,q′

(K•(UK,Ω
•),D)) is non-

degenerate if p = p′, q = q′ and equals to zero otherwise. Thus, ε−1 ◦τ(Hp′,q′

(K•(UK,Ω
•),D)) =

φ(Hp′,q′

(RK ⊗ C)). 2

4. Integral representations of holomorphic functions

In the last section we study integral representations of holomorphic functions such that kernels
of these integral representations have singularities on coordinate subspace arrangements in C

n.
The examples of such integral representations are the multidimensional Cauchy integral represen-
tation, whose kernel has singularity on ({z1 = 0} ∪ · · · ∪ {zn = 0}), and the Bochner–Martinelli
integral representation, whose kernel has singularity on {0}. In [10] a family of new integral
representations of this kind was obtained, the kernels of these integral representations have sin-
gularities on the subspace arrangements defined by simple polytopes.
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Denote by U the unit polydisc in C
n :

U = {z = (z1, . . . , zn) ∈ C
n : |zi| < 1, i = 1, . . . , n}.

Notice that the moment-angle complex ZK is lying on the boundary ∂U of the polydisc.

Theorem 6. Given a nontrivial element ω′ from FnHs(Cn \ZK,C). Then there exists a closed
(n, s−n)-form ω, [ω] = ω′ and an s-dimensional cycle Γ in C

n\ZK with support in ZK, such that
for any function f holomorphic in some neighborhood of U the following integral representation
holds

f(ζ) =

∫

Γ

f(z)ω(z − ζ)

for ζ ∈ U.

Proof. Since ω′ ∈ FnHs(Cn \ ZK,C), by Theorem 1 there is a cycle Γ ∈ Hs(C
n \ ZK,C),

Γ =
∑

|σ|=s−n
|γ|=2n−s

Cσγ ·D2
σ × S1

γ ,

such that 〈Γ, ω′〉 = 1. It follows from Lemma 2 that there exists a cocycle ωn,s−n ∈ Cs−n(UK,Ω
n),

(ωn,s−n)α0,...,αs−n
= Bα0,...,αs−n

dz1
z1

∧ · · · ∧ dzn

zn

,

that is cohomologous to τ−1◦ε(ω′) in Hs(K•(UK,Ω
•),D). The form ω = ε−1◦(−∂δ−1)s−nωn,s−n

is cohomologous to ω′, so

∫

Γ

ω = 1.

Let us show that ω and γ define an integral representation. Consider the integral

∫

Γ

ω(z−ζ),
where ζ ∈ U, here the notation ω(z − ζ) stands for the form ω after the change of coordinates
z → z−ζ. Notice that the form ω(z−ζ) is closed in U, thus the integral of this form depends only

on the homological class of the integration cycle. Let us make a change of coordinates

∫

Γ−ζ

ω(z)

where Γ−ζ is a cycle Γ shifted by the vector −ζ. In the sequel we will use the subindex −ζ to
denote chains, cycles, and sets in C

n shifted by the vector −ζ.
Let us show that Γ − ζ is homologous to Γ. Notice that (ZK − ζ) ∩ ZK = ∅ for any ζ ∈ U.

Indeed,

ZK − ζ =
⋃

σ∈K

(D2
σ × S1

[n]\σ − ζ), ZK =
⋃

σ 6∈K

Lσ,

we see that (D2
σ × S1

[n]\σ − ζ) ∩ Lσ′ = ∅ for any σ ∈ K,σ′ 6∈ K and ζ ∈ U. Consider the

chain Γ̃−ζ = {y : y = x − tζ, x ∈ Γ, t ∈ [0, 1]}, the support of the chain Γ̃−ζ is a subset of⋃
t∈[0,1](ZK − tζ), therefore Γ̃−ζ is a subset of C

n \ZK. Its boundary equals ∂Γ̃−ζ = (Γ− ζ)−Γ,

i.e., (Γ − ζ) and Γ are homologous. So we have returned to the case
∫
Γ
ω(z), which was already

considered. We get ∫

Γ

ω(z − ζ) =

∫

Γ−ζ

ω(z) = 1.

By dentition ω(z − ζ) is an (n, s − n)-form. Let f(z) be a function holomorphic in some
neighborhood of unit polydisc U . Since the operators ∂ and δ are interchangeable with the
multiplication by a holomorphic function, we get f(z) · ω(z − ζ) = ε−1 ◦ (−∂δ−1)s−nf(z) ·
ωn,s−n(z − ζ). By Lemma 1 there is a resolvent Γ0, . . . ,Γs−n of the cycle Γ such that

Γs−n
α0,...,αs−n

= C ′
α0,...,αs−n

· S1
[n], S1

[n] = {|z1| = · · · = |zn| = 1}.
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Since ∫

Γ

ω(z − ζ) = 〈Γs−n, ωn,s−n(z − ζ)〉 = 1,

from the Cauchy integral representation formula we get
∫

Γ

f(z)ω(z − ζ) = 〈Γs−n, f(z) · ωn,s−n(z − ζ)〉 = f(ζ).

2
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Фильтрация Ходжа на дополнениях к наборам
комплексных координатных подпространств
и интегральные представления голоморфных функций

Юрий В. Элияшев

В статье вычисляется фильтрация Ходжа на когомологиях дополнений к наборам комплексных

координатных подпространств. Эти результаты используются для нахождения интегральных

представлений голоморфных функций, в которых ядра имеют сингулярности на наборах коорди-

натных подпространств.

Ключевые слова: фильтрация Ходжа, конфигурации плоскостей, интегральные представления,

торическая топология.
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