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The spherically symmetric adjoint initial-boundary value problem of heat propagation in closed bounded
spherical regions has been researched. The exact analytical solution of the direct and inverse nonstationary
problem has been obtained using Laplace transform method. The stationary state has been found and it
is shown that the nonstationary solution converges to stationary one when time tends to infinity, if such

are the heat sources in media.
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1. Problem statement

Assume that the functions wuj(r,t), ug(r,t) are defined in areas Qi = {r|0 <7 < Ri},
Qs = {r|R1 <r < Ry}, respectively, and satisfy the equations

2
Ul = X1 (uhr + 71u1T> + fi(r,t), t>0, 7€y, (1.1)

2
Uzt = X2 (ugr,« + TUQT> + fo(r,t), t>0, 7€ Q. (1.2)

The functions wu;, j = 1,2 are temperature fields, f; are defined internal heat sources; x; are
positive constants known as the thermal diffusivities.
In addition, we have initial and boundary conditions

U1 |t=0 = uzlt=0 = 0; (1.3)
|u1(0,t)] < oo, (1.4)
Ullr=R, = U2|r=Ry, (1.5)
kl% r=Ry k2% r=Ry’ (16)
uglr=r, =0, (1.7)
where k; are heat conductivity coefficients. Condition (1.5) is equality of temperatures, and (1.6)

is equality of heat fluxes on boundary surface » = R;. It is known [1] that x; = k;/c;p;, where
c; are specific heats, p; are densities of media.

It is necessary to find functions u; € C?(;)NCY(Ty), ug € C?(Q2)NCH(T1)NC(Ty), which
satisfy the equations (1.1), (1.2) and conditions (1.3)—(1.7), I'y = {r|r = R1}, T2 = {r|r = R2}.
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2. The solution of nonstationary problem by Laplace
transform method

We shall find the solution of the problem (1.1)—(1.7) by Laplace transform (its using is validated
in [2]). We obtain
Uy + EUJ’. —U; = ——F (2.1)
T Xj Xj
for images U;(r, p) of functions w;(r,t) by use the relation feature of original function’s differen-
tiation [2] and initial conditions (1.3). Here, F; = F}(r,p) are images of functions f;(r,t).
Boundary conditions become such as

U1|T Ry = U2|T’ Ry (22)
8U1 aUZ

k =k , 2.3
Yor 87‘ T:Rl 2 or 8T T:Rl ( )
U2|T:R2 = 07 (24)
U1(0,p)] < oc. (2.5)

Let us introduce change of variables U; = v;/r, then equation (2.1) take on form
=Py =R, 2.6
7 Xj J Xj J ( )

The solution of homogeneous differential equation (2.6) has the form [3]

vjo = C{ exp <r‘ /p) + Cg exp (—7“ p) .
X X

We define fundamental system of solutions @{ = exp (T\/p/x]) , gpé = exp (—T\/p/X]) for
finding of particular solution. Then Wronsky’s determinant W (r) = ¢’} — @l = —2./p/ Xj
and solution of equations (2.1) can be represented by formulae (subject to boundary conditions

(2.2)-(2.5))

sh (r\/XLT) exp ((R2 —Ry) \/g) R
= ryixash (B \/XZ> ST ((R2 4 \/Z) et

+- \/% ;hé@) ORl £F sh ((ng) @) w- [ "¢F sh ((r@\/Z) ac | +
. (<P) (o (1) o (0,7 o

_¢ P\ _ [P P
U= 5 (o (ryf ) —o (=) - mpx [ ern (00,7 ) des

+ r\/;{% exp < (Ro—r \/XT> §F2 sh ((Rz - \/Z) dg, (2.8)
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where

@ CXP((R;;?)\/%) Iff §Fysh ((Rz =§) \/XLT) d§ — “ sh(Rl\/ ) fo Fish (5\F)

€= Cy exp (R1 \/XZ) +Cpexp ((232 “R) \/;)
(2.9)
(11:\/Z+1 \/zcth@l\/@, 02:\/1_ \/thh(m\/z().)
2.10

3. The solution of stationary problem

Assume that f;(r,t) — fjo(r), when ¢t — oo. Then the question arise whether solution of
nonstationary problem will converge to solution of stationary one. The steady-state condition of
heat conduction satisfies the equations

2 1
u?”(r) + ;u?'(r) = —;f;)(r) (3.1)

J

with boundary conditions
0 _,0

W(Ry) = u3(Ry), (3.2)
krud (Ry) = kaud' (Ry), (3.3)
uy(Ro) =0, (3.4)
|u?(0)] < oo. (3.5)

It is easy to see that the problem (3.1)—(3.5) has the following solution:

o (L _ N E [0 L <f2_>o _
b= (g m) 5 M emeun- L [M (5 ) mow

L (; ~¢) @+ [ (52—5) R©de, (36

o_ (Lo ANE [ oo L <52 )
$=(-g) = [ e XQ/RI o ¢) Bt

v (5 ~¢) a6

We use the well-known limiting relations liH(l) pF(p) = f(0) 2], shx ~ 2z, chax ~ 1, expax ~
p—)

1+ z, when = — 0, and formulae (2.7)—(2.10) for finding of limits
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lin pUs(rp) = L tim (= [ e —§)f°d€+1/rﬁ( e+
T AN A A
(Ro—Ra), /& 2 1
iy VB | () 1 - 0t - et
+ 22 i +

T ) () (e )

1+ RQ—R11/X2 Ra
+ lim

p—0 Ry X2 Ry

Ro
T pUs (7. p) = m;g%(!g e-nffde+ (1+m-n, /) [ §(Rz—£)f§d€)+

s e [ N (S ) R e - S de — Rléf?d&]
+1lim zug(r)

BT (B () (e )

with functions uf, u3 from (3.6), (3.7). In other words, we have proved that the nonstationary
solution converges to stationary one when time tends to infinity, if such are the heat sources in

E(Ry = &) f3 d€ = ui(r),

media.
Let us now put f; = f;(¢). In this case formulae (2.7)—(2.9) are simplified up to

Wf)) (curom (02— [2) - or)

: m o ([ Z) e ((am 0 [Z)] 4 22 e

Uy = % (exp (r\/z> ~exp ((232 — ) i)) + sz + ij exp <(32 _ r)\/Z) _
f;{ %sh <(TR1)\/Z>+R1ch ((rRl)\/Z)], (3.9)

Cs = \/fsh ((R2 - Rl)\/Z) + Ry ch ((R2 - Rl)\/Z) — Ry, (3.10)

i <\/§—Rl cth (Rl\/le» + G exp ((R2—R1)\/€)7 (3.11)
Cyexp (Rl \/%) + Cyexp ((2R2 - Rl)\/g)

and constants C7, Cy are determined in (2.10).

where

Cy=
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4. On the evaluation of internal heat sources

Consider the problem (1.1)—(1.7) when fo = 0 (there is no heat sources in second medium),

add condition of overdetermination (we specify heat flux on surface) and regard temperature on

sphere surface as non-nil constant. Then problem take on form

2
Uit = X1 (Ulrr + TU11‘> + fl(rv t)a t > 07

2
U2t = X2 u2rr+;u2r s t>0, TEQQ;

u |t=0 = uzt=0 = 0;
lu1(0,1)] < oo,
u1|r=R1 = u2|7‘=R17
kiuirlr=r, = kauar|r=r,,

Us|r=g, =T = const,

u2r|r:R2 @ = const.

T’EQl,

(4.1)

(4.2)

= s R e
0 N O Ut =~ W

(4.3)
(4.4)
(4.5)
(4.6)
(4.7)
(4.8)

Let us introduce change of variables 4; = u; — T and apply Laplace transform to the prob-
lem (4.1)—(4.8). Thus we get following problem for images U; of functions «; (F} is image of

function f1):

2 1
vl +cul - Ly = - 1),
r X1 X1
2 T
Uy + 20U - LUy = =
r X2 X2

[U1(0,p)] < o0,

Utlr=r, = Uz|r=r,,
k1Uir|r=r, = k2Usp|r=pg,
Uslr=r, =0,

Q.

U21”|’I’:Rz = —

(4.9)

(4.10)

(4.11)
(4.12)
(4.13)
(4.14)
(4.15)

4.15

By using of the task (2.1)-(2.5) solution (see formulae (2.7)—(2.10)) and condition of overde-
termination (4.15) we derive integral equation of the first kind for Fy(r,p) :

/R1 ¢Fsh <£ p) it = x1T (Rl\/f)cha sha— Cngebsha) N
0 V xa p VX1 k

x1R2sha (Cleb + Czeib) T X2 X2
— ~Z((R 1)chb— Ry — 1 =4+ R hb| —
+ TN 7 \/;((1—1—)0 2= 1) + SR

Q><2)
p b

(4.16)

where a = Ry+/p/x1, b= (Ras — R1)\/p/x2- Assume that f; = f1(¢), then F;(p) can be found
from (3.9) and (4.15), or (4.16), as

f) =1+ (e + 1,2 -2 [ ({24 ) enp (e - )y [2
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Caexp ((Rl - Rz)@) + Crexp ((R2 - Rl)\/%) C1C3T exp ((R2 - Rl)\/%)
2k (1= By, [Z et (R0 [ Tz (ry 7))

(4.17)

X

The constants C7, Cs, C3 are specified by formulae (2.10), (3.10). So the heat source in sphere
0 <7 < Ry (that is function f1(¢)) can be obtained by using of inverse Laplace transform. Here
we evaluate only tlim f1(2).

— 00

Since e® ~ 1+ x + 22/2 when o — 0, we derive from (4.17)
, X1 .. p 1 kpR p . p(R1— Ry)?
lim pFy(p) = — 22 lim (/2 — — — 14 (R, — Ry) | 2 4 B ")
P%p 1(p) kR% Pl—% ( X2 R1 2X1 ) < + ( ! 2) Xg + 2X2 x
2 _ P2 _ 2
(0[5  [7 e r])
P 2 X2 2x2
X1 [p 1 kpR1> ( P p(R —Rz)Q)
— 2= lim o 1-(Ri — R — == | X
kR} p—0 ( x2 Ri 2xa (F1 2) X2 2x2

X2 R:—R} [p pRi(R:— Ry)? . 2x1QR3
Ry /X2 _p|f2” M1 JP Pl 7 )T lim Tp = — 2122 — .
) (Q 2\/; [ 2 X2 2x2 = kR fu(c0)

Thus the boundedness of internal heat sources at infinity is proved.
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