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We studied the problem of axisymmetric motion of a binary mixture with a cylindrical free boundary
at small Marangoni numbers. Using Laplace transformation properties the exact analytical solution is
obtained. It is shown that a stationary solution is the limiting one with the growth of time if satisfy
certain conditions imposed on the external temperature. Some examples of numerical reconstruction of the
velocity, temperature and concentration fields are considered, which correspond well with the theoretical
results.
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Introduction

It is well known that at low Reynolds numbers the momentum equation can be simplified by
discarding the convective acceleration. Such movement is called creeping. The same simplifica-
tion can be obtained for equations of energy transfer and concentration. One of such problems
considered in the work [1, 2], associated with the unsteady motion of a drop (bubble). As the
Reynolds number was taken as the number Marangoni, which is small both due to the radius
of the droplet, and due to the physical parameters. In another task (the motion of fluid in a
cylindrical tube) the small parameter was the product of the number Grashof on the Prandtl
number [3].

In the present work we considered a similar problem. It is associated with unsteady motion
of a binary mixture with a cylindrical free boundary. Here the analogue of the Reynolds number
acts the Marangoni number. This problem is reduced to inverse initial-boundary value problem
for parabolic equations. It is solved in quadratures, and it is proved that at certain conditions, its
solution tends to a stationary regime with a growth time. Numerical treatment of the Laplace
transform obtained quantitative results for a model compound, which confirm the theoretical
conclusions.
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1. Statement of the problem
Let us turn to the problem of motion of a binary mixture. Axisymmetric motion of an incom-

pressible viscous heat-conducting mixture is considered. Denote by u(x, t), p(x, t), respectively,
the velocity vector and the pressure, θ(x, t) and c(x, t), respectively, deviations from the aver-
age values of temperature and concentration. Then the system of equations of thermodiffusion
motion in the absence of external forces (g = 0) has the form:

du

dt
+

1

ρ
∇p = ν∆u, divu = 0,

dθ

dt
= χ∆θ,

dc

dt
= d∆c+ αd∆θ,

(1)

where ρ is the average density, ν is the kinematic viscosity, χ is the thermal diffusivity, d is the
diffusion coefficient, α is the thermodiffusion coefficient (the coefficient Soret); d/dt = ∂/∂t+u·∇.

After the transition to dimensionless variables (as the scale of length, time, velocity, pressure,
temperature and concentration are taken of values h0, h2

0/ν, æ1Ah0/µ, æ1A, Ah0, Ah0β1/β2)
will receive task:

∂u/∂t+ Mau · ∇u+∇p = ∆u, (2)

divu = 0, (3)

Pr (∂θ/∂t+ Mau · ∇θ) = ∆θ, (4)

Sc (∂c/∂t+ Mau · ∇c) = ∆c− ε∆c. (5)

Here introduced dimensionless parameters: Ma = æ1Ah2
0/µν is the thermal Marangoni number,

Pr = ν/χ is Prandtl number, Sc = ν/d is Schmidt number, ε = −αβ2/β1 is thermodiffusion
parameter; A is temperature gradient, æ1 is some constant. We assume that the Marangoni
number is many times less than one Ma ≪ 1 (the creeping motion), then in the momentum
equations, heat transfer and concentration convective terms can be discarded. With the set
physical parameters of a liquid, this condition is carried out if sufficiently small value Ah2

0.
Formally expanding functions u, p, θ, c in series of Ma, to get a first approximation task (2)–(5)
with Ma = 0.

Let u(r, z, t), w(r, z, t) be the projections of the velocity vector on the axis of a cylindrical
coordinate system r and z. Suppose that the free boundary in this system is described by the
equation r = h(z, t) (see Fig. 1). Then the conditions will take [3]:

ht + whz − u = 0, (6)

(1− h2
z)(uz + wr) + 2hz(ur − wz)=

L

ρν

[
(hzθr + θz)

∂σ

∂θ
+ (hzcr + cz)

∂σ

∂c

]
, (7)

pgas − p+ 2ρνL−2[ur − hz(uz + wr) + h2
zwz] = 2σH, (8)

kL−1(θr − hzθz) + γ(θ − θgas) = Q, (9)

cr − hzcz + α(θr − hzθz) = 0, (10)

where L = (1 + h2
z)

1/2; σ(θ, c) is the coefficient of surface tension of the mixture and for most
real liquids, it is well approximated by a linear dependence

σ(θ, c) = σ0 − æ1(θ − θ0)− æ2(c− c0), (11)

where æ1 > 0 is the temperature coefficient, æ2 is the concentration coefficient (typically, æ2 < 0,
since the surface tension increases with increasing concentration), σ0, θ0, c0 are some constants
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average values; pgas and θgas are the pressure and the temperature of the ambient gas, which is
considered passive; γ is the coefficient of interphase heat transfer, k is the thermal conductivity
coefficient.

In equation (8) H is the average curvature of the free boundary

H =
hhzz − h2

z − 1

2h(1 + h2
z)

3/2
. (12)

Fig. 1. Current Flow Diagram

Remark 1. In the recording of the Marangoni number is present the parameter æ1 included in
the dependence of surface tension on temperature and concentration (11) (Fig. 1).

Consider the subgroup generated by four operators ∂z, t∂z + ∂w, ∂θ, ∂c, ∂p. It is easy to check
that it is allowed by a system of equations of thermodiffusion. Its invariants t, r, u, then partially
invariant solutions with respect to this subgroup are of the form [5]:

u = u(r, t), w = w(r, z, t), p = p(r, z, t), θ = θ(r, z, t), c = c(r, z, t). (13)

In this case, from the equation of conservation of mass it follows that w is a linear function of z.
Let

w = zv(r, t). (14)

General view of the invariant manifolds with respect to the considered subgroup {r, z, t} is
r = h(t) with an arbitrary function h(t). Let the dependence σ(θ, c) has the form (11), then
from boundary conditions (7) we get that æ1(θ − θ0)− æ2(c− c0) is a quadratic function of z.
It is therefore natural to assume that

θ(r, z, t) = a(r, t)z2 + b(r, t), c(r, z, t) = l(r, t)z2 +m(r, t), (15)

Interpretation of the solution of (13)–(15) is as follows. Let an axisymmetric heated long enough
cylinder of a binary mixture of external temperature on the boundary has a maximum of (a < 0)
or minimum (a > 0) at point z = 0. Then in a neighbourhood of this point the external
temperature can be approximated by a parabolic law.

The substitution of the solution (13)–(15) to the system of equations of thermodiffusion and
separation of a variable z leads to the next task in the region t > 0, 0 < r < h(t)

ut + pr = urr +
1

r
ur −

u

r2
, (16)

zvt + pz = z
(
vrr +

1

r
vr

)
, (17)

ur +
u

r
+ v = 0, (18)

at =
1

Pr

(
arr +

1

r
ar

)
, (19)
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bt =
1

Pr

(
brr +

1

r
br + 2a

)
, (20)

lt =
1

Sc

(
lrr +

1

r
lr

)
− ε

Sc

(
arr +

1

r
ar

)
, (21)

mt =
1

Sc

(
mrr +

1

r
mr + 2l

)
− ε

Sc

(
brr +

1

r
br + 2a

)
. (22)

The boundary conditions at r = h(t) as follows

ht = u, (23)

vr = −2a− 2Ml, (24)

pgas − p+ 2v = We − (a− θ0)− M(l − c0), (25)

ar + Bi(a− agas) = 0, (26)

br + Bi(b− bgas) = 0, (27)

lr − εar = 0, (28)

mr − εbr = 0. (29)

Here introduced dimensionless parameters: Bi = γh0/k is the number of Bio, We = σ0/æ1Ah0

is the Weber number, M = Mc
Ma = æ2β1/æ1β2, where Mc = æ2Ah2

0β1/µνβ2 is the concentration
Marangoni number;

In addition, it is necessary to require the boundedness of functions on the cylinder axis when
r = 0

|u| < ∞, |v| < ∞, |p| < ∞, |a| < ∞, |b| < ∞, |l| < ∞, |m| < ∞, (30)

and specify initial conditions at t = 0

u =u0(r), v =v0(r), a =a0(r), b =b0(r), l = l0(r), m =m0(r), h(0) = h0 = const > 0. (31)

Note that the functions u0 and v0 are related by equation (18), v0, a0, l0 by condition (25), l0, a0
by condition (29), а m0, b0 by condition (30).

Suppose that at the initial moment of time the free surface satisfies the initial condition:
r = h(0) = h0 = const > 0, and decompose the function h(t) in a series of Marangoni. Then the
variable r will vary in the range 0 6 r 6 h0 + Mah(t). We introduce dimensionless variables:
r′ = r/h0, z

′ = z/h0, t′ = νt/h0
2. The kinematic condition (6) in dimensionless variables has

the form (touches for convenience omitted):

Maht = Mau(1 + Mah(t), t). (32)

Assuming that Ma ≪ 1, from the last equation in Ma → 0 we find that the kinematic condition
at r = 1 gets converted to

ht = u(1, t). (33)

The function u is expressed from the continuity equation (18) in the following way

u = −1

r

∫ r

0

rvdr. (34)

From equations (16), (17) we express the pressure gradient (pr, pz)

pr = urr +
1

r
ur −

u

r2
− ut, (35)
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pz = z
(
vrr +

1

r
vr − vt

)
. (36)

Differentiating equation (35) for the variable z, and the equation (36) for the variable r, and
given that a function u is not depends on z, we get the equation of compatibility: prz = pzr = 0.
Whence it follows that the function v(r, t) is determined from the equation

vt = vrr +
1

r
vr + q(t), (37)

and the pressure is given by

p = −z2

2
q(t) + s(r, t), (38)

where q(t) is arbitrary function, and the derivative in the variable r of a function s(r, t) is precisely
the right side of equation (35).

Suppose that in the equation (34) when r = 1 running∫ 1

0

rvdr = 0. (39)

It follows that u(1, t) = 0. Then, returning to the kinematic condition (33), we have: h(t) = 1.
So a free boundary does not change with time and remains constant value. Converse is also true:
if h(t) = 1, then condition (39).
Remark 2. In fact, certain functions q(t), i.e. the "gradient pressure" along the axis z, can be
found as follows. Multiply equation (38) on r and integrating on r from zero to 1, reducing it
thereby to a "loaded" equation

∂

∂t

∫ 1

0

rv dr =

∫ 1

0

(rvr)r dr +
1

2
q(t). (40)

Integral, the left-hand side of the equation equal to zero according to the condition (39). It
follows that

q(t) = −2vr(1, t), (41)

where the right part is set as a boundary condition (24).
Therefore, first solve the equation (19) on the function a(r, t) with boundary conditions (26),

(30) and the initial condition (31); next we define the function l(r, t) from the equation (21)
with conditions (28), (30), (31), while function b(r, t), m(r, t) are calculated similarly. Thereby
recovering the temperature and concentration mixture according to formulas (15). Then solve
the problem on determination of the axial components of the velocity vector v(r, t), satisfy the
equation (38) and the boundary conditions (24), (30), (31). As the result is to find the radial
component of u(r, t) of equation (34) with boundary conditions (30), (31), the function q(t) with
(41) and the pressure p from equation (38) and the boundary conditions (8).

2. Stationary solution
For this decision all the unknown functions do not depend on time; let them through u0(r),

v0(r), p0(r), a0(r), b0(r), l0(r), m0(r). In addition, q(t) = q0 = const. Write out the correspond-
ing boundary value problem for 0 < r < 1:

u0
rr +

1

r
u0
r −

u0

r2
= p0r, (42)

v0rr +
1

r
v0r =

p0z
z

= −q0, (43)
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u0
r +

1

r
u0 + v0 = 0, (44)

1

Pr

(
a0rr +

1

r
a0r

)
= 0, (45)

1

Pr

(
b0rr +

1

r
b0r + 2a0

)
= 0, (46)

1

Sc

(
l0rr +

1

r
l0r

)
= 0, (47)

1

Sc

(
m0

rr +
1

r
m0

r + 2l0
)

= 0, (48)

General solution of system (42)–(48) when Pr ̸= 0, Sc ̸= 0 are easily found (taken into account
the conditions of constraints of (30)):

a0 = a0gas, b0 = −
a0gasr

2

2
+ b0gas + a0gas(0.5 +Bi−1), l0 = εa0gas, m0 = −

εa0gasr
2

2
+C, (49)

where a0gas, b0gas, C ≡ const.

Remark 3. The constant C remains arbitrary, it is not surprising, as the task for the concen-
tration contains only derivatives. On the other hand, this constant can be determine if ask the

average concentration in the cross section of z = 0, i.e.
1∫
0

cr0(r)dr = 0. From this C =
εa0gas
4

.

Thus, we have the following representation for m0

m0 =
εa0gas
2

(
1

2
− r2

)
. (50)

The other functions are as follows

u0 =
q0

16
r
(
r2 − 1

)
, v0 =

q0

4

(
1

2
− r2

)
, p0 =

q0

2

(
z2 − r2

2

)
, q0 = 4a0gas

(
1 + Mε

)
. (51)

The obtained solutions satisfy the boundary and initial conditions (23)–(31).

3. Determination of the temperature field

For solution of nonstationary problem is used Laplace transform. Believe (assuming the
existence of ã, ãr, ãrr, ãgas)

ã(r, p) =

∫ ∞

0

a(r, t)e−pt dt (52)

then the problem for a(r, t) is reduced to boundary problem for ordinary differential equations

ãrr +
1
r ãr − Pr p ã = −Pr a0(r), 0 < r < 1, (53)

ãr + Bi(ã− ãgas) = 0, r = 1, (54)

|ã(0, p)| < ∞. (55)
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The General solution of the equation (52) it is easy to write (taken into account the conditions
of constraints (55))

ã = C1I0

(√
Pr p r

)
+

+

∫ r

0

Prya0(y)
[
I0

(√
Pr p y

)
K0

(√
Pr p r

)
− I0

(√
Pr p r

)
K0

(√
Pr p y

)]
dy, (56)

with a constant C1, determined from the boundary conditions:

C1 =

[√
Pr p I1

(√
Pr p

)
+ BiI0

(√
Pr p

)]−1{
Bi ãgas+

+
√

Pr p
∫ 1

0

Prya0(y)
[
I0

(√
Pr p y

)
K1

(√
Pr p

)
+ I1

(√
Pr p

)
K0

(√
Pr p y

)]
dy−

− Bi
∫ 1

0

Prya0(y)
[
I0

(√
Pr p y

)
K0

(√
Pr p

)
− I0

(√
Pr p

)
K0

(√
Pr p y

)]
dy

}
. (57)

The task is to determine the image of b̃(r, p) exactly coincides with the task (53)–(55) with the
replacement right parts: −Pr a0(r) for −Pr b0(r)− 2ã. Thus, this function is given by

b̃ = C2I0

(√
Pr p r

)
−

C1rI1

(√
Pr p r

)
√

Pr p
+

+

∫ r

0

Pry
(
b0(y) + 2a0(y)

)[
I0

(√
Pr p y

)
K0

(√
Pr p r

)
− I0

(√
Pr p r

)
K0

(√
Pr p y

)]
dy (58)

with a constant C2, determined from the boundary conditions:

C2 =
[√

Pr p I1
(√

Pr p
)
+ BiI0

(√
Pr p

) ]−1{
Bi b̃gas + C1rI0

(√
Pr p r

)
+

+
√

Pr p
∫ 1

0

Pry
(
b0(y) + 2a0(y)

)[
I0

(√
Pr p y

)
K1

(√
Pr p

)
+ I1

(√
Pr p

)
K0

(√
Pr p y

)]
dy−

− Bi
∫ 1

0

Pry
(
b0(y) + 2a0(y)

)[
I0

(√
Pr p y

)
K0

(√
Pr p

)
− I0

(√
Pr p

)
K0

(√
Pr p y

)]
dy

}
, (59)

where Ij , Kj are Bessel functions of the first and the third kind of imaginary argument.
It is possible to show, using the explicit formula (56), (57) that

lim
t→∞

a(r, t) = lim
p→0

pã(r, p) = a0gas,

where a0gas is stationary solution for the function a(r, t). In the derivation we must assume the
existence of the limit lim

t→∞
agas(t) = lim

p→0
pãgas(p) = a0gas. Note that when t → 0 [6]:

I0(t) ∼ 1 +
t2

4
, K0(t) ∼ −I0(t) ln t,

I1(t) ∼
t

2
+

t3

16
, K1(t) ∼

1

t
+

t

2
ln t− t

4
.

From (56), (57) after long calculations we obtain that pã(r, p) → a0gas when p → 0.
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Similarly, it is shown that

lim
t→∞

b(r, t) = lim
p→0

pb̃(r, p) = −0.5a0gasr
2 + b0gas + a0gas

(
0.5 + Bi−1

)
,

where the right side of the equality is a stationary solution for the function b(r, t), assuming the
existence of a limit lim

t→∞
bgas(t) = lim

p→0
pb̃gas(p) = b0gas.

Lemma 1. Problem solving for the functions a(r, t), b(r, t) are defined by the inverse Laplace
transformation according to the formulas (56), (58), and with the growth of time, they reach a
stationary regime, if agas(t) → a0gas, bgas(t) → b0gas when t → ∞.

4. Determination of the concentration of the mixture
Applying to the initial-boundary problem for the concentration the mixture of Laplace

transform, obtain for the image l̃(r, p) task

l̃rr +
1

r
l̃r − Scp l̃ = −Sc l0(r)− εPr a0(r) + εPr p ã, 0 < r < 1, (60)

l̃r − εãr = 0, r = 1, (61)

|l̃(0, p)| < ∞. (62)

The General solution of the equation (60) with Pr ̸= Sc is represented as follows

l̃ = C3I0

(√
Sc p r

)
+

+

∫ r

0

y
(
Sc l0(y) + εPr a0(y)

) [
I0

(√
Sc p y

)
K0

(√
Sc p r

)
− I0

(√
Sc p r

)
K0

(√
Sc p y

)]
dy+

+
εPr

Pr − Sc

[
C1I0

(√
Pr p r

)]
+

+

∫ r

0

Pry a0(y)
[
I0

(√
Pr p y

)
K0

(√
Pr p r

)
− I0

(√
Pr p r

)
K0

(√
Pr p y

)]
dy (63)

with a constant C3, determined from the boundary conditions (61):

C3 =
[√

Sc p I1
(√

Sc p
)]−1

{
εSc

Sc − Pr
C1

√
Pr p I1

(√
Pr p

)
+

+
√

Sc p
∫ 1

0

y
(
Sc l0(y) + εPr a0(y)

)[
I0

(√
Sc p y

)
K1

(√
Sc p

)
+ I1

(√
Sc p

)
K0

(√
Sc p y

)]
dy−

− εSc
Sc − Pr

√
Pr p

∫ 1

0

Prya0(y)
[
I0

(√
Pr p y

)
K0

(√
Pr p

)
− I0

(√
Pr p

)
K0

(√
Pr p y

)]
dy

}
. (64)

The task is to determine the image of m̃(r, p) exactly coincides with the task (60)–(62) with the
replacement right parts: −Sc l0(r)− εPr a0(r) + εPr p ã for −Scm0(r)− εPr b0(r) + εPr p b̃.

It is possible to show, using explicit formulas (63), (64), that

lim
t→∞

l(r, t) = lim
p→0

pl̃(r, p) = εa0gas,

where εa0gas is stationary solution for the function l(r, t). If the conclusion is again necessary to
assume the existence of the limit lim

t→∞
agas(t) = lim

p→0
pãgas(p) = a0gas.
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Similarly, it is shown that lim
t→∞

m(r, t) = lim
p→0

pm̃(r, p) = m0(r), where m0(r) is stationary solu-

tion for the function m(r, t), assuming the existence of a limit lim
t→∞

bgas(t) = lim
p→0

pb̃gas(p) = b0gas.

Thus, the fair

Lemma 2. Problem solving for the functions l(r, t), m(r, t) are determined by the inverse Laplace
transformation according to the formulas (63), (64), and with the growth of time, they reach a
stationary regime, if agas(t) → a0gas, bgas(t) → b0gas when t → ∞.

5. Determination of velocity field

The application of the Laplace transform to the problem for velocity reduces it to a boundary
problem for ordinary differential equations

ṽrr +
1

r
ṽr − Pr p ṽ = −v0(r)− q̃(p), 0 < r < 1, (65)∫ 1

0

rṽdr = 0, r = 1, (66)

ṽr = −2ã− 2Ml̃, r = 1, (67)

|ṽ(0, p)| < ∞. (68)

The General solution of the equation (65) is written as follows

ṽ = C5I0

(√
Pr p r

)
+

q̃(p)

p
+

∫ r

0

yv0(y) [I0 (
√
p y)K0 (

√
p r)− I0 (

√
p r)K0 (

√
p y)] dy (69)

with a constant C5, determined from the boundary conditions (67):

C5 = [
√
p I1 (

√
p )]

−1
{
−2ã− 2Ml̃+

+
√
p

∫ 1

0

yv0(y) [I0 (
√
p y)K1 (

√
p ) + I1 (

√
p )K0 (

√
p y)] dy

}
, (70)

where functions ã(r, p), l̃(r, p) are defined by formula (55), (63) when r = 1.
In addition, from the boundary conditions (66), (67) defines a function q̃(p), namely

q̃(p) = −2ṽr(1, p).

Working similarly to the proof of the convergence of the obtained solutions to stationary
solutions of temperature and concentration of the expressions (69), (70) we can deduce the
equality

lim
p→0

pṽ(r, p) = v0(r), (71)

where v0(r) is stationary velocity distribution of (51). In the derivation of (71) we must assume
the existence of the limit lim

t→∞
agas(t) = a0gas.

Thus, the fair

Lemma 3. The solution of the problem for the function v(r, t) is determined by the inverse
Laplace transformation formula (69), (70), and with increasing time it comes on stationary
regime, if agas(t) → a0gas when t → ∞.

– 202 –



Victor K.Andreev, Natalya L. Sobachkina The Motion of a Binary Mixture with a Cylindrical . . .

6. Numerical results

The formulas (56), (63), (69) in the image Laplacian were used to numerical finding of the
fields of velocity, temperature and concentration mixture under certain conditions imposed on
the temperature outside agas(t). This was done by the method of numerical inverse the Laplace
transform [7], which was obtained quantitative results for the model system with the following
parameter values: a0gas = 0.2, ε = 0.1,M = 1000, Bi = 2,Pr = 0.2, Sc = 0.1, λ = 10, ω = 10.

In Fig. 2–4 shows the evolution of the dimensionless profiles temperature, concentration and
velocity of the mixture. In Fig. 2a presented the profile of the dimensionless ‘temperature"
a(r, t), provided that agas(t) = a0gas + exp(−λt) sin(ωt). The function agas(t) has a finite limit
when t → ∞, a0gas. In this case, there is a convergence to stationary temperature distribution.
In Fig. 2b presented the dependence a(r, t), when agas(t) = sin(ωt), i.e. agas(t) has no limit
when t → ∞. As can be seen from graphics, solution with increase in time does not converge to
a stationary regime. The situation is similar with other functions. The results of the numerical
inverse Laplace transformation confirmed the conclusion that the stationary solution is the limit
when large values of time. Thus, by changing the temperature environment, more precisely the
function agas(t), can be set various modes of movement of the mixture in the cylinder with a
free boundary.

Fig. 2. Temperature profile at different points in time: 1 — τ = 0.21, 2 — τ = 0.32, 3 — τ = 0.68,
4 — τ = ∞

Conclusion

Studied partially-invariant solution of the axisymmetric motion of a binary mixture with a
cylindrical free the boundary at small Marangoni numbers. The problem is reduced to initial-
boundary value problem for parabolic equations. The images by Laplace obtained the exact
analytical solution. Found the stationary solution of the problem and proved that it is the
limit when t → ∞, if you satisfy certain conditions imposed by on the temperature outside.
The examples of numerical reconstruction of fields the velocity, temperature and concentration,
confirming the solution in stationary regime.

This work was supported by a grant from the Russian Foundation for basic research no. 14-
01-00067.
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Fig. 3. Concentration profile at different points in time: 1 — τ= 0.21, 2 — τ= 0.32, 3 — τ= 0.68,
4 — τ = ∞

Fig. 4. Velocity profile at different points in time: 1 — τ = 0.21, 2 — τ = 0.32, 3 — τ = 0.68,
4 — τ = ∞
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Движение бинарной смеси с цилиндрической свободной
границей при малых числах Марангони
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Наталья Л. Собачкина
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Россия

Исследуется задача об осесимметрическом движении бинарной смеси с цилиндрической свободной
границей при малых числах Марангони. В изображениях по Лапласу получено точное аналити-
ческое решение. Найдено стационарное решение задачи и доказано, что оно является предельным
с ростом времени, если выполнены определенные условия, налагаемые на внешнюю температу-
ру. Даны примеры численного восстановления полей скорости, температуры и концентрации,
которые хорошо соотносятся с теоретическими результатами.

Ключевые слова: бинарная смесь, свободная граница, стационарное решение, преобразование Ла-
пласа, число Марангони.
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