Author | Андреев, В. К. | |
Author | Marina V. Efimova | |
Accessioned Date | 2019-07-01T07:27:52Z | |
Available Date | 2019-07-01T07:27:52Z | |
Issued Date | 2018 | |
Bibliographic Citation | Андреев, В. К. A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel [Текст] / В. К. Андреев, Marina V. Efimova // Journal of Siberian Federal University-Mathematics and Physics: Mathematics and Physics. — 2018. — Т. 11 (№ 4). — С. 482-493 | |
URI (for links/citations) | http://elib.sfu-kras.ru/bitstream/handle/2311/71746/andreev.pdf?sequence=4 | |
URI (for links/citations) | http://elib.sfu-kras.ru/handle/2311/111044 | |
Abstract | We obtain a priori estimates of the solution in the uniform metric for a linear conjugate initial-boundary inverse problem describing the joint motion of a binary mixture and a viscous heat-conducting liquid in a plane channel. With their help, it is established that the solution of the non-stationary problem with time growth tends to a stationary solution according to the exponential law when the temperature on the channel walls stabilizes with time. | |
Subject | conjugate problem | |
Subject | inverse problem | |
Subject | a priori estimates | |
Subject | asymptotic behavior | |
Title | A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel | |
Type | Journal Article | |
Type | Published Journal Article | |
Pages | 482-493 | |
GRNTI | 27.35.21 | |
Update Date | 2019-07-01T07:27:52Z | |
DOI | 10.17516/1997-1397-2018-11-4-482-493 | |
Institute | Институт математики и фундаментальной информатики | |
Department | Базовая кафедра математического моделирования и процессов управления | |
Department | Кафедра математического обеспечения дискретных устройств и систем | |
Journal Name | Journal of Siberian Federal University-Mathematics and Physics | |
Journal Quartile in Scopus | Q3 | |
Journal Quartile in Web of Science | без квартиля | |