• русский
    • English
  • English 
    • русский
    • English
    View Item 
    •   DSpace Home
    • Публикации сотрудников
    • Статьи в научных журналах (эффективный контракт)
    • View Item
    •   DSpace Home
    • Публикации сотрудников
    • Статьи в научных журналах (эффективный контракт)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Improving reliability of aggregation, numerical simulation and analysis of complex systems by empirical data

    Thumbnail
    View/Open:
    2018_improving_reliability_of_aggregation_numerical_sim_0.pdf (722.6 Kb)
    DOI:
    10.1088/1757-899X/354/1/012006
    URI (for links/citations):
    http://iopscience.iop.org/article/10.1088/1757-899X/354/1/012006/meta
    http://elib.sfu-kras.ru/handle/2311/110682
    Author:
    Boris, S Dobronets
    Olga, A Popova
    Corporate Contributor:
    Институт космических и информационных технологий
    Кафедра систем искусственного интеллекта
    Date:
    2018
    Journal Name:
    IOP Conference Series: Materials Science and Engineering
    Journal Quartile in Scopus:
    без квартиля
    Journal Quartile in Web of Science:
    без квартиля
    Bibliographic Citation:
    Boris, S Dobronets. Improving reliability of aggregation, numerical simulation and analysis of complex systems by empirical data [Текст] / S Dobronets Boris, A Popova Olga // IOP Conference Series: Materials Science and Engineering: Materials Science and Engineering. — 2018. — Т. 354 (№ 012006).
    Abstract:
    The paper considers a new approach of regression modeling that uses aggregated data presented in the form of density functions. Approaches to Improving the reliability of aggregation of empirical data are considered: improving accuracy and estimating errors. We discuss the procedures of data aggregation as a preprocessing stage for subsequent to regression modeling. An important feature of study is demonstration of the way how represent the aggregated data. It is proposed to use piecewise polynomial models, including spline aggregate functions. We show that the proposed approach to data aggregation can be interpreted as the frequency distribution. To study its properties density function concept is used.Various types of mathematical models of data aggregation are discussed. For the construction of regression models, it is proposed to use data representation procedures based on piecewise polynomial models. New approaches to modeling functional dependencies based on spline aggregations are proposed.
    Collections:
    • Статьи в научных журналах (эффективный контракт) [4054]
    Metadata:
    Show full item record

    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV
     

     


    DSpace software copyright © 2002-2015  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    @mire NV