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The basic model of non-stationary behaviour of a catalytic system is proposed. Parameters range is
determined wherein oscillations are observed. It is shown that when parameters exceed the range small

fluctuations of parameters can lead to the chaotization of system dynamics as a whole.
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Introduction

At present it is known that behaviour of chemical systems in a kinetic region can be quite
complex (see e.g. [1-5]). In this paper we present a rather simple kinetic model which corresponds
to a catalytic scheme of transformations under condition of small fluctuations of model parame-
ters. Numerical results show that near the critical conditions (multiplicity of steady states and
oscillations) can appear complex oscillations that are chaotic in character. Here we understand
chaos as complex behaviour of dynamical system in time for small fluctuations of parameters.

Let us consider the following scheme of catalytic transformations

)A+Z=X,
2) X +27 — 37 + B, (1)
3)B+Z =Y,

where Z is the active site on the catalytic surface. A and B are substances in the gas phase (A
and B are adsorbed on Z, and form X and Y). The main non linearity is in the second stage
that is autocatalytic in character. Stage 3) is a buffer stage. It is well known that kinetic model
corresponding to (1) can have multiple steady states and oscillations even if A, B = const [1,2,4].

The oscillator is a more realistic scheme of transformations. For example, let us consider the
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following kinetic model [2, 3]

1) Oy + 2Pt = 2PtO,

)
2) CO + Pt = PtCO, )
3) PtCO + PtO — 2Pt + COs,

)

4) CO + Pt = (PtCO)*,

where the buffer substance (PtCO)* is the tightly bound form of CO adsorption on the platinum
surface.
Together with (2) there is another kinetic model of catalytic hydrogen oxidation

1) Hy + Pt = PtH,,
2) O, + 2Pt = 2PtO, (3)
3) PtHy 4+ PtO — 2Pt + H,O.

The basic kinetic model that corresponds to scheme (3) is a trigger, that is, it is a system
with three steady states, two of which are stable and the third is unstable. When parameters are
changed (e.g., partial pressures of reactants Os, CO or Hs) the kinetic model can have multiple
steady states or oscillations [1,2].

Let us write the basic kinetic model that corresponds to non-linear scheme of transformations
(1) in the form

d

i = 7](71(12,’ —+ k_lilf —+ k2$22 — ng —+ kgy,
@ = ksbz — k

dt 3 -3Y,

where z is the dimensionless concentration (or the cover degree of the catalyst Z by the substance
A from the gas phase). y is the dimensionless concentration of the adsorbed substance B.
Parameters a and b are constants that correspond to concentrations of A and B. According to
the law of conservation of mass, we have

r+y+z=1 (5)
Steady states of dynamic model (4) are determined from the following relations

—kiaz + k_1x + koxz® — ksz + ksy = 0, (6)
kgbz — kfgy =0. (7)

Values of z, y and z in a steady state are determined from relations (5) —(7) in the form

—kraz +k_1(1 — az) + k22*(1 — az) = 0, (8)
ksb

Y= Eza 9)

r=1—y—=z (10)

For given values of parameters ki, k_1, & = ks/k_3, ko, ks and k_3 cubic equation (8) is solved
with respect to z . Further, stationary values of concentrations y and z are calculated from (9)
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and (10).Parameters kq, k_1 and ks can be obtained from (8):

(1 — az)(k_1 + ko2?)

F(z) = az ’
kiaz — ke2?(1 — az
bale) = =R 20 (1)
kraz —k_1(1 — az)
Fal2) = 22(1 — az) ’

where a = ksb/k_3. An example of parametric relationship (11) is given in Fig. 1 for the following
set of parameters: k1 = 0.08, k_y = 0.001, ks = 1, k3 = 0.0032, k_3 =0.002, a =1, b = 1.

Thus, dynamic system (4) can have one or three steady states. The stability of these steady
states is defined by the roots of characteristic equation

M oA+ A=0, (12)

where 0 = a1 + ago is the trace of the Jacobian matrix for the right hand side of dynamic
system (4). A = aj1a92 — a12a9; is the determinant of the Jacobian matrix. A detailed analysis
of the critical conditions for (12) is not considered here. We are only interested in the case
of unique and unstable steady state, i.e., in the case of existence of undamped oscillations in
dynamic system (4) .

Elements of the Jacobian matrix for the right hand side of dynamic system (4) are

ai = —kia —k_y — koz® + 2koxz — k3b,
a1z = —k_1 — ko2® + k_3,
a1 = ksb,

ago — 7]43_3.

The conditions ¢ = 0 and A = 0 set ranges of parameters. As parameters change, the number
and stability of steady states of dynamic model (4) change [1,2]. An example of of multiplicity
curve La (A = 0) and neutrality curve L, (0 = 0) are shown in Fig. 2. The mutual arrangement
of these curves define the number and stability of steady states of kinetic model (4).

There are two points inside the neutrality region defined by the curve L, (see Fig. 2). Point
1 corresponds to such combination of parameters wherein oscillating solutions exist. They are
stable for small variations of parameters (see Fig. 3). Point 2 in Fig. 2 corresponds to such
combination of parameters that it is close to the border of the region wherein oscillating solutions
exist. For this combination of parameters even small external noise (small random change of
parameter a) can lead to complex oscillations having the character of “chaos" (see Fig. 4).

Note that near the boundary of multiplicity region (curve La) and stability region (curve L)
the high parametric sensitivity of solutions of model (4) is observed. For example, for a small
change in parameters the only and stable steady state solution can lose stability. It results in
occurrence of oscillating solutions (Fig. 3).

Numerical analysis shows that chaotization of solutions of kinetic model (4) occurs for small
fluctuations of parameters of system (4) (for example, parameter a) (see Fig. 4). Due to the
high sensitivity of oscillating solutions for even small fluctuations of parameters the chaotization
of system dynamic is observed.

The simplest (basic) model of non-stationary behaviour of the catalytic system is proposed
in the paper. It is shown that near the boundary of parameter region where oscillations exist,
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Fig. 1. Parametric relationships z(k;) for Fig. 2. Mutual arrangement of La and L,
1) ko =0.5; 2) 1; 3) 1.5; 4) 2 curves in relation to parameters (k1, k_1)

X

il

| YaANANA
JO W T
IRPAVAVAVAVARY/
—

=

S

JU

0,34

5 W 100 D 200 250 M0 SN0 400 46D g 0 1000 2000 3000 4000 t
Fig. 3. Solutions of dynamic system (4) corre- Fig. 4. Chaotization of solutions of dynamic
sponding to point 1 for k& = 0.12 and k_; = system corresponding to point 2 for k; =
0.01, 0.105 and k_; = 0.01

small fluctuations of parameters can lead to the chaotization of system dynamics. Numerical
results show that when system parameters change in critical points (for example,on the borders
of multiplicity and stability regions) complex oscillations like "chaos" may occur for small random
variations in system parameters.
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Xumuueckuii "xaoc" , uHaynupoBaHHbI ImyMoM. Ba3zoBasi
KNHeTUYeckKasi MO/Iejib 1 €€ IIapaMeTpUYecKuii aHaJIn3

Cseriiana B. IIbi6eHoBa
Bagnepuit . BrikoB
JIrommuia C. Tpornenko

WNucruryT 6noxummyeckoit pusuku nm. H. M. Dmanysins PAH
Koceiruna, 4, Mocksa, 119334
Poccus

IIpedaoorcera 6a306a.4 MOOEAD HECMAUUOHAPHOZ0 NOBEJEHUA KamMasumuieckol cucmemot. Iloxasaro, wmo
6804U3U 2PAHUYDL 06AGCTU NAPAMEMPOS, NPU KOMOPYHIL CYULLCNEYIOM A8MOKONCOUHUS, MAAbE PAYKMY-
AUUY NAPAMEMPOS MO2YM NPUBECTNU K TAOMU3GUUY OUHAMUKY CUCTNEMDL 8 UCAOM.

Karouesvle caoga: TuMuMeckas ruHemura, KuHemu4ecras MOB@/Lb, 6U(ﬁyp7§au,ua, wym, raoc, napamem-
pu%ec%ua aHaAUuU3.
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