
 1  

Electro-optical and dielectric properties of polymer-

stabilized blue phase liquid crystal impregnated with a 

fluorine-containing compound 

 

 

Po-Chang Wu a, Hsin-Li Chen a, Natalya V. Rudakova b, Ivan V. Timofeev c,d, 

Victor Ya. Zyryanov c, and Wei Lee a,* 

 

a Institute of Imaging and Biomedical Photonics, College of Photonics, National Chiao 

Tung University, Guiren Dist., Tainan 71150, Taiwan 

b Institute of Engineering Physics and Radio Electronics, Siberian Federal University, 

Krasnoyarsk 660041, Russia 

c Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 

Krasnoyarsk 660036, Russia 

d Laboratory for Nonlinear Optics and Spectroscopy, Siberian Federal University, 

Krasnoyarsk 660041, Russia 

(Received 

  



 2  

A B S T R A C T 

The effects of a fluorine-containing compound (4,4’-difluorobenzophenone; DF) on the 

electro-optical and dielectric properties of polymer-stabilized blue phase (PSBP) liquid 

crystals were investigated. When a PSBP cell was driven by an in-plane electric field, the 

addition of DF up to 2.7 wt% effectively reduced the operation voltage by ~30%. Further 

inspection by dielectric spectroscopy indicated that the ionic concentration in PSBP 

decreased with increasing loading of DF. This finding can be ascribed to the adsorption 

of impurity ions near the ketone group and carbon–fluorine bonds of the DF compound 

that restrained the ion transport after photopolymerization. As a result, the DF compound 

can be regarded as a superior ion-suppressor, enabling the reduction in the ionic effect 

and, in turn, the promotion of the electro-optical response of a PSBP. 
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1. Introduction 

Blue phases (BPs) are frustrated liquid crystal (LC) mesophases, existing between 

the cholesteric and isotropic phases in highly chiral LCs. BPs are composed of double 

twisted cylinders and disclinations, self-assembling into periodically cubic structures in 

BPI and BPII or amorphous fog-like framework in BPIII. Because disclinations or defect 

lines with high free-energy cost are thermodynamically unstable, pristine BP structures 

can only be preserved within a narrow temperature range, typically 15 C [1, 2]. To date, 

several approaches, such as forming polymer networks, doping nanoparticles, and using 

bent-shape LCs, have successively been developed to tackle this inherent problem in BPs. 

Among them, polymer stabilization of BPs, rendering polymer-stabilized BPs (PSBPs) 

created by the in-situ polymerization of monomers in BPs, has been recognized as an 

effective way to significantly broaden the temperature range of BPs with excellent 

durability and reliability [3]. Since Kikuchi et al. first demonstrated a PSBP boasting a 

60 C temperature span and a fast electro-optical (EO) response [4], PSBPs have widely 

been suggested for a variety of technological applications owing to the uniquely structural 

nature of BPs. For instance, PSBPs, with luring features including stimuli-responsive 

Bragg reflection-bandgap properties, polarization-insensitive optical isotropy, and fast 

EO Kerr switching, have extensively been investigated for designing various 

optoelectronic and tunable photonic devices [58]. More attractively, PSBPs offer many 

advantages in terms of display properties, such as the submillisecond response time, 

excellent dark state in the field-off state, wide viewing and no need of alignment layer, 

permitting their emergence as one of promising materials for realizing next-generation 

displays [911]. Unfortunately, implementations of PSBP in the display industry or 
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general photonics industry are practically impeded by several fatal drawbacks, especially 

such as the undesired high driving voltage, EO hysteresis, and residual birefringence 

[1214]. 

In view of fabrication processes of conventional PSBP, the combination of a 

diacrylate monomer (e.g. RM257) with triarylate (e.g. TMPTA) or monoarylate monomer 

(e.g. EHA or C12A) has largely been adopted as a primary element to construct polymer 

networks for BP stabilization after the photopolymerization. Typically, increasing the 

monomer concentration can readily repress the hysteresis and residual birefringence and 

shorten the response time of a PSBP but the trade-off is the considerable increase in 

operation voltage [15]. As such, the effects of photopolymerization conditions—in 

association with the curing temperature [16], the light source [17, 18], the cooling rate 

[19] and indispensable substances including the LC host and chiral dopant [20], monomer 

type and concentration [15, 2123], and photoinitiator [24]—on the display 

characteristics of PSBPs have been explored and optimal conditions identified. 

Alternatively, using low molecular-weight [25] or low-surface-tension monomer [26] as 

one of the components in the prepolymer matrix has also been suggested to reduce the 

driving voltage as well as the response time through the increase in the Kerr constant or 

to suppress the hysteresis. Moreover, designing the electrode with unconventional 

structures (beyond the typically two-dimensional, parallel stripes) for generating strong 

and deep-penetrating in-plane electric fields [27, 28] and replacing the commonly 

employed in-plane-switching (IPS) mode by the vertical-field-switching (VFS) mode for 

supplying uniform longitudinal electric fields [29] have been proposed to significantly 

lower the operation voltage, suppress the voltage–transmittance hysteresis and shorten 

the response time. 
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In this work we focus on the properties of PSBPs and consider the effect of the 

incorporation of an organic fluorine-containing compound (4,4’-difluorobenzophenone 

or bis(4-fluorophenyl)methanone; DF) of molecular weight of 218.20 gmol1 together 

with two commonly used monomers RM257 and TMPTA into a BP mixture. After 

performing photopolymerization of the ternary mixture by ultraviolet (UV) light exposure, 

the effects of DF on the EO and dielectric responses of the PSBP samples were examined. 

To date, fluorine-containing monomers have been exploited in polymer-dispersed LC 

systems to improve morphological and EO properties [3032]. For BPs, only a few 

studies show an enlarged temperature range of BP by using a host material with lateral 

fluoro substituents [33] or using a fluorinated chiral dopant in a BP mixture [34]. In the 

present work, the reduced operation voltage and suppressed ionic effect by addition of 

DF in PSBPs are, respectively, confirmed in IPS and VFS cells based on the results of the 

voltage-dependent transmission curves and dielectric spectra. 

 

2. Experimental 

The materials used to form a blended PSBP precursor comprise a BPLC mixture, 

two kinds of photocurable monomers—RM257 (HCCH) and TMPTA (HCCH), a 

fluorine-containing compound (DF, Alfa Aesar), and the photoinitiator Irgcure 184 

(HCCH). Five precursors were prepared for investigations and their detailed 

compositions are listed in Table 1. Note that “RT” in the sample code RTxDFy stands for 

the RM257/TMPTA mixture and the number right behind indicates the concentration of 

the binary prepolymer in weight per-mille (wt‰). As displayed in Table 1, the total 

concentration of the three compounds in each PSBP precursor; i.e., x + y, is fixed at 9.6 
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wt%, except for the counterpart RM69DF00. The ratio between the amounts of RM257 

and TMPTA was set to 1:1. In other words, when the concentrations of DF are 0, 0.70, 

1.70, and 2.70 wt%, the concentrations of RM257 and TMPTA are identically 4.80, 4.45, 

3.95, and 3.45 wt%, respectively. The BPLC is composed of a nematic host (HDE, HCCH) 

and a right-handed chiral additive (R5011, HCCH) in a weight ratio of 96.8:3.2. The 

nematic host exhibits a clearing point Tc = 97 C, birefringence Δn = 0.204 (at the 

wavelength  = 589 nm and temperature T = 20 C), and dielectric anisotropy Δ = 60.64 

(at the frequency of 1 kHz and T = 25 C) [35]. 

Fig. 1 illustrates the chemical structures of the two monomers and the dopant DF 

used. RM257 is a diacrylate reactive mesogen showing a core chain and two alkene 

groups (namely, the carbon–carbon double bonds) in the molecular structure and it is 

often employed as a cross-linker to form three-dimensional polymer networks [36]. 

TMPTA is a low-viscosity, low-volatility liquid monomer with three acrylate groups as 

the reactive sites; it has been proven responsible of providing rigidity and high 

crosslinking density of the resulting network [37]. In this study, RM257 and TMPTA are 

the primary components for constructing the main polymer skeletons in PSBP samples. 

In contrast, DF is a class of difluoro compound, consisting of eight hydrogen atoms, 13 

carbon atoms, one oxygen atom, and two fluorine atoms. It is generally used as a 

precursor for synthesis of poly(etheretherketone) (PEEK) [38]. 

The PSBP precursors were heated to their isotropic phase and stirred for 2 h to ensure 

complete liquefaction and uniformity. They were then injected into empty cells by 

capillary action in the isotropic phase. Here, the cells used are of two types, differing in 

the electrode design. The IPS cells were made for the EO study whereas the VFS cells 

forming parallel-plate capacitors for the dielectric investigation. An IPS cell was 
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assembled with two glass substrates, one of which coated with interdigital indium–tin-

oxide (ITO) electrodes (width/spacing = 5 μm/5 μm) while a VFS cell was made of two 

identical ITO-coated substrates with an effective electrode area of 1 cm2. The cell gaps of 

the IPS and the VFS cells were 5.8 μm and 4.5 μm, respectively. Note that no aligning 

agent was used in this study. Phase sequences of the PSBP precursors were preliminarily 

inspected by polarizing optical microscopy to identify the temperature ranges of BPs, as 

given in Table 1. For the fabrication of PSBP samples from their precursors, each cell was 

heated to the isotropic state and consecutively cooled to the BP with a cooling rate of 0.1 

C/min using a precise temperature controller (Linkam, T95-PE). When obtaining the BP 

at a designated temperature near the BP-to-cholesteric transition point, each cell was 

exposed to UV light at  = 365 nm and intensity of 85 mWcm2 for 10 min to accomplish 

the photopolymerization process and thus a PSBP resulted. 

 EO features of PSBPs were determined by the voltage-dependent transmission (V–

T%) curves of IPS cells. In the EO measurement, an IPS cell was placed between crossed 

polarizers and the long stripes of interdigital electrodes were set at 45 from the 

transmission axis of either polarizer. A HeNe laser beam with emission wavelength at 

632.8 nm normally impinged onto the substrate plane of the cell. The intensity of the 

monochromatic light after passing through the cell was monitored by a photodetector. To 

prevent the light loss from the diffraction, a convex lens was situated in front of the 

photodetector to effectively collect diffracted light of distinct orders [39]. On the other 

hand, ionic properties of PSBPs were investigated in terms of their complex dielectric 

spectra (ε*(f)) of VFS cells in the frequency regime between 1 Hz and 10 kHz using a 

LCR meter (HIOKI 522-50 LCR HiTESTER). Here, ε*(f) is defined as ε*(f) = ε’(f) – 

iε”(f), where ε’ is the real-part and ε” the imaginary-part dielectric permittivity. The probe 
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voltage was as small as 0.3 Vrms in the sinusoidal waveform to avoid the contribution of 

field-induced molecular reorientation to the complex dielectric data. 

 

3. Results and discussion 

The stabilization of BP in our PSBP samples was checked with a polarizing optical 

microscope (Olympus BX51). Fig. 2 displays optical textures of three such samples (with 

different monomer compositions) before and after photopolymerization. The six 

micrographs clearly reveal that the BPs appearing at specific temperatures higher than the 

room temperature prior to polymerization (top row) can successfully be preserved in a 

widened temperature range covering 25 C after photopolymerization. Noticeably, the 

platelet sizes in RT69DF00 are comparable to those in RT69DF27. This implies that the 

fluorine-containing compound DF does not affect the BP formation, which is totally 

different from those materials used in Ref. 26. To investigate the effect of DF on the EO 

properties of PSBPs, IPS samples were driven by square-wave voltages at 1 kHz using an 

arbitrary function generator (Tektronix AFG-3022B) in conjunction with an amplifier 

(TREK Model 603). 

Fig. 3 depicts the V–T% curves of five samples at ambient temperature. For samples 

without DF, the voltage (Vmax) corresponding to maximum transmittance and the light 

leakage at V = 0 Vrms of the sample RT96DF00 are, respectively, higher than and lower 

than those of RT69DF00. Such a result is in good agreement with previous studies. It has 

been suggested that the higher monomer concentration furnishes a stiffer polymer system, 

thereby yielding a more optically isotropic BP structure at null voltage and causing a 

higher operating voltage to induce lattice distortion [11, 15]. With fixed overall 
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prepolymer/DF concentration at 9.6 wt%, partial replacement of RT and TMPTA by DF 

leads to the reduction in operation voltage of the PSBP. It can be determined from Fig. 3 

that the values of Vmax of samples RT89DF07 (Vmax = 42 Vrms), RT79DF17 (Vmax = 37 

Vrms), and RT69DF27 (Vmax = 32 Vrms) are 8.7 %, 19.6 %, and 30.4 % lower than that of 

sample RT96DF00 (Vmax = 46 Vrms). When comparing samples with identical RT 

concentration, Vmax of sample RT69DF27 is lower than that of sample RT69DF00 (Vmax 

= 40 Vrms) whereas light leakages in the two samples are comparable. This indicates that 

using DF to minify the operation voltage is actually accompanied by increased light 

leakage. Such a drawback can be compensated by utilizing a circular polarizer instead of 

linear polarizer to increase the contrast ratio in that PSBP possesses slight optical rotatory 

power of double twist cylinders [40]. It can be concluded from the above discussion that 

the reduction in operation voltage for driving a PSBP can be effectively realized by adding 

DF into the initial monomer mixture. 

Furthermore, Fig. 4 shows the V–T% curves of three selective samples for 

comparisons of EO hysteresis and residual birefringence. The RT96DF00 cell is nearly 

hysteresis-free and exhibits virtually zero residual birefringence. The reduction in RT 

concentration to 6.9 wt% results in apparent hysteresis and residual birefringence in the 

voltage regime between 0 Vrms and 20 Vrms, presumably due to the weakened stability of 

the polymer network. With the combination of 2.7-wt% DF and 6.9-wt% RT for 

polymerization, both the hysteresis and residual birefringence are notably suppressed in 

sample RT69DF27. This means that DF filled together with RT in disclination defects 

could also play a role in promoting the stiffness of polymer chains but it is not as good as 

RT. 

Previously, the reduced operation voltage of a PSBP by optimizing the monomer 
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type has been explained by the modified anchoring energy between the LC molecules and 

polymers. In our case, it might also be attributable to the suppressed ionic behaviors in 

view of the material characteristics of DF. Generally, ions are unavoidable impurities in 

a LC cell because they primarily originate from the LC substance used. It is well known 

that the served ionic effect in a LC cell can establish a significant internal field by the 

buildup of electrical double layer to counteract the external one, giving rise to the increase 

in driving voltage. Fig. 5 demonstrates the complex dielectric spectra of three VFS 

samples (RT69DF00, RT96DF00 and RT69DF27) to allow preliminary examinations of 

the influence of DF on the ionic behaviors. In the frequency range where the ion transport 

in the LC bulk can respond to the alternate inversion of electrical polarity of the probe 

voltage, both ε’(f) and ε”(f) dominated by the space-charge polarization vary with f3/2 and 

f1, respectively [41], where f is a linear frequency. Consequently, in contrast to the results 

of those samples without DF, the shift of the ε’(f) (Fig. 5(a)) and ε”(f) (Fig. 5(b)) curves 

to lower frequencies of the RT69DF27 sample briefly suggests the curbed ion transport 

and, hence, the restrained ionic effect. To quantitatively determine the ionic behavior as 

a function of the DF concentration, we follow a theoretical model established by Barbero 

et al. [42] to deduce the ion density n and diffusivity D in the cell by fitting the 

experimental data of ε’(f) and ε”(f) into the following equations [43]: 
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where q is the electric charge, d is the cell gap, ε0 is the permittivity in free space, kB is 
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the Boltzmann constant, T is the absolute temperature, and b   is the intrinsic dielectric 

constant of the LC bulk. According to the experimental results of the VHS-PSBP samples 

with identical total RM257/TMPTA/DF concentrations of 9.6 wt% listed in Table 2, D 

remains nearly constant (varying between 1.98  106 cm2s1 and 2.26  106 cm2s1) 

but n decreases from 39.6 Ccm3 to 20.0 Ccm3, revealing a ~50 % reduction in n, as 

the content of DF increases from 0 to 2.7 wt%. By calculating distributed partial charges 

in the DF molecule using Chem3D (CambridgeSoft®), the oxygen and fluorine atoms 

with negative partial charges are labeled in Fig. 6. In the polymerization process, the C=O 

bond of DF will not cleave and should not react with RM257 and TMPTA as the reactivity 

of the ketone group is low. For polymerization of DF to occur, other reactants should be 

added, such as in the preparation of PEEK [38]. (The fluoride group of DF may be reactive 

in substitution reactions, but the alkene groups (C=C) in RM257 and TMPTA are not 

suitable for such reaction.) The oxygen and fluorine atoms in the carbon–oxygen and 

carbon–fluorine bonds of dispersed DF molecules with negative partial charges could thus 

be accountable to the adsorption of impurity ions to restrain the ion transport. Although 

DF is confirmed to reduce the ionic effect and lower the operation voltage, replacing all 

the contents of RM257 and TMPTA by DF is not suggested because this compound alone 

can hardly stabilize the BP state at room temperature. 

 

4. Conclusions 

In conclusion, PSBP cells with wide BP temperature ranges covering the room 

temperature were fabricated by adopting distinct amounts of a third compound (DF) 

together with two monomers (RM257 and TMPTA) into the BP mixture, followed by 
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photopolymerization. A series of experiments were then conducted to study the effects of 

DF concentration on the EO and dielectric properties of PSBP cells. By fixing the overall 

concentration of the three compounds (RM257/TMPTA/DF) at 9.6 wt%, the 

experimentally obtained VT% curves indicate that the operation voltage of IPS-PSBP 

cells decreases with increasing DF concentration from 0 wt% to 2.7 wt%. Our data also 

suggest that DF dispersed in the precursor could be also responsible for the enhancement 

of the stiffness of the resulting polymer networks in that the EO hysteresis and residual 

birefringence of RT69DF00 is suppressed due to the incorporation of 2.7 wt% DF. 

Furthermore, the mechanism of improved EO performance of PSBPs by adding DF can 

be explained in terms of the modification in ionic behavior. By means of dielectric 

spectroscopy, it is found that the ionic effect in PSBP samples is weakened with increasing 

DF concentration. Quantitatively speaking, increasing the DF concentration from 0 to 2.7 

wt% results in the ion density to fall from 39.6 Ccm3 to 20.0 Ccm3. By confirming 

the presence of partial charges on the ketone and fluoride groups, such a result could be 

explained by the adsorption of impurity ions near the carbon–oxygen and carbon–fluorine 

bonds of DF. Consequently, with the aim towards the promotion of PSBP for practical 

uses, this study provides a new pathway from the point of view of material optimization 

for improved EO responses of a PSBP. 
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Table 1 

Compositions of various BP precursors and their isotropic-to-BP and BP-to-CLC phase 

transition temperatures. 

 Sample 

BPLC 

(wt%) 

RM257 

(wt%) 

TMPTA 

(wt%) 

DF 

(wt%) 

lIRG184  

(wt%) 

TIso-to-BP/TBP-CLC 

C/C 

RT69DF00 92.7 3.45 3.45 0 0.40 76.5/68.0 

RT96DF00 90.0 4.80 4.80 0 0.40 73.8/63.2 

RT89DF07 90.0 4.45 4.45 0.70 0.40 69.7/60.6 

RT79DF17 90.0 3.95 3.95 1.70 0.40 68.4/60.2 

RT69DF27 90.0 3.45 3.45 2.70 0.40 68.0/59.4 
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Table 2 

Summary of the ion density n and diffusivity D of various PSBP samples at T = 25 C.  

Values are obtained by fitting the dielectric data with Eqs. (1) and (2). 

Sample n (104 nCcm3) D (106 cm2s1) 

RT69DF00 3.00 2.89 

RT96DF00 3.96 1.98 

RT89DF07 3.66 2.20 

RT79DF17 2.87 2.26 

RT69DF27 2.00 2.06 
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Figure Captions 

 

Fig. 1.  Chemical structures of three mixed compounds: (a) RM257, (b) TMPTA, and 

(c) 4,4’-difluorobenzophenone (DF), an organic compound with the formula of 

(FC6H4)2CO. 

 

Fig. 2.  BP textures of three primary samples (RT69DF00, RT96DF00, and 

RT69DF27) before polymer stabilization at designated temperatures (top row) and after 

polymer stabilization at 25 C (bottom row). The brightness of the photos is increased 

by 40% to facilitate comparisons. 

 

Fig. 3.  Normalized voltage-dependent transmission curves of five IPS-PSBP cells 

driven by square wave voltages at frequency of 1 kHz. λ = 632.8 nm. 

 

Fig. 4.  Normalized V–T% curves showing hysteresis and residual birefringence of 

three IPS samples: RT96DF00, RT69DF00, and RT69DF27. λ = 632.8 nm. 

 

Fig. 5.  (a) Real- and (b) imaginary-part dielectric spectra of VFS-PSBP samples 

RT69DF00, RT96DF00, and RT69DF27 at 25 C. 

 

Fig. 6.  Partial-charge distribution in the fluro compound 4,4’-difluorobenzophenone 

(DF). 
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Fig. 4 

 

 

 



 26  

Fig. 5 
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