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A simple six-line arrangement on a projective plane is obtained by a system of six labelled lines
L1, L2, . . . , L6 with the conditions; (1) they are mutually different and (2) no three of them intersect
at a point. We add the condition that (3) there is no conic tangent to all the lines. The main subject
of this paper is to treat such arrangements on a projective plane over a finite prime field.
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Introduction

A simple six-line arrangement on a projective plane is obtained by a system of six labelled
lines L1, L2, . . . , L6 with the conditions; (1) they are mutually different and (2) no three of
them intersect at a point. We add the condition that (3) there is no conic tangent to all the
lines. The main subject of this paper is to treat such arrangements on a projective plane
over a finite prime field.

Before entering into the main subject, we now explain some results on the real case. There
are four types of simple six-line arrangements on a real projective plane (cf. B. Grünbaum
[1]). Among the four types, one is characterized by the existence of a hexagon and one is
characterized by the condition that the conic tangent to any five lines of the six lines does
not intersect the remaining line. The totality of systems of six labelled lines with conditions
(1), (2) admits the action of the sixth symmetric group by permutations among six lines.
The advantage of the condition (3) is that the action of the sixth symmetric group on the
totality of systems of six labelled lines with conditions (1), (2), (3) naturally extends to
that of the Weyl group W (E6) of type E6. It is shown in J. Sekiguchi and M. Yoshida [2]
that W (E6) acts transitively on the set of systems of six labelled lines fixed by a group
isomorphic to a fifth symmetric group and that this is decomposed into four orbits by the
sixth symmetric group action. These four S6-orbits are in a one to one correspondence with
the four types of simple-six line arrangements mentioned above.

The purpose of this paper is to study what happens when we replace a real projective
plane by a projective plane over a finite prime field. Let p be a prime number, Fp the field
consisting of p points and P2(Fp) the projective plane over Fp. Let L1, L2, . . . , L6 be six
lines on P2(Fp) with the conditions (1), (2), (3). Then we shall show the following theorems.
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Theorem 1. If 5 is a quadratic residue mod p, there is a system of six labelled-line arrange-
ment on P2(Fp) fixed by a fifth symmetric group.

It is easy to determine systems of six labelled lines fixed by a fifth symmetric group.
They are related with the diagonal surface of Clebsch. In fact, if 5 is a quadratic residue
mod p, the twenty-seven lines on it are defined over Fp and any system of six labelled lines
fixed by a fifth symmetric group is obtained by blowing down the diagonal surface.

Theorem 2. Now assume that there is n ∈ Fp such that n2 ≡ 5 (p). Then there is a
system of six labelled lines fixed by a fifth symmetric group such that the conic tangent to
any five lines of the six lines does not intersect the remaining line if and only if ±2n− 5 is
a non-quadratic residue mod p.

It is well-known that for a prime p, 5 is a quadratic residue mod p if and only if p = 10k+1
or p = 10k−1 for a positive integer k. The following theorem was conjectured by the author
and later proved by T.Ibukiyama.

Theorem 3. For a prime p with 5 < p, there is n ∈ Fp such that n2 ≡ 5 (p) and there is
no m ∈ Fp such that m2 ≡ 2n− 5 (p) if and only if p = 10k − 1 for a positive integer k.

We are going to explain the contents of this paper. In §1, we review geometry of six lines
on a real projective plane and in §2, we do systems of six labelled lines fixed by S5-action.
The results of both sections are contained in [2]. In §3, we start to study six lines on a
projective plane over a finite prime field.

1. Review on Geometry of Six Lines on a Real Projective
Plane

In this section, we collect some results given in [2] and its references, necessary to our present
study. A system of six labelled lines on a real projective plane consists of six labelled lines
L1, L2, . . . , L6 on a real projective plane P2(R). It defines an arrangement of six-lines (cf.
[1]). An arrangement of six-lines is called simple if (C1) they are mutually different and (C2)
no three of them intersect at a point.

In terms of a system of homogeneous coordinates t1 : t2 : t3 on P2(R), the six lines
L1, L2, . . . , L6 are expressed by linear equations:

Lj : xj1t1 + xj2t2 + xj3t3 = 0 (j = 1, 2, . . . , 6).

Thus the system S of six labelled lines L1, L2, . . . , L6 is represented by a 3 × 6 matrix
X = (xij). Then for any ai ∈ R − {0} (i = 1, 2, . . . , 6), X = (xij) and X ′ = (aixij) define
the same system of six labelled lines. Two systems of six labelled lines are equivalent if they
are transformed into each other by a projective linear transformation. Since we are interested
in the space of systems of six labelled lines with conditions (1), (2), we are led to define the
configuration space

P(2, 6) = G\M∗/H, M∗ = M∗(3, 6), G = GL(3,R), H = H6,
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where M∗(3, 6) is the set of real 3 × 6 matrices where no 3-minor vanishes, and H6 is the
subgroup of GL(6,R) consisting of diagonal matrices. Any system of six labelled lines S is
represented by a matrix of the form

X =

 1 0 0 1 1 1
0 1 0 1 x1 x2

0 0 1 1 y1 y2

 (1)

This implies that P(2, 6) is identified with an affine open subset of R4.
The symmetric group S6 is generated by transpositions sij (1 ≤ i < j ≤ 6). We may

identify sij with the transposition between the lines Li and Lj . This induces an S6-action
on the space P(2, 6). Let X ∈M∗ be a matrix representing a system S of six labelled lines.
Regarding X as a linear map of R6 to R3, we choose a basis {y1, y2, y3} of its kernel. Then
srX =t (y1y2y3) ∈M∗ defines a system srS. The map sr induces a biregular involution on
P(2, 6). The following lemma is an easy consequence of the definition of sr:

Lemma 1. (i) The action sr commutes with that of S6 on P(2, 6).
(ii) A system of six labelled lines is fixed by sr if and only if there is a conic tangent to

all the six lines of the system.

Noting this lemma, we add a condition on systems of six labelled lines;
(C3) There is no conic tangent to all the six lines.
We define a subspace P0(2, 6) of P(2, 6) consisting of systems of six labelled lines which

are not fixed by the operation sr. The space P0(2, 6) admits an action s123 which is not
contained in S6. Take a representative X ∈ P0(2, 6) defined in (1). Then s123 is defined by

X =

 1 0 0 1 1 1
0 1 0 1 x1 x2

0 0 1 1 y1 y2

 −→
 1 0 0 1 1 1

0 1 0 1 1/x1 1/x2

0 0 1 1 1/y1 1/y2

 = s123X

By the condition (C3), s123X is also contained in P0(2, 6). The group generated by S6 and
s123 is nothing but the Weyl group W (E6) of type E6 and the operation sr is contained in
W (E6). In this manner, the space P0(2, 6) admits the action of W (E6).

Let P6(R) be the totality of connected components of P0(2, 6). Then the action ofW (E6)
on P0(2, 6) naturally extends to that on P6(R).

We define p-gons for the system of six labelled lines L1, L2, . . . , L6. Each connected
component of P2(R)−∪6

j=1Lj is called a polygon. If it is surrounded by p lines, it is called
a p-gon. It is known (cf. [1]) that there are four types of simple six-line arrangements. They
are characterized by numbers of p-gons and referred to as O, I, II, III.

Types hexagon pentagons rectangles triangles
O 1 0 9 6
I 0 2 8 6
II 0 3 6 7
III 0 6 0 10
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In the case of systems of six labelled lines on a projective plane over a finite prime field,
it is hard to define p-gons of a system. As a consequence, the characterizations of systems of
types O, I, II, III above lose their meanings if we consider systems over a finite prime field.
Instead, it is possible to characterize systems of types I and III in a different manner.

Lemma 2. Let S be a system of six labelled lines L1, L2, . . . , L6 on a real projective plane.
Let Ci be the conic tangent to five lines Lk (k = 1, 2, . . . , 6, k 6= i).

(i) S is of type III if and only if the conic tangent to any five lines of L1, L2, . . . , L6 does
not intersect the remaining line.

(ii) Suppose that S is of type O and that L1, L2, . . . , L6 bounds a hexagon in this order.
Then one of the following holds:
(a) Ci ∩ Li = ∅ (i = 1, 3, 5) and Ci ∩ Li 6= ∅ (i = 2, 4, 6).
(b) Ci ∩ Li 6= ∅ (i = 1, 3, 5) and Ci ∩ Li = ∅ (i = 2, 4, 6).

(iii) Suppose that S is of type I and that L1, L2, . . . , L5 (resp. L1, . . . , L4, L6) bounds a
pentagon. Then Ci ∩ Li 6= ∅ (i = 1, 2, 3, 4) and Ci ∩ Li = ∅ (i = 5, 6).

(iv) Suppose that S is of type II and that L1, L2, . . . , L5 (resp. L1, . . . , L4, L6, and
L1, L2, L3, L5, L6)) bounds a pentagon. Then Ci ∩ Li 6= ∅ (i = 1, 2, 3) and Ci ∩ Li = ∅ (i =
4, 5, 6).

Remark 1. Unfortunately, systems of types O and II are not distinguished by the lemma
above.

2. Systems of Six Labelled Lines Fixed by S5-action

We begin with this section by defining an outer automorphism τ of S6 defined as follows:

Permutation Image by τ
(12) → (12)(34)(56)
(23) → (16)(24)(35)
(34) → (12)(36)(45)
(45) → (16)(25)(34)
(56) → (12)(35)(46)

Here we identify sij with the permutation (ij). Since (i i + 1) (i = 1, 2, 3, 4, 5) generate
S6, τ is actually an automorphism of S6. As in [2], we put τ(ij′) = τ((ij)) ◦ sr. Define the
matrix X(±

√
5) ∈M∗ by

X(±
√

5) =

 1 0 0 1 1 1
0 1 0 1 (−1∓

√
5)/2 (1∓

√
5)/2

0 0 1 1 (1∓
√

5)/2 (3∓
√

5)/2


Then the following holds:

Proposition 1. Let H be the subgroup of W (E6) generated by τ ′((i i + 1)) (i = 2, 3, 4, 5)
(which is isomorphic to S5). Then X(

√
5) is fixed by H as an element of P0(2, 6).
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Remark 2 (cf. [2]). (i) By blowing up P2(C) at the six points

(1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1),

(1 : (−1−
√

5)/2 : (1−
√

5)/2), (1 : (1−
√

5)/2 : (3−
√

5)/2),

we obtain Clebsch diagonal surface in P3(C).
(ii) We consider a regular icosidodecahedron in R3 whose center is the origin. There are

six hyperplanes containing the origin in R3 which cut the edges. From these hyperplanes, we
obtain a system S of labelled six lines on a real projective plane. Let X ∈M∗ be the matrix
obtained from S. Then X is equivalent to X(

√
5) by choosing a label appropriately.

Proposition 2. The system of six labelled lines defined by X(±
√

5) is of type III. Moreover,
the systems of six labelled lines defined by s123X(

√
5), s145s123X(

√
5), and s123X(−

√
5) are

of types O, I, II, repsectively, where s145 = s35s24s123s24s35.

3. Systems of Six Labelled Lines on a Projective Plane
over a Prime Field

Let p be a prime number and let Fp be the prime field consisting of p elements. In this
section, we study systems of six labelled lines on a projective plane defined over Fp. Let
P2(Fp) be a projective plane defined over Fp. As before let t1 : t2 : t3 be its homogeneous
coordinate system.

First of all, we consider the conic tangent to five lines on P2(Fp). Let

t1 = 0, t2 = 0, t3 = 0, a1t1 + a2t2 + a3t3 = 0, b1t1 + b2t2 + b3t3 = 0 (2)

be equations of five lines. We assume that no three of them intersect at a point. Then it is
easy to show that there is a unique conic tangent to the five lines (2) and it is defined by

p2
1t

2
1 + p2

2t
2
2 + p2

3t
2
3 − 2p2p3t2t3 − 2p3p1t3t1 − 2p1p2t1t2 = 0, (3)

where

p1 = a1b1(a2b3 − a3b2), p2 = a2b2(a3b1 − a1b3), p3 = a3b3(a1b2 − a2b1).

A system S of six labelled lines on P2(Fp) is defined similarly to the real case. We
consider conditions (C1), (C2), (C3). From the systems S with conditions (C1), (C2), (C3),
we are naturally led to define the configuration space P0(2, 6)Fp

over Fp. The matrices of
the form (1) with x1, x2, y1, y2 ∈ Fp are regarded as representatives of P0(2, 6)Fp . Noting
this, we may identify P0(2, 6)Fp

with an affine open subset SFp
of F4

p. In order to define
SFp

definitely, we introduce the fifteen polynomials fj (j = 1, 2, . . . , 15) by

f1 = x1, f2 = x2, f3 = y1, f4 = y2, f5 = y1 − x1, f6 = y2 − x2,

f7 = 1− x1, f8 = 1− x2, f9 = 1− y1, f10 = 1− y2,
f11 = x1 − x2, f12 = y1 − y2, f13 = x1y2 − x2y1,

f14 = x1y2 − x2y1 − x1 + x2 + y1 − y2,
f15 = x1y1y2 − x2y1y2 + x1x2y2 − x1x2y1 − x1y2 + x2y1.
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Then
SFp

= {(x1, x2, y1, y2) ∈ F4
p ; fj 6= 0 (j = 1, 2, . . . , 15)}.

Remark 3 (cf. [2], p.315). The fourteen polynomials fj (j < 15) are obtained as determi-
nants of 3 × 3 minors of the matrix (1) and f15 = 0 corresponds to the condition that the
system of six labelled lines defined by the matrix (1) does not satisfy (C3).

It is easy to show that the Weyl group W (E6) acts on the space SFp
' P0(2, 6)Fp

by
the same manner as in the real case.

Let S be a system of six labelled lines L1, . . . , L6 in P2(Fp). Then as mentioned before,
for each j (j = 1, 2, . . . , 6), there is a unique conic Cj in P2(Fp) tangent to the five lines
Lk (k = 1, . . . , 6, k 6= j). Since systems of six labelled lines of type III play an important
role in the study [2], we introduce the notion of systems of six labelled lines of type III.

Definition 1. A system S is of type III if Cj ∩ Lj = ∅ for j = 1, 2, . . . , 6.

Then it is interesting to study the following problems.

Problem 1. (i) Find a condition for the prime p which implies the existence of a system
of six labelled lines of type III.

(ii) Fix a prime p for which there is a system of six labelled lines of type III. For any
(x1, x2, y1, y2) ∈ S, does there exist w ∈ W (E6) satisfying the condition that w transforms
(x1, x2, y1, y2) to (u1, u2, v1, v2) ∈ S so that the system of six labelled lines corresponding to
(u1, u2, v1, v2) is of type III?

Problem 2. Find a condition for the prime p which implies the existence of a system of six
labelled lines fixed by a subgroup H of W (E6) isomorphic to the symmetric group of degree
five.

In the next section, we shall study topics related to these problems.

4. Systems of Six Labelled Lines Fixed by S5-action
over Fp

In this section, we restrict our attention to such systems of six labelled lines that they are
fixed by subgroups of W (E6) isomorphic to S5.

We begin with this section with defining a subgroup H(5) of W (E6) generated by τ(i i+
1)′ (i = 2, 3, 4, 5). Clearly H(5) is isomorphic to S5. It is shown in [3] that there are forty
five involutions in W (E6) conjugate to τ(i i + 1)′ (i = 1, 2, . . . , 5). As actions on SFp

, the
explicit forms of τ(i i+ 1)′ (i = 2, . . . , 5) are given in [2], Lemma 2. For example,

τ(23)′ : (x1, x2, y1, y2) −→
(
x2

y2
, x2,

x2y1
x1y2

,
x2

x1

)
Noting this, we conclude that for (x1, x2, y1, y2) ∈ SFp

, (x1, x2, y1, y2) is fixed by τ(23)′ if
and only if x2 − x1y2 = 0. More generally we have the following lemma (cf. [2], Corollary 1
to Lemma 2).
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Lemma 3. For i = 2, 3, 4, 5, the fixed point set of τ(i i+ 1)′ is given by ki i+1 = 0, where

k23 = −x2 + x1y2, k34 = −(x1 − x2 − y1 + x2y1),
k45 = x2y1 − y2, k56 = x1 − x2 + y2 − x1y2.

(4)

Theorem 4. Let p be a prime number with p > 5. Then there is (x1, x2, y1, y2) ∈ SFp
fixed

by H(5) if and only if there is n ∈ Z such that n2 ≡ 5 (p).

Proof. From the argument before the theorem, there is (x1, x2, y1, y2) ∈ SFp fixed by
H(5) if and only if k23 = k34 = k45 = k56 = 0 hold for (x1, x2, y1, y2). Since (x1, x2, y1, y2) ∈
F4

p is contained in SFp
if and only if fj 6= 0 (j = 1, 2, . . . , 15). Then it is easy to find that

(x1, x2, y1, y2) ∈ SFp
fixed by H(5) if and only if

x2
1 + x1 − 1 = 0, x2 = y1 = x1 + 1, y2 + x1 + 2. (5)

If there is n ∈ Z such that n2 ≡ 5 (p), we take x1 as the residue class of (p+1)/2 · (n−1)
in Fp. Then x2

1 + x1 − 1 = 0 in Fp. On the other hand, if n2 6≡ 5 (p) for any n ∈ Z, there is
no solution of x2 + x− 1 = 0 in Fp. Hence the theorem follows. �

Let p be a prime number with p > 5. Then it follows from the reciprocity law for the
Legendre symbol that 5 is a quadratic residue mod p if and only if p+1 or p−1 is divisible by
5. Noting that p is odd, this is equivalent to that there is an integer k such that p = 10k+ 1
or p = 10k − 1.

In the rest of this section, we always assume that p is a prime number of the form
p = 10k + 1 or p = 10k − 1. Moreover let n be an integer such that n2 ≡ 5 (p) and fix it.

It follows from the computation above that ((−1−n)/2, (1−n)/2, (1−n)/2, (3−n)/2) is
the fixed point of H(5) in W (E6). Let G0 be the subgroup of W (E6) generated by sij (1 ≤
i < j ≤ 6) and sr. Then G0 ' S6 × 〈sr〉 and the G0-orbit of ((−1 − n)/2, (1 − n)/2, (1 −
n)/2, (3− n)/2) in SFp consists of twelve points defined by

( (−1± n)/2, (1± n)/2, (1± n)/2, (3± n)/2 ),
( (−1± n)/2, (−1± n)/2, (3± n)/2, (1± n)/2 ),
( (1± n)/2, (3± n)/2, (−1± n)/2, (1± n)/2 ),
( (3± n)/2, (1± n)/2, (1± n)/2, (−1± n)/2 ),
( (−1± n)/2, (3∓ n)/2, (3∓ n)/2, (−1± n)/2 ),
( (3∓ n)/2, (−1± n)/2, (−1± n)/2, (3∓ n)/2 ).

Put a = (p+ 1)/2 · (1− n). Then we find that

(a− 1, a, a, a+ 1) = ((−1− n)/2, (1− n)/2, (1− n)/2, (3− n)/2)

and the corresponding matrix is

XFp(n) =

 1 0 0 1 1 1
0 1 0 1 a− 1 a

0 0 1 1 a a+ 1

 .
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This matrix is equivalent to

YFp
(n) =

 1 1 −1 1 0 0
1 −a a− 1 0 1 0
−1 a− 1 −a+ 2 0 0 1

 ,

namely, putting

U(n) =

 1 1 1
1 a− 1 a

1 a a+ 1

,
we find that det(U(n)) = −1 and U(n)−1XFp

(n) = YFp
(n). Let S and T be the sys-

tems of six labelled lines defined by XFp
(n) and YFp

(n), respectively. Namely, if the lines
Li(n), L′i(n) (i = 1, 2, . . . , 6) are defined by

Lj(n) : tj = 0 (j = 1, 2, 3),
L4(n) : t1 + t2 + t3 = 0,
L5(n) : t1 + (a− 1)t2 + at3 = 0,
L6(n) : t1 + at2 + (a+ 1)t3 = 0,

and
L′1(n) : t1 + t2 − t3 = 0,
L′2(n) : t1 − at2 + (a− 1)t3 = 0,
L′3(n) : −t1 + (a− 1)t2 + (−a+ 2)t3 = 0,
L′j(n) : tj−3 = 0 (j = 4, 5, 6),

then S is the system of six labelled lines L1(n), . . . , L6(n) and T is the system of six la-
belled lines L′1(n), . . . , L′6(n). Let Cj(n) (resp. C ′j(n)) be the conic tangent to the five lines
Lk(n) (k = 1, . . . , 6, k 6= j) (resp. L′k(n) (k = 1, . . . , 6, k 6= j)). Then it follows from the defi-
nition that Cj(n) ∩ Lj(n) = ∅ (resp. Cj(n) ∩ Lj(n) 6= ∅) if and only if C ′j(n) ∩ L′j(n) = ∅
(resp. C ′j(n) ∩ L′j(n) 6= ∅). By the computations in the previous section, the conic C6(n) is
defined by

2t21 + (7 + 3n)t22 + (3 + n)t23 + 4(2 + n)t2t3 − 2(1 + n)t1t3 + 2(3 + n)t1t2 = 0.

We consider the points of C6(n) ∩ L6(n). Then since t1 = −at2 − (a+ 1)t3, we find that

(3 + n)t22 + 2t2t3 + 2t23 = 0,

which is equivalent to
(t2 + 2t3)2 + (5 + 2n)t22 = 0.

This implies that C6(n)∩L6(n) 6= ∅ if and only if there ism ∈ Fp such thatm2 ≡ −2n−5(p).

Therefore C6(n) ∩ L6(n) = ∅ if and only if
(
−2n− 5

p

)
= −1. By computation similar to

this, we find that

C4(n) ∩ L4(n) = ∅ if and only if
(

2n− 5
p

)
= −1,

C5(n) ∩ L5(n) = ∅ if and only if
(

2n− 5
p

)
= −1.
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Concerning the system T , we find that

C ′1(n) ∩ L′1(n) = ∅ if and only if
(
−2n− 5

p

)
= −1,

C ′2(n) ∩ L′2(n) = ∅ if and only if
(
−2n− 5

p

)
= −1,

C ′3(n) ∩ L′3(n) = ∅ if and only if
(

2n− 5
p

)
= −1.

Since n2 ≡ 5(p), it follows that (−5+2n)(−5−2n) ≡ 5 ≡ n2 (p) and therefore the conditions(
2n− 5
p

)
= −1 and

(
−2n− 5

p

)
= −1 are equivalent. We have thus proved the following

theorem.

Theorem 5. Let p be a prime number and suppose that p = 10k − 1 or p = 10k + 1 for an
integer k. Then the system of six labelled lines defined by the matrix XFp

(n) is of type III if

and only if
(

2n− 5
p

)
= −1.

5. Systems of Other Types

Let p be a prime number. In this section, we always assume that
(A1) There is n ∈ Fp such that n2 ≡ 5 (p).
(A2) For any m ∈ Fp, m2 6≡ 2n− 5 (p), where n is an integer given (A1).

It is easy to show that s123(a − 1, a, a, a + 1) = (a, a − 1, a − 1,−a + 2) as elements of
SFp

. The corresponding matrix is

XFp(n)s123 =

 1 0 0 1 1 1
0 1 0 1 a a− 1
0 0 1 1 a− 1 −a+ 2

 .

This matrix is equivalent to

YFp(n)s123 =

 (1− 2a)/5 (1− 2a)/5 (3 + 4a)/5 1 0 0
(1− 2a)/5 (1 + 3a)/5 (−2− a)/5 0 1 0
(3 + 4a)/5 (−2− a)/5 (−1− 3a)/5 0 0 1

 .

Let s123S and s123T be the systems of six labelled lines defined byXFp
(n)s123 and YFp

(n)s123 ,
respectively. Lines Li(n)s123 , L′i(n)s123 (i = 1, 2, . . . , 6) and conics Cj(n)s123 , C ′j(n)s123 are
defined by using XFp

(n)s123 and YFp
(n)s123 as the lines Li(n), L′i(n) (i = 1, 2, . . . , 6) and

conics Ci(n) C ′i(n) (i = 1, 2, . . . , 6) by XFp(n) and YFp(n). From XFp(n)s123 , YFp(n)s123 ,
we compute the condition for which Ci(n)s123 ∩ Li(n)s123 6= ∅ (i = 4, 5, 6) and C ′i(n)s123 ∩
L′i(n)s123 6= ∅ (i = 1, 2, 3). As a consequence, we easily find that
(i) (t1 : t2 : t3) ∈ C4(n)s123 ∩ L4(n)s123 if and only if t2(t2 + t3) = 0.
(ii) (t1 : t2 : t3) ∈ C6(n)s123 ∩ L6(n)s123 if and only if t3(2t2 + (3 + n)t3) = 0.
(iii) (t1 : t2 : t3) ∈ C6(n)s123 ∩ L6(n)s123 if and only if t3(2t1 + nt2) = 0.
(iv) C ′1(n)s123 ∩ L′1(n)s123 6≡ ∅ if and only if 2n− 5 ≡ m2 (p) for some m ∈ Fp.
(v) C ′2(n)s123 ∩ L′2(n)s123 6≡ ∅ if and only if there is (t2 : t3) ∈ P1(Fp) such that

2t22 + (−1 + n)t2t3 + 2t23 = 0.
(vi) C ′3(n)s123 ∩ L′3(n)s123 6≡ ∅ if and only if 2n− 5 ≡ m2 (p) for some m ∈ Fp.
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We continue the computation in the case (v). Since

(n− 1)2(2n+ 5) ≡ 10 + 2n (p),

it follows that

8{2t22 + (−1 + n)t2t3 + 2t23} ≡ {4t2 + (n− 1)t3}2 + (10 + 2n)t23
≡ {4t2 + (n− 1)t3}2 − (n− 1)2(−2n− 5)t23 (p).

Then we find from (A2) that there is no point (t2 : t3) ∈ P1(Fp) satisfying the condition
2t22+(−1+n)t2t3+2t23 = 0. Summarizing the computation above and noting that Ci(n)s123∩
Li(n)s123 = ∅ if and only if C ′i(n)s123 ∩ L′i(n)s123 = ∅, we conclude the following:

(i) Ci(n)s123 ∩ Li(n)s123 = ∅ (i = 1, 2, 3),
(ii) Ci(n)s123 ∩ Li(n)s123 6= ∅ (i = 4, 5, 6).

By direct computation, we find that s145s123(a− 1, a, a, a+1) = (a− 1, 3a− 4, a,−a+3)
as elements of SFp . The corresponding matrix is

XFp(n)s145s123 =

 1 0 0 1 1 1
0 1 0 1 a− 1 3a− 4
0 0 1 1 a− 1 −a+ 3

 .

This matrix is equivalent to

YFp
(n)s145s123 =

 3 + 4a −1− 2a −1− 2a 1 0 0
3 + 4a −2− 3a −1− a 0 1 0
−5− 8a 3 + 5a 2 + 3a 0 0 1

 .

Let
Li(n)s145s123 , L′i(n)s145s123 (i = 1, 2, . . . , 6)

be the lines constructed from XFp(n)s145s123 , YFp(n)s145s123 , respectively defined similarly to
the cases Li(n), L′i(n). Then it follows from direct computation that
(i) (t1 : t2 : t3) ∈ C4(n)s145s123 ∩ L4(n)s145s123 ⇐⇒ t2{2t2 + (n− 1)t3} = 0.
(ii) (t1 : t2 : t3) ∈ C5(n)s145s123 ∩ L5(n)s145s123 ⇐⇒ t3{2t2 + (n− 1)t3} = 0.
(iii) (t1 : t2 : t3) ∈ C6(n)s145s123 ∩ L6(n)s145s123 ⇐⇒ (2t2 + t3)2 − (2n− 5)t23 = 0.
(iv) (t1 : t2 : t3) ∈ C ′1(n)s145s123 ∩ L′1(n)s145s123 ⇐⇒ {2nt2 + (2− n)t3}2

−(2n− 5)t23 = 0.
(v) (t1 : t2 : t3) ∈ C ′2(n)s145s123 ∩ L′2(n)s145s123 ⇐⇒ t2(t2 − t3) = 0.
(vi) (t1 : t2 : t3) ∈ C ′3(n)s145s123 ∩ L′3(n)s145s123 ⇐⇒ (t2 − t3){2t2 + (n− 3)t3} = 0.

By the condition (A2), C6(n)s145s123∩L6(n)s145s123 = ∅ and C ′1(n)s145s123∩L′1(n)s145s123 = ∅.
Summarizing the computation above and noting that Ci(n)s145s123 ∩Li(n)s145s123 = ∅ if

and only if C ′i(n)s145s123 ∩ L′i(n)s145s123 = ∅, we conclude the following:
(i) Ci(n)s123 ∩ Li(n)s123 = ∅ (i = 1, 6),
(ii) Ci(n)s123 ∩ Li(n)s123 6= ∅ (i = 2, 3, 4, 5).

By direct computation, we have sr(a−1, a, a, a+1) = (−a, 1−a, 1−a, 2−a) as elements
of SFp

. The corresponding matrix is

XFp(n)sr =

 1 0 0 1 1 1
0 1 0 1 −a 1− a
0 0 1 1 1− a 2− a

 .
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Next we have s123sr(a − 1, a, a, a + 1) = (1 − a,−a,−a, 1 + a) as elements of SFp
. The

corresponding matrix is

XFp
(n)s123sr =

 1 0 0 1 1 1
0 1 0 1 1− a −a
0 0 1 1 −a 1 + a

 .

This matrix is equivalent to

YFp
(n)s123sr =

 −1 + 2a −1 + 2a 7− 4a 5 0 0
−1 + 2a 4− 3a −3 + a 0 5 0
7− 4a −3 + a −4 + 3a 0 0 5

 .

As before, let Li(n)s123sr , L′i(n)s123sr (i = 1, 2, . . . , 6) be the lines constructed from
XFp

(n)s123sr , YFp
(n)s123sr , respectively defined similarly to the cases Li(n), L′i(n). Then

it follows from direct computation that
(i) (t1 : t2 : t3) ∈ C4(n)s123sr ∩ L4(n)s123sr ⇐⇒ t2(t2 + t3) = 0.
(ii) (t1 : t2 : t3) ∈ C5(n)s123sr ∩ L5(n)s123sr ⇐⇒ t3{(3 + n)t2 + t3} = 0.
(iii) (t1 : t2 : t3) ∈ C6(n)s123sr ∩ L6(n)s123sr ⇐⇒ t2t3 = 0.
(iv) (t1 : t2 : t3) ∈ C ′1(n)s123sr ∩ L′1(n)s123sr ⇐⇒ {2t2 − (2 + n)t3}2

−(−2n− 5)t23 = 0.
(v) (t1 : t2 : t3) ∈ C ′2(n)s123sr ∩ L′2(n)s123sr ⇐⇒ {4t2 − (n+ 1)t3}2

−(2n− 5)(n+ 1)2t23 = 0.
(vi) (t1 : t2 : t3) ∈ C ′3(n)s123sr ∩ L′3(n)s123sr ⇐⇒ (2t2 − t3)2 − (−2n− 5)t23 = 0.

By the condition (A2), Ci(n)s123sr ∩Li(n)s123sr = ∅ if and only if C ′i(n)s123sr ∩L′i(n)s123sr =
∅, we conclude the following:

(i) Ci(n)s123sr ∩ Li(n)s123sr = ∅ (i = 1, 2, 3),
(ii) Ci(n)s123sr ∩ Li(n)s123sr 6= ∅ (i = 4, 5, 6).

6. Some Results on Prime Numbers

In this section, we study prime numbers satisfying the conditions (A1), (A2) introduced in
§5.

Let p be a prime integer. If p satisfies (A1), then p = 10k + 1 or p = 10k − 1 for an
integer k. In the sequel, we always assume that p is a prime satisfying (A1) and let n ∈ Z
be so taken that n2 ≡ 5 (p).

It is interesting to determine such prime numbers satisfying the condition in Theorem 5.
The following theorem answers this question.

Theorem 6. Let p be a prime number with 5 < p. Then there is n ∈ Fp such that n2 ≡ 5(p)
and there is no m ∈ Fp such that m2 ≡ 2n− 5 (p) if and only if p = 10k − 1 for a positive
integer k.

The outline of his proof is as follow. By the assumption of the theorem, we get an equation
of degree 4 over Q. The field generated by one of the roots of this equation is nothing but the
cyclotomic field Q(ζ) generated by the fifth root ζ of unity. It is well known that a rational
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prime splits completely if and only if p ≡ 1(5). This is rougly the condition that there exists
the number m in Theorem 6. But p ≡ ±1(5) by the existence of n (if p is not 2). So we have
p ≡ −1(5). Since we assumed the p is odd, we have p ≡ −1(10), too.

Remark 4. The author proved Theorem 6 for such primes that p < 1000 by direct compu-
tation. Later T. Ibukiyama proved for an arbitrary prime p (5 < p).

7. Concluding Remarks

(1) The condition for a prime number p that there is n ∈ Z such that n2 ≡ 5 (p) is
equivalent to the condition that the twenty seven lines on the Clebsch diagonal surface
x3

1 + x3
2 + x3

3 + x3
4 + x3

5 = 0, x1 + x2 + x3 + x4 + x5 = 0 are defined over the prime number
field Fp.

(2) Let p be a prime number such that
(

5
p

)
= −1. In this case, we consider a field

extension Fp(n) over Fp attaching n such that n2 = 5 in Fp. Let P2(Fp(n)) be a projective
plane over Fp(n). Then it is possible to define systems of six labelled lines on P2(Fp(n))
with conditions (C1), (C2), (C3). In this case, by direct computation, the condition for
the existence of a system of six labelled lines of type III and fixed by the group H(5) is
equivalent to that there is no pair (a, b) ∈ Z2 such that (an + b)2 = 2n− 5 in Fp(n), which
is also equivalent to the condition that there is no pair (a, b) ∈ Z2 such that 5a2 + b2 ≡ −5,
ab ≡ 1 (p). It is easy to show that if p 6≡ ±1 (5), then there is no pair (a, b) of integers
satisfying the conditions 5a2 + b2 ≡ −5, ab ≡ 1 (p). As a consequence, we conclude that
there is a system of six labelled lines of type III and fixed by the group H(5) on P2(Fp(n)).

The author thanks his colleague Professor H. Maeda for the discussion between them on
number theory being very useful to formulate Theorem 5 in §4 and Professor T. Ibukiyama for
proving it and kindly explaining the proof to the author. The author was partially supported
by Grand-in-Aid for Scientific Research (No. 17540013), Japan Society for the Promotion
of Science.
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