УДК 519.11+512.5

Enumerations of Ideals in Niltriangular Subalgebra of Chevalley Algebras

Nikolay D. Hodyunya*

Institute of Mathematics and Computer Science Siberian Federal University Svobodny, 79, Krasnoyarsk, 660041 Russia

Received 18.11.2017, received in revised form 20.12.2017, accepted 20.02.2018

Let $N\Phi(K)$ be the niltriangular subalgebra of Chevalley algebra over a field K associated with a root system Φ . We consider certain non-associative enveloping algebras for some Lie algebra $N\Phi(K)$. We also study the problem of enumeration of standard ideals in algebra $N\Phi(K)$ over any finite field K; for classical Lie types this is the problem which was written earlier (2001).

Keywords: Chevalley algebra, niltriangular subalgebra, enveloping algebra, ideal.

DOI: 10.17516/1997-1397-2018-11-3-271-277.

Introduction

Any Chevalley algebra over a field K is characterized by a root system Φ and a Chevalley basis consisting of elements e_r ($r \in \Phi$) and a base of suitable Cartan subalgebra [1, Sec. 4.2]. We fix a positive root system $\Phi^+ \subseteq \Phi$. The subalgebra $N\Phi(K)$ with the basis $\{e_r \mid r \in \Phi^+\}$ is said to be a niltriangular subalgebra. In the present paper we consider the following problem.

(A) Find the number of standard ideals of Lie algebra $N\Phi(K)$ over any finite field K.

For classical Lie types this problem has arisen earlier as Problem 1 in [2]. In these cases Problem (A) had been solved recently by G. P. Egorychev, V. M. Levchuk, and the author. *Standard ideals* of a Lie ring $N\Phi(K)$ are distinguished in Sec. 1.

Main Theorem 2.1 in Sec. 2 solves Problem (A) for exceptional Lie types.

Also, we study enveloping algebras of Lie algebras $N\Phi(K)$. According to [3], an algebra $R=(R,+,\cdot)$ (possibly, non-associative) is called an enveloping algebra of a Lie algebra L if L is isomorphic to the algebra $R^{(-)}:=(R,+,\ [\ ,\]),\ [a,b]:=ab-ba$. (See also Lie-admissible algebras [4,5].) The well-known enveloping algebra R of Lie algebra $N\Phi(K)$ [3, Proposition 1] has also base $\{e_r\mid r\in\Phi^+\}$ and its choice depends on signs of structural constants of Chevalley basis.

The representation [6] of Lie algebra $N\Phi(K)$ of classical Lie types determines uniquely their enveloping algebra R. If $\Phi \neq D_n$, then all ideals of such enveloping ring R are exactly standard ideals of Lie ring $N\Phi(K)$. By [3], it is not true for Lie type D_n $(n \geq 4)$ and, as a corollary, for Lie types E_n (n = 6, 7, 8).

As it is shown in the following section, there exist enveloping algebras of type F_4 both having nonstandard ideals and not having them.

^{*}nkhodyunya@gmail.com

[©] Siberian Federal University. All rights reserved

We use standard notation from [1]. Let ht(r) be the height of $r \in \Phi$. The highest root in Φ^+ is denoted by ρ . The Coxeter number h of Φ is defined by $ht(\rho) + 1 = h(\Phi) = h$.

1. Ideals and enveloping algebras of Lie algebra $N\Phi(K)$

The definition of an enveloping algebra R of an arbitrary finite dimensional Lie algebra L (see Introduction) shows that both algebras can be constructed on the same vector space. Also, every ideal of the enveloping ring R is an ideal of the Lie ring L.

In this section we study certain enveloping algebras of a Lie algebra $N\Phi(K)$ and their ideals. According to [1, Proposition 4.2.2], we have

$$[e_r, e_s] = N_{rs}e_{r+s} = -[e_s, e_r] \ (r+s \in \Phi), \quad [e_r, e_s] = 0 \ (r+s \notin \Phi \setminus \{0\}),$$

where $N_{rs} = \pm 1$ or |r| = |s| < |r+s| and $N_{rs} = \pm 2$ or Φ is of type G_2 and $N_{rs} = \pm 2$ or ± 3 .

Proposition 1.1 ([3, Proposition 1]). A K-algebra with the basis $\{e_r \mid r \in \Phi^+\}$ is an enveloping algebra of $N\Phi(K)$ if the product is defined as follows: $e_re_s = 0$ when $r+s \notin \Phi$, and if $r+s \in \Phi^+$ and $N_{rs} \geqslant 1$, then $e_re_s = e_{r+s}$ and $e_se_r = (1 - N_{rs})e_{r+s}$.

We distinguish the following ideals in a Lie algebra $N\Phi(K)$ putting on $r \leq s$ $(r, s \in \Phi^+)$ if s-r is a linear combination of simple roots with nonnegative coefficients:

$$T(r) := \sum_{r \leqslant s} Ke_s, \qquad Q(r) := \sum_{r < s} Ke_s.$$

Roots r and s are called *incident* ones if $T(r) \subseteq T(s)$ or $T(s) \subseteq T(r)$ (i.e., $s \le r$ or $r \le s$). Any set \mathcal{L} of pairwise non-incident roots in Φ^+ is called a set of corners in Φ^+ .

If $H \subseteq \sum_{r \in \mathcal{L}} T(r)$ and the inclusion fails under every substitution of T(r) by Q(r), then $\mathcal{L} = \mathcal{L}(H)$ is said to be a set of corners in H. By [7], a set $\mathcal{F}(H)$ is said to be a frame of H if

$$\mathcal{F}(H) \subseteq \sum_{r \in \mathcal{L}} Ke_r, \quad \mathcal{F}(H) = H \mod Q(\mathcal{L}) \quad \left(Q(\mathcal{L}) = \sum_{r \in \mathcal{L}} Q(r)\right).$$

An ideal H of a Lie ring $N\Phi(K)$ is said to be *standard* if $H = \mathcal{F}(H) + Q(\mathcal{L})$. Evidently, all standard ideals of Lie ring $N\Phi(K)$ are ideals of any enveloping ring R from Proposition 1.1

The representation [6] of Lie algebras $N\Phi(K)$ of classical Lie types determines uniquely their enveloping algebra R. All ideals of such enveloping ring R for $\Phi \neq D_n$ are exactly standard ideals of Lie ring $N\Phi(K)$. By [3], it is not true for Lie type D_n $(n \geq 4)$ and also, as a corollary, for Lie types E_n (n = 6, 7, 8). We now show that both cases are possible for Lie type F_4 .

Theorem 1.1. For Lie type F_4 Proposition 1.1 allows to construct enveloping algebras R_1 having nonstandard ideals, and R_2 in which all ideals are standard.

Proof. Note that the enveloping algebra R from Proposition 1.1 depends on choice of signs of structural constants N_{rs} .

Similarly to [1, Lemma 5.3.1], we use an ordering \prec on the space containing roots Φ such that $r \prec s$ implies $h(r) \leqslant h(s)$. An ordered pair (r,s) of roots is called a *special pair* if $r+s \in \Phi$ and $0 \prec r \prec s$. An ordered pair (r,s) is called *extraspecial* if (r,s) is a special pair and if for all special pairs (r',s') with r+s=r'+s' we have $r \preccurlyeq r'$.

Proposition 1.2. The signs of the structure constants N_{rs} may be chosen arbitrarily for extraspecial pairs (r, s), and then the structure constants for all pairs are uniquely determined.

Proof. See [1, Proposition 4.2.2].

For the root system Φ of type F_4 , we need notation from [8]. The positive root systems of types B_n and C_n [9, Tables I-IV] can be written, respectively, as

$$C_n^+ = \{ p_{iv} \mid 0 < |v| \leqslant i \leqslant n, v \neq i \}, \qquad p_{i,mj} = \epsilon_i - m\epsilon_j, \quad 1 \leqslant j \leqslant i \leqslant n, \ m = 0, 1, -1;$$

$$B_n^+ = \{ q_{ij} \mid 0 \leqslant |j| < i \leqslant n \}, \qquad q_{i,mj} = \epsilon_i - m\epsilon_j.$$

Then the positive system F_4^+ is represented as the union $C_4^+ \cup B_4^+$ with the given intersection

$$B_4^+ \cap C_4^+ = \{q_{i0}, p_{i,-i} \ (1 \leqslant i \leqslant 4)\}.$$

Also, we use the following diagram from [8]. (The roots are accompanied by the notation (abcd) from [9, Table VIII].)

Fig. 1. The positive roots of the system F_4

The relation $q_{32} \prec q_{21} \prec q_{10} \prec p_{32}$ of simple roots determines uniquely the ordering \prec (Fig. 1). Using Proposition 1.1 choose an arbitrary enveloping algebra R for Lie algebra $N\Phi(K)$ of type F_4 . Recall that an ideal H of R is standard iff $Q(r) \subseteq H$ for all $r \in \mathcal{L}(H)$.

It is clear that if M is a subset in an ideal H of R and $\mathcal{F}(M) = Ke_r$, then $T(r) \subseteq H$. Let $L_i = \sum_{i \geqslant h(r)} T(r), \ 1 \leqslant i < h$. It is not difficult to prove the following lemma.

Lemma 1.1. Every ideal $H \subseteq L_4$ in the enveloping ring R is standard.

Now we construct algebras R_i from Theorem 1.1. Assume $N(r,s) := N_{rs}$, and also,

$$N(q_{21}, q_{3,-1}) = 1, \quad N(q_{21}, p_{31}) = -1, \quad N(q_{32}, p_{3,-1}) = 1, \quad N(q_{10}, p_{3,-1}) = -1,$$

 $N(q_{32}, q_{2,-1}) = -1, \quad N(q_{32}, q_{21}) = -1, \quad N(q_{10}, p_{32}) = -1, \quad N(q_{21}, q_{10}) = -1.$ (1)

For algebra R_1 we additionally set $N(q_{32}, q_{20}) = -1$, $N(q_{10}, q_{20}) = 2$, and

$$N(p_{32}, q_{2,-1}) = -1, \quad N(p_{32}, q_{30}) = -1, \quad N(q_{10}, q_{31}) = 1.$$

By choosing arbitrarily the remaining structural constants N_{rs} we obtain the algebra R_1 . One can see that ideals in the algebra R_1 of the form

$$K(e_{q_{30}} + ce_{q_{2,-1}}) + K(e_{p_{42}} + ce_{p_{3,-2}}) + T(q_{3,-1}) + T(q_{43}) \quad (c \in K^*)$$
 (2)

are nonstandard. Moreover, It can easily be checked that all other ideals in the algebra R_1 are standard.

Lemma 1.2. The algebra R_1 has nonstanded ideals and they are exhausted by ideals (2).

Further, we use the following lemma to construct algebra R_2 which is not isomorphic to R_1 .

Lemma 1.3. All ideals in the ring R are standard if the following equalities are satisfied:

$$\begin{split} N(q_{21},q_{3,-1}) &= -N(q_{21},p_{31}), \quad N(q_{32},p_{3,-1}) = -N(q_{32},q_{2,-1}), \\ N(q_{10},p_{3,-1}) &= -N(q_{10},q_{31}), \quad N(p_{32},q_{30}) = -N(p_{32},q_{2,-1}), \\ N(q_{21},p_{31}) &= N(q_{32},q_{21}), \quad N(q_{10},q_{31}) = -N(q_{10},p_{32}), \\ N(q_{32},q_{21}) &= N(q_{21},q_{10}), \quad N(q_{21},q_{10}) = N(q_{10},p_{32}). \end{split}$$

Proof. The proof is by direct calculation.

To construct algebra R_2 , as before, assume (1). Also set $N(q_{32}, q_{20}) = -1$ and $N(q_{10}, q_{20}) = -2$. Then, by the Jacobi identity, $N(p_{32}, q_{20}) = 1$ and

$$N(p_{32}, q_{2,-1}) = 1$$
, $N(p_{32}, q_{30}) = -1$, $N(q_{10}, q_{31}) = 1$.

By choosing arbitrarily the remaining structural constants N_{rs} we obtain the algebra R_2 .

Lemma 1.4. All ideals in the algebra R_2 are standard.

Finally, by combining Lemmas 1.2 and 1.4 we prove Theorem 1.1.

2. The completion of problem's (A) solution

Denote by $N\Phi(q)$ the algebra $N\Phi(K)$ over finite field K = GF(q). Problem (A) of enumeration of standard ideals in Lie algebras $N\Phi(q)$ had been recently solved for classical Lie types (as Problem 1 in [2]) by G. P. Egorychev, V. M. Levchuk, and the author. In these section we complete the solution of Problem (A).

The following theorem gives the solution of Problem (A) for exceptional Lie types.

Theorem 2.1. The number of standard ideals of a Lie algebra $N\Phi(q)$ of exceptional Lie type is equal to

$$G_2: q+7;$$

$$F_4: q^4+3 q^3+44 q^2+32 q+25;$$

$$E_6: q^9+3 q^8+4 q^7+67 q^6+69 q^5+230 q^4+306 q^3+94 q^2+22 q+37;$$

$$E_7: 2 (q^{12}+q^{11}+3 q^{10}+32 q^9+90 q^8+118 q^7+394 q^6+449 q^5+\\ +708 q^4+300 q^3-79 q^2+31 q+32);$$

$$E_8: q^{16}+3 q^{15}+4 q^{14}+7 q^{13}+237 q^{12}+239 q^{11}+693 q^{10}+1647 q^9+3554 q^8+\\ +4283 q^7+5829 q^6+7055 q^5+3773 q^4-2361 q^3-244 q^2+239 q+121.$$

Proof. We need the following definition. A subspace S of the space K^m is called m-proper if for all $i, 1 \le i \le m$, there exists an element $(a_1, \ldots, a_m) \in S$ such that $a_i \ne 0$.

Similarly to Section 1, every standard ideal H of Lie algebra $N\Phi(q)$ is characterized by a set of corners $\mathcal{L}(H) = \{r_1, r_2, \dots, r_m\}$ and a frame $\mathcal{F}(H)$. So, to each standard ideal H there corresponds a unique pair (\mathcal{L}, S) such that H is equal to the ideal

$$H(\mathcal{L}, S) = Q(\mathcal{L}) + \{a_1 e_{r_1} + a_2 e_{r_2} + \dots + a_m e_{r_m} \mid (a_1, a_2, \dots, a_m) \in S\}.$$
(3)

The second term in (3) is a frame of the ideal $H(\mathcal{L}, S)$. This yields that the enumeration of standard ideals coincides with the enumeration of ideals of the form (3). Denote by $\tilde{V}_{m,t}$ the number of all m-proper t-dimensional subspaces in K^m and by $B(\Phi, m)$ denote the number of sets of corners \mathcal{L} in Φ^+ with $|\mathcal{L}| = m$. From the established one-to-one correspondence between standard ideals and pairs (\mathcal{L}, S) , we obtain the following

Lemma 2.1. The number of standard ideals in the algebra $N\Phi(q)$ of Lie rank n is

$$\Omega(\Phi, q) = 1 + \sum_{m=1}^{n} B(\Phi, m) \sum_{t=1}^{m} \tilde{V}_{m,t}.$$
 (4)

Besides the solution of Problem 1 for type A_n , [10] provides the formula

$$\widetilde{V}_{m,t} = \sum_{\substack{1=i_1 \leqslant i_2 \leqslant \dots \leqslant i_t \leqslant m \\ 1=j_1 \leqslant i_2 \leqslant \dots \leqslant i_t \leqslant m}} \frac{(q^t-1)^{m-j_t}}{(q-1)^{t-j_t}} \cdot \prod_{k=2}^{t-1} (\frac{q^k-1}{q-1})^{j_{k+1}-j_k-1} \quad (1 \leqslant t \leqslant m).$$

In his paper [11], G. P. Egorychev has found a simpler form of this formula.

Lemma 2.2 ([11, Lemma 4]). The number of m-proper t-dimensional subspaces of the space K^m over the finite field K = GF(q) is

$$\widetilde{V}_{m,t} = \sum_{k=0}^{m-t} (-1)^{m-t-k} q^k \binom{m-1}{t+k-1} {t+k-1 \brack k}_q.$$
 (5)

By using Lemma 2.1 we immediately obtain $\Omega(\Phi, q) = q + 7$ for type G_2 . In the remaining cases, we obtain the numbers $B(\Phi, m)$ by using the representations of Φ^+ of type F_4 in [8] and of types E_n (n = 6, 7, 8) in [12]. Tab. 1 represents the results of computations. (See also [13, Remark 5.2].)

Substituting the corresponding values of Tab. 1 and (5) for $B(\Phi, m)$ and $\widetilde{V}_{m,t}$ in (4), we prove Theorem 2.1.

Table 1. The values of $B(\Phi, m)$ for types F_4 and E_n

Φ/m	0	1	2	3	4	5	6	7	8
F_4	1	24	55	24	1				
E_6	1	36	204	351	204	36	1		
E_7	1	63	546	1470	1470	546	63	1	
E_8	1	120	1540	6120	9518	6120	1540	120	1

The author expresses his gratitude to V. M. Levchuk for guidance and important corrections. The author was supported by RFBR (project no. 16-01-00707).

References

- [1] R.Carter, Simple Groups of Lie type, Wiley and Sons, New York, 1972.
- [2] G.P.Egorychev, V.M.Levchuk, Enumeration in the Chevalley algebras, *ACM SIGSAM Bulletin*, **35**(2001), no. 2, 20–34.
- [3] V.M. Levchuk, Niltriangular subalgebra of Chevalley algebra: the enveloping algebra, ideals and automorphisms, *Dokl. Math.*, **478**(2018), no. 2.
- [4] A.Albert, Power-Associative Rings, Trans. Amer. Math. Soc., 64(1948), no. 3, 552–593.
- [5] H.C.Myung, Some Classes of Flexible Lie-Admissible Algebras, Trans. Amer. Math. Soc., 167(1972), 79–88.
- [6] V.M.Levchuk, Automorphisms of unipotent subgroups of Chevalley groups, Algebra and Logic, 29(1990), no. 3, 211–224.
- [7] V.M.Levchuk, G.S.Suleimanova, Extremal and maximal normal abelian subgroups of a maximal unipotent subgroup in groups of Lie type, *J. Algebra*, **349**(2012), no. 1, 98–116.
- [8] V.M.Levchuk, Automorphisms of unipotent subgroups of Lie type groups of small ranks, *Algebra and Logic*, **29**(1990), no. 2, 97–112.
- [9] N.Bourbaki, Groupes et algebres de Lie, Chapt. IV-VI, Hermann, Paris, 1968.
- [10] V.P.Krivokolesko, V.M.Levchuk, Enumeration of ideals in exceptional nilpotent matrix algebras, *Trudy IMM UrO RAN*, **21**(2015), no. 1, 166–171 (in Russian).
- [11] G.P.Egorychev, Enumeration of proper t-dimensional subspaces of the space V_m over a field GF(q), $Izv.\ Irkutsk.\ GU,\ ser.\ matem.$, 17(2016), no. 3, 12–22 (in Russian).

- [12] G.S.Suleimanova, Doctor's Dissertation in Mathematics and Physics, SFU, Krasnoyarsk, 2013 (in Russian).
- [13] C.A.Athanasiadis, On a refinement of the generalized Catalan numbers for Weyl groups, *Transact. of Amer. Math. Soc.*, **357**(2005), no. 1, 179–197.

Перечисления идеалов в нильтреугольной подалгебре алгебры Шевалле

Николай Д. Ходюня

Институт математики и фундаментальной информатики Сибирский федеральный университет Свободный, 79, Красноярск, 660041

В работе Г. П. Егорычева и В. М. Левчука 2001 г. была записана проблема 1, заключающаяся в перечислении стандартных идеалов нильтреугольных подалгебр $N\Phi(GF(q))$ алгебр Шевалле классических типов. Мы решаем аналог проблемы 1 для исключительных типов. С помощью недавно введенной конструкции В. М. Левчука обертывающих алгебр для $N\Phi(K)$ исключительного типа F_4 найдены обертывающие алгебры как с нестандартными иделами, так и без них.

Ключевые слова: алгебра Шевалле, нильтреугольная подалгебра, обертывающая алгебра, идеал.