MICROSTRUCTURAL AND VIBRATIONAL PROPERTIES OF PVT GROWN Bi_2Te_3 CRYSTALS

¹T.A. Gavrilova, ²V.V. Atuchin, ³K.A. Kokh, ⁴N.V. Kuratieva, ⁴N.V. Pervukhina, ⁵N.V. Surovtsev

¹Laboratory of Nanodiagnostics and Nanolithography, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090, Russia

gavr@isp.nsc.ru

²Laboratory of Optical materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 90, 630090, Russia

³Laboratory of Crystal Growth, Institute of Geology and Mineralogy, SB RAS, Novosibirsk 630090, Russia

⁴Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090, Russia

⁵Laboratory of Condensed Matter Spectroscopy, Institute of Automation and Electrometry, SB RAS, Novosibirsk 90, 630090, Russia

Bismuth telluride, Bi₂Te₃, is a well-known thermoelectric material. Besides, for several recent years Bi₂Te₃ has been of great interest because of topological insulator properties. The formation of Bi₂Te₃ crystals with high-quality structure is of prime importance for comparative diagnostics of thin films and nanostructures fabricated by epitaxial and chemical synthesis techniques. In present study the high-quality Bi₂Te₃ microcrystals have been grown by physical vapor transport (PVT) method without using a foreign transport agent. High purity (4N) elementary Bi and Te used as starting reagents were additionally purified by directional crystallization. The growth experiment was performed in a fuzzed quartz ampoule An element charge of 15 g prepared in stoichiometric composition Bi:Te = 2:3 was filled into the ampoule and then it was sealed at residual pressure $\sim 10^{-4}$ bar. Bi₂Te₃ melt was used as a source to have a higher vapor pressure and, respectively, increased crystal growth rate. The microcrystals grown under optimal temperature gradient are well facetted and they have dimensions up to $\sim 100 \, \mu m$ as shown in Fig. 1. The phase composition of grown crystals has been identified by X-ray single crystal structure analysis in space group R-3m, a = 4.3896(2) Å, b = 30.5019(10) Å, Z = 3 (R = 0.0271). Raman microspectrometry has been used to describe the vibration parameters of Bi₂Te₃ microcrystals. The FWHM parameters obtained for representative Raman lines at 61 cm⁻¹ and 101 cm⁻¹ are as low as 3.5 cm⁻¹ and 4.5 cm⁻¹, respectively.

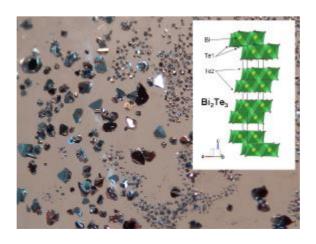


Fig.1. PVT grown Bi₂Te₃ microcrystals.