On Varieties of Leibniz-Poisson Algebras
with the Identity \(\{x, y\} \cdot \{z, t\} = 0 \)

Sergey M. Ratseev*
Department of Mathematics and Information Technologies,
Ulyanovsk State University,
Lev Tolstoy, 42, Ulyanovsk, 432063
Russia

Received 12.11.2012, received in revised form 12.11.2012, accepted 15.11.2012

Let \(K \) be an arbitrary field and let \(A \) be a \(K \)-algebra. The polynomial identities satisfied by \(A \) can be measured through the asymptotic behavior of the sequence of codimensions of \(A \). We study varieties of Leibniz-Poisson algebras, whose ideals of identities contain the identity \(\{x, y\} \cdot \{z, t\} = 0 \), we study an interrelation between such varieties and varieties of Leibniz algebras. We show that from any Leibniz algebra \(L \) one can construct the Leibniz-Poisson algebra \(A \) and the properties of \(L \) are close to the properties of \(A \). We show that if the ideal of identities of a Leibniz-Poisson variety \(V \) does not contain any Leibniz polynomial identity then \(V \) has overexponential growth of the codimensions. We construct a variety of Leibniz-Poisson algebras with almost exponential growth.

Keywords: Poisson algebra, Leibniz-Poisson algebra, variety of algebras, growth of a variety.

Introduction

Let \(A \) be an algebra over an arbitrary field. A natural and well established way of measuring the polynomial identities satisfied by \(A \) is through the study of the asymptotic behavior of its sequence of codimensions \(c_n(A) \), \(n = 1, 2, \ldots \). The first result on the asymptotic behavior of \(c_n(A) \) was proved by A.Regev in [1]. He showed that if \(A \) is an associative algebra \(c_n(A) \) is exponentially bounded. Such result was the starting point for an investigation that has given many useful and interesting results.

For associative algebras A.R.Kemer in [2] proved that the sequence \(c_n(A) \) is either polynomially bounded or grows exponentially. Then A.Giambruno and M.V.Zaicev in [3] and [4] showed that the exponential growth of \(c_n(A) \) is always an integer called the exponent of the algebra \(A \).

When \(A \) is a Lie algebra, the sequence of codimensions has a much more involved behavior. I.B.Volichenko in [5] showed that a Lie algebra can have overexponential growth of the codimensions. Starting from this, V.M.Petrogradsky in [6] exhibited a whole scale of overexponential functions providing the exponential behavior of the identities of polynilpotent Lie algebras.

In this paper we study Leibniz-Poisson algebras satisfying polynomial identities. Remark that if a Leibniz-Poisson algebra \(A \) satisfies the identity \(\{x, x\} = 0 \) then \(A \) is a Poisson algebra. Poisson algebras arise naturally in different areas of algebra, topology, theoretical physics. We study varieties of Leibniz-Poisson algebras, whose ideals of identities contain the identity \(\{x, y\} \cdot \{z, t\} = 0 \). We show that the properties of such Leibniz-Poisson algebras are close to...
the properties of Leibniz algebras. We show that Leibniz-Poisson algebra can have overexponential growth of the codimensions and construct a variety of Leibniz-Poisson algebras with almost exponential growth.

1. Preliminaries

Let $A(+,\cdot,\{\},K)$ be a K-algebra with two binary multiplications \cdot and $\{\}$. Let the algebra $A(+,\cdot,K)$ with multiplication \cdot be a commutative associative algebra with unit and let the algebra $A(+,\{\},K)$ be a Leibniz algebra under the multiplication $\{\}$. The latter means that $A(+,\{\},K)$ satisfies the Leibniz identity

$$\{\{x,y\},z\} = \{\{x,z\},y\} + \{x,\{y,z\}\}.$$

Assume that these two operations are connected by the relations ($a, b, c \in A$)

$$\{a \cdot b, c\} = a \cdot \{b, c\} + \{a, c\} \cdot b,$$

$$\{c, a \cdot b\} = a \cdot \{c, b\} + \{c, a\} \cdot b.$$

Then the algebra $A(+,\cdot,\{\},K)$ is called a Leibniz-Poisson algebra.

We make the convention that brackets in left-normed form arrangements will be omitted:

$$\{\ldots\{x_1,x_2\},x_3\ldots,x_n\} = \{x_1,x_2,\ldots,x_n\}.$$

Let $L(X)$ be a free Leibniz algebra with multiplication $[,]$ freely generated by the countable set $X = \{x_1,x_2,\ldots\}$. Let also $F(X)$ be a free Leibniz-Poisson algebra. Denote by P^L_n and P_n the vector spaces in $L(X)$ and $F(X)$ accordingly, consisting of the multilinear elements of degree n in the variables x_1,\ldots,x_n.

Proposition 1 ([7]). A basis of the vector space P_n consists of the following elements:

$$x_{k_1} \cdot \ldots \cdot x_{k_r} \cdot \{x_{i_1},\ldots,x_{i_s}\} \cdot \ldots \cdot \{x_{j_1},\ldots,x_{j_t}\},$$

where:

(i) $r \geq 0$, $k_1 < \ldots < k_r$;

(ii) all elements are multilinear in the variables x_1,\ldots,x_n;

(iii) each factor $\{x_{i_1},\ldots,x_{i_s}\}, \ldots, \{x_{j_1},\ldots,x_{j_t}\}$ in (1) is left normed and has length ≥ 2;

(iv) in each product (1) the shorter factor precede the longer: $s \leq \ldots \leq t$;

(v) if two consecutive factors in (1) are brackets $\{\ldots\}$ of equal length

$$\ldots \cdot \{x_{p_1},\ldots,x_{p_r}\} \cdot \{x_{q_1},\ldots,x_{q_s}\} \cdot \ldots,$$

then $p_1 < q_1$.

Denote by Γ_n the subspace of P_n spanned by the elements (1) with $r = 0$.

Denote by $L_{\geq 2}(X)$ the subspace of the free Leibniz algebra $L(X)$ spanned by the elements $[x_{i_1},\ldots,x_{i_s}]$ with $n \geq 2$. Also denote by $PL_{\geq 2}(X)$ the subspace of $F(X)$ spanned by the elements $\{x_{i_1},\ldots,x_{i_s}\}$ with $n \geq 2$. Obviously, $L_{\geq 2}(X) \cong PL_{\geq 2}(X)$ as Leibniz algebras. We will use only the notation $L_{\geq 2}(X)$ everywhere as $L_{\geq 2}(X) = PL_{\geq 2}(X)$ up to isomorphism of Leibniz algebras.
Let \(V \) be a variety of Leibniz-Poisson algebras (pertinent information on varieties of PI-algebras can be found, for instance, in [8], [9]). Let \(\operatorname{Id}(V) \) be the ideal of identities of \(V \). Denote

\[
P_n(V) = P_n / (P_n \cap \operatorname{Id}(V)), \quad c_n(V) = \dim P_n(V).
\]

For a variety of Leibniz algebras \(V_L \) denote

\[
P_n^L(V_L) = P_n^L / (P_n^L \cap \operatorname{Id}(V_L)) \quad \text{and} \quad c_n^L(V_L) = \dim P_n^L(V_L).
\]

Let \(\operatorname{Id}(A) \) be the ideal of the free algebra \(F(X) \) of polynomial identities of \(A \).

The next proposition shows how from every Leibniz algebra one can construct a Leibniz-Poisson algebra with some conditions of the source Leibniz algebra.

Proposition 2 ([7]). Let \(A_L \) be a nonzero Leibniz algebra with multiplication \([\cdot,\cdot]\) over an infinite field \(K \) and let \(A = A_L \oplus K \) be a vector space with multiplications \(\cdot \) and \(\{\cdot,\cdot\} \) defined as

\[
(a + \alpha) \cdot (b + \beta) = (\beta a + \alpha b) + \alpha \beta, \\
\{a + \alpha, b + \beta\} = [a, b], \quad a, b \in A_L, \quad \alpha, \beta \in K.
\]

Then the algebra \((A, +, \cdot, \{\cdot,\cdot\}, K) \) is a Leibniz-Poisson algebra and the following conditions are true:

(i) \(\operatorname{Id}(A_L) \cap L_{\geq 2}(X) \) and the algebra \(A \) satisfies the identity \(\{x_1, x_2\} \cdot \{x_3, x_4\} = 0 \);

(ii) for any \(n \geq 2 \)

\[
\Gamma_n(A) = P_n^L(A) = P_n^L(A_L)
\]

up to isomorphism of vector spaces;

(iii) for any \(n \) the following equality holds:

\[
c_n(A) = 1 + \sum_{k=2}^{n} \binom{n}{k} \cdot \dim P_k^L(A_L).
\]

2. Leibniz-Poisson Algebras with Identity

\[
\{x_1, x_2\} \cdot \{x_3, x_4\} = 0
\]

Denote by \(\operatorname{Id}(\{x_1, x_2\} \cdot \{x_3, x_4\}) \) the ideal of identities of the free Leibniz-Poisson algebra \(F(X) \) generated by the element \(\{x_1, x_2\} \cdot \{x_3, x_4\} \).

Theorem 1. Let \(V_L \) be a variety of Leibniz algebras over an infinite field \(K \) defined by a system of identities

\[
\{f_i = 0 \mid f_i \in L_{\geq 2}(X), \ i \in I\}
\]

and let \(\{g_j \in \operatorname{Id}(\{x_1, x_2\} \cdot \{x_3, x_4\}) \mid j \in J\} \), where \(|J| > 0 \), be a set of elements in the ideal \(\operatorname{Id}(\{x_1, x_2\} \cdot \{x_3, x_4\}) \). Let \(V \) be a variety of Leibniz-Poisson algebras defined by the system of identities

\[
\{f_i = 0, \ g_j = 0 \mid i \in I, \ j \in J\}.
\]

Then:
(i) \(Id(V_L) = Id(V) \cap L_{\geq 2}(X)\);
(ii) \(P_n^L(V) = P_n^L(V_L)\);
(iii) \(c_n(V) \geq 1 + \sum_{k=2}^{n} \binom{n}{k} \cdot k!\);
(iv) if \(|I| = 0\) then \(c_n(V) \geq [n! \cdot e] - n\), where \(e = 2.71..., \lfloor \cdot \rfloor\) is an integer part of a number.

Proof. (i) Let \(f \in Id(V_L)\). Then \(f\) follows from the system of identities (3). Therefore, \(f \in Id(V) \cap L_{\geq 2}(X)\) and \(Id(V_L) \subseteq Id(V) \cap L_{\geq 2}(X)\). We will show that \(Id(V) \cap L_{\geq 2}(X) \subseteq Id(V_L)\).

Let \(W\) be a Leibniz-Poisson variety defined by the system of identities (3) and the identity \(\{x_1, x_2\} \cdot \{x_3, x_4\} = 0\). Since the element \(\{x_1, x_2\} \cdot \{x_3, x_4\}\) generates the ideal \(Id(\{x_1, x_2\} \cdot \{x_3, x_4\})\) and \(|J| > 0\) then \(W \subseteq V\). \(Id(V) \subseteq Id(W)\).

Let \((X, V_L)\) be the relatively free algebra of the variety \(V_L\) of countable rank. Theorem of Birkhoff implies that the algebra \(L(X, V_L)\) generates the variety \(V_L\). Hence \(Id(V_L) = Id(L(X, V_L))\). Let \(A = L(X, V_L) \oplus K\) be a Leibniz-Poisson algebra with the multiplications (2). Proposition 2 also implies that \(A \in W\), hence \(Id(W) \subseteq Id(A)\). Proposition 2 also implies the equality

\[Id(V_L) = Id(L(X, V_L)) = Id(A) \cap L_{\geq 2}(X).\]

Since \(Id(V) \subseteq Id(W) \subseteq Id(A)\), it follows

\[Id(V) \cap L_{\geq 2}(X) \subseteq Id(W) \cap L_{\geq 2}(X) \subseteq Id(A) \cap L_{\geq 2}(X) = Id(V_L).\]

(ii) Condition (i) implies that \(Id(V) \cap P_n^L = Id(V_L) \cap P_n^L\) for any \(n \geq 2\). Therefore,

\[P_n^L(V_L) = P_n^L/(Id(V_L) \cap P_n^L) = P_n^L/(Id(V) \cap P_n^L) = P_n^L(V).

(iii) follows from (ii) and [7, Proposition 4].

(iv) Applying the formula

\[n! \cdot \sum_{k=0}^{n} \frac{1}{k!} = [n! \cdot e],\]

inequality from (iii) and \(P_n^L = n!\), we obtain that

\[c_n(V) \geq 1 + \sum_{k=2}^{n} \binom{n}{k} \cdot k! = 1 + \sum_{k=2}^{n} \frac{n!}{(n-k)!} = \frac{n}{t} = n - k = 1 + \sum_{l=0}^{n-2} \frac{n!}{l!} = n! \cdot \sum_{l=0}^{n} \frac{1}{l!} - n = [n! \cdot e] - n.\]

Define the lower and upper exponents for the codimension sequence \(\{c_n(V)\}\) as follows:

\[\text{EXP}(V) = \lim_{n \to \infty} \sqrt[n]{c_n(V)}, \quad \text{EXP}(V) = \lim_{n \to \infty} \sqrt[n]{c_n(V)}.\]

If the lower and the upper limits coincide, we use the notation \(\text{Exp}(V)\).

Theorem 2. Let \(V_L\) be a variety of Leibniz algebras over an infinite field \(K\) defined by the system of identities (3) and let \(V\) be a variety of Leibniz-Poisson algebras defined by the system of identities (3) and the identity \(\{x_1, x_2\} \cdot \{x_3, x_4\} = 0\). Then:

1) For any \(n \geq 2\)

\[\Gamma_n(V) = P_n^L(V) = P_n^L(V_L)\]

- 100 -
up to isomorphism of vector spaces.

2) Let

\[u^c_n(x_1, \ldots, x_n), \quad s = 1, \ldots, c^L_n(V_L), \]

be a basis of the vector space \(P^L_n(V_L), n \geq 2 \). Then \(P_n(V) \) has a basis

\[\psi_{x_1, \ldots, x_n}, \quad x_1, \ldots, x_{n-k} : u^c_k(x_1, \ldots, x_{j_k}), \]

\[k = 2, \ldots, n, \quad s = 1, \ldots, c^L_k(V_L), \quad i_1 < \ldots < i_{n-k}, \quad j_1 < \ldots < j_k; \]

3) For any \(n \)

\[c_n(V) = 1 + \sum_{k=2}^{n} \binom{n}{k} \cdot \dim P^L_k(V_L). \]

4) If exponent \(EXP(V_L) \) exists, then \(EXP(V) = EXP(V_L) + 1 \), in particular if there exist constants \(d \geq 0, \alpha \) and \(\beta \) such that for all sufficiently large \(n \) the double inequality holds

\[n^\alpha d^n \leq c^L_n(V_L) \leq n^\beta d^n, \]

then there exist constants \(\gamma \) and \(\delta \) such that for all sufficient large \(n \) the following double inequality holds

\[n^\gamma (d + 1)^n \leq c_n(V) \leq n^\delta (d + 1)^n. \]

5) If some Leibniz algebra \(A_L \) generate the variety \(V_L \), then the Leibniz-Poisson algebra \(A = A_L \oplus K \) with multiplications (2) generates the variety \(V \).

6) If \(|I| < +\infty \) and the variety \(V_L \) has the Specht property (i.e. all subvarieties of \(V_L \), including \(V_L \) itself, are finite based), then the variety \(V \) has the Specht property.

7) Let \(W \) be a proper subvariety of \(V \). Then the ideal of identities \(Id(W) \cap L_{\geq 2}(X) \) determines the proper subvariety of \(V_L \).

8) The variety \(V_L \) is nilpotent if and only if the variety \(V \) has a polynomial growth.

Proof. 1) The equality \(P^L_n(V_L) = P^L_n(V) \) follows from Theorem 1. Since for any \(n \) holds equality

\[\Gamma_n = P^L_n \oplus Id(\{x_1, x_2\} \cdot \{x_3, x_4\}) \cap \Gamma_n, \]

then

\[\Gamma_n(V) = \Gamma_n/(Id(V) \cap \Gamma_n) = \]

\[= P^L_n \oplus Id(\{x_1, x_2\} \cdot \{x_3, x_4\}) \cap \Gamma_n = \]

\[= (Id(V) \cap P^L_n) \oplus Id(\{x_1, x_2\} \cdot \{x_3, x_4\}) \cap \Gamma_n \]

\[\cong P^L_n/(Id(V) \cap P^L_n) = P^L_n(V). \]

2) Follows from 1) and [7, Proposition 4].

3) Follows from 2).

4) Follows from 3) and the equality \(t^n = \sum_{k=0}^{n} \binom{n}{k} \cdot t^k \).

5) Let some Leibniz algebra \(A_L \) generates the variety \(V_L \). Define the Leibniz-Poisson algebra \(A = A_L \oplus K \) with multiplications (2). Then Proposition 2 and Theorem 1 imply such equalities

\[Id(A) \cap L_{\geq 2}(X) = Id(A_L) = Id(V_L) = Id(V) \cap L_{\geq 2}(X), \]
with $Id(\mathcal{V}) \subseteq Id(A)$. We will show that $Id(A) \subseteq Id(\mathcal{V})$.

Denote by B the subspace of the free Leibniz-Poisson algebra $F(X)$ spanned by the elements

$$\{x_{i_1}, \ldots, x_{i_s}\} \cdot \ldots \cdot \{x_{j_1}, \ldots, x_{j_t}\}, \quad s \geq 2, \ldots, t \geq 2.$$

In particular $\Gamma_n = B \cap P_n, \ n = 1, 2, \ldots$. Note that

$$B = L_{\geq 2}(X) \oplus B \cap Id(\{x_1, x_2\} \cdot \{x_3, x_4\}). \quad (7)$$

From [7] it follows that the ideal of identities $Id(A)$ is generated by the set of identities $B \cap Id(A)$. Let $f \in B \cap Id(A)$. Since

$$Id(\{x_1, x_2\} \cdot \{x_3, x_4\}) \subseteq Id(A)$$

and (7) then

$$B \cap Id(A) = L_{\geq 2}(X) \cap Id(A) \oplus B \cap Id(\{x_1, x_2\} \cdot \{x_3, x_4\}).$$

Hence there exist unique

$$g \in L_{\geq 2}(X) \cap Id(A), \quad h \in B \cap Id(\{x_1, x_2\} \cdot \{x_3, x_4\}),$$

such that $f = g + h$. (6) implies that $g \in Id(\mathcal{V})$. Obviously, $h \in Id(\mathcal{V})$, hence $f = g + h \in Id(\mathcal{V})$. Thus $Id(A) = Id(\mathcal{V})$.

6) Let $|I| < +\infty$ and the variety of Leibniz algebras \mathcal{V}_L has the Specht property. Let \mathcal{W} be a subvariety of the variety \mathcal{V}. Obviously, $Id(\mathcal{W}) \cap L_{\geq 2}(X)$ is an ideal of identities of the free Leibniz algebra $L(X)$. Theorem 1 implies that

$$Id(\mathcal{V}_L) \subseteq Id(\mathcal{W}) \cap L_{\geq 2}(X).$$

Hence the ideal of identities $Id(\mathcal{W}) \cap L_{\geq 2}(X)$ is generated by a finite number of elements $f_1, \ldots, f_k \in L_{\geq 2}(X)$.

Using the notations of 5), we have

$$B \cap Id(\mathcal{W}) = L_{\geq 2}(X) \cap Id(\mathcal{W}) \oplus B \cap Id(\{x_1, x_2\} \cdot \{x_3, x_4\}). \quad (8)$$

Since $Id(\mathcal{W})$ is generated by $B \cap Id(\mathcal{W})$ (see [7]) then the variety \mathcal{W} is generated by the elements f_1, \ldots, f_k and $\{x_1, x_2\} \cdot \{x_3, x_4\}$.

7) Let \mathcal{W} be a proper subvariety of \mathcal{V}. Then the strict inclusion $Id(\mathcal{V}) \nsubseteq Id(\mathcal{W})$ holds. We will show that

$$Id(\mathcal{V}_L) \nsubseteq Id(\mathcal{W}) \cap L_{\geq 2}(X),$$

where $Id(\mathcal{W}) \cap L_{\geq 2}(X)$ is an ideal of identities of $L(X)$.

Since $Id(\mathcal{W})$ is generated by the set $B \cap Id(\mathcal{W})$ (see [7]) and $Id(\mathcal{V}) \nsubseteq Id(\mathcal{W})$, there is such element $f \in B \cap Id(\mathcal{W})$ that $f \notin Id(\mathcal{V})$. Equality (8) implies that there exist unique

$$g \in L_{\geq 2}(X) \cap Id(\mathcal{W}), \quad h \in B \cap Id(\{x_1, x_2\} \cdot \{x_3, x_4\})$$

such that $f = g + h$. Since $h \in Id(\mathcal{V})$ and $f \notin Id(\mathcal{V})$, we obtain that

$$g \notin L_{\geq 2}(X) \cap Id(\mathcal{V}) = Id(\mathcal{V}_L).$$

Therefore, $Id(\mathcal{V}_L) \nsubseteq Id(\mathcal{W}) \cap L_{\geq 2}(X)$.

- 102 -
8) Follows from 1), 3) and [7, Theorem 1] □

Corollary. Let $L(X)$ be a free Leibniz algebra over infinite field K and let $L(X) \oplus K$ be a Leibniz-Poisson algebra with multiplications (2). Then:

(i) $Id(L(X) \oplus K) \cap L(X) = \{0\}$.

(ii) $Id(L(X) \oplus K) = Id(\{x_1, x_2\} \cdot \{x_3, x_4\})$, i.e. the ideal of identities of the algebra $L(X) \oplus K$ is generated by the identity $\{x_1, x_2\} \cdot \{x_3, x_4\} = 0$.

Denote by \mathring{V}_1 the variety of Leibniz-Poisson algebras defined by the identity $\{x_1, x_2\} \cdot \{x_3, x_4\} = 0$. Theorems 1 and 2 imply that the codimension growth of \mathring{V}_1 is overexponential.

Proposition 3. For any $n \geq 1$ the codimension of the identities of \mathring{V}_1 satisfy

$$c_n(\mathring{V}_1) = \lfloor n! \cdot e \rfloor - n.$$

Proposition 4. Let \mathring{N} be a Leibniz-Poisson variety, defined by the identity $\{x_1, \{x_2, \{x_3, x_4\}\}\} = 0$.

Then the variety $\mathring{V}_1 \cap \mathring{N}$ over a field K of characteristic 0 has almost exponential growth of the codimension sequence.

Proof. [11] and [10] implies that the variety of Leibniz algebras \mathring{N}, defined by the identity $[x_1, [x_2, [x_3, x_4]]] = 0$,

has almost exponential codimension growth. Therefore, by Theorem 1, the variety of Leibniz-Poisson algebras $\mathring{V}_1 \cap \mathring{N}$ has overexponential codimension growth.

Let W be a proper subvariety of $\mathring{V}_1 \cap \mathring{N}$. Condition 7) of Theorem 2 implies that the ideal of identities $Id(W) \cap L_{\geq 2}(X)$ defines the proper subvariety of \mathring{N}, which has exponentially bounded codimension growth. By condition 4) of Theorem 2, the sequence of codimensions of W is exponentially bounded. □

Denote by $N_s^\mathring{A}$ the variety of Leibniz-Poisson algebras, defined by the identity $\{\{x_1, x_2\}, \ldots, \{x_2s+1, x_2s+2\}\} = 0$.

Proposition 5. Variety $\mathring{V}_1 \cap N_s^\mathring{A}$ over a field K of characteristic 0 has the Specht property.

Proof. [12] implies that the variety of Leibniz algebras $N_s^\mathring{A}$, defined by the identity $[[x_1, x_2], ..., [x_{2s+1}, x_{2s+2}]] = 0$,

has the Specht property. Therefore, by 6) of Theorem 2, $\mathring{V}_1 \cap N_s^\mathring{A}$ has the Specht property. □

References

Sergey M. Ratseev

On Varieties of Leibniz-Poisson Algebras with the Identity

О многообразиях алгебр Лейбница-Пуассона с тождеством \(\{x, y\} \cdot \{z, t\} = 0\)

Сергей М. Рацеев

В данной работе исследуются многообразия алгебр Лейбница-Пуассона, идеалы которых содержат тождество \(\{x, y\} \cdot \{z, t\} = 0\), исследуется взаимосвязь таких многообразий с многообразиями алгебр Лейбница. Показано, что из любой алгебры Лейбница можно построить алгебру Лейбница-Пуассона с похожими свойствами исходной алгебры. Показано, что если идеал тождеств многообразия алгебры Лейбница-Пуассона \(V\) не содержит ни одного тождества из свободной алгебры Лейбница, то рост многообразия \(V\) является сверхэкспоненциальным. Приводится многообразие алгебр Лейбница-Пуассона почти экспоненциального роста.

Ключевые слова: алгебра Пуассона, алгебра Лейбница-Пуассона, многообразие алгебр, рост многообразия.