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Abstract. Effectiveness of the use of neural-net technology for the solving of shell theory 

problems is shown. Some results of neural-net interpolation and extrapolation for direct and 

inverse problems are discussed. Exact accuracy of neural-net solving opens wide latitude for 

shell constructions engineering design and optimization. 

1.  Introduction 

Neural network technologies as a modern universal approximation tool are widely applied in both 

classic and new areas of science and technology [1, 2]. Their use in the theory of shells, shells 

designing and research seems relevant and useful. 

The joint use of solutions of direct and inverse problems can provide substantial assistance in the 

process of design engineering, which can be considered as finding the optimal form in the selection of 

certain parameters and characteristics. 

The solution of the inverse problem is usually fraught with difficulties related to the ambiguity of 

the decision. We have to use different classical and non-classical mathematical methods for solving. 

For example, the definition of the inverse function or matrix inversion is required for solutions in 

linear problems without restrictions. For problems with constraints and nonlinear problems it is 

possible to apply the methods of mathematical programming.  

In cases where the problem is poorly formalized or not formalized, we have to look for special 

innovative ways of solving. They include neural network approaches.  

In terms of a neural network, inverse problem is an identification of dependencies between the 

input and output data, which are interchanged with respect to the direct problem. In this regard, the 

solution of direct and inverse problems can be carried out by a single algorithm. The neural network 

solution of the inverse problem will be simplified if we can build such a neural network, for which it 

would be possible to get a set of ambiguous solutions. 

In this case the use of neural network technology, specifically neural network modeling, is 

convenient and efficient, it allows high-speed seek adoption of rational and optimal solutions.  

Note that in this study, we have used standard neural network simulators, that were unfortunately 

not assumed to be applied to the problems of mechanics while being developed. It seems promising to 

develop specialized neural simulators, as well as the individual neural networks, which take into 

mailto:maximom_7@mail.ru


 

 

 

 

 

 

account the properties of the structure and, apparently, can significantly improve the results. However, 

it should be noted that this approach can restrict the class of problems.  

As a neural simulator for most of the problems we used the program "Modely" written on the basis 

of interpolation of the solutions using Fourier series and minimization of the functional of squared 

deflection error using the Lagrange multipliers [3]. We consider the examples of solving direct and 

inverse problems [4] using neural networks. 

2.  Thin smooth shallow spherical shell on a square plan 

Area of moments is shown for a smooth spherical shell under the load uniformly distributed over the 

band of width  along the Y axis. It shows a change of the bending moment in the center of band-pass 

load, depending on the load bandwidths (Figure 1). 

Material for training the neural network: the value of the bending moment MX in the local 

center of the site, depending on the width of the band-pass load λ. 

 

MX, kg∙cm 11.5 10.3 10 9.4 8 6.2 4.2 

λ, mm 16.67 27 33.33 37 50 66.67 100 

 

Direct problem: to investigate the influence of bandwidth λ of uniformly distributed load on the 

value of the bending moment. 

The input parameters of the network – the bandwidth of load λ. 

The output network parameters – values of the moment MX. 

 

Figure 1. The dependence of the bending moment in the center of band-pass load, depending on the 

load bandwidths for a spherical shell 

 

Features of the neural network solving the problem. In the case where MX is determined for λ, 

located within the training pattern interval (interpolation problem – training pattern: moments for  = 

16.67; 33.33; 50; 66.67; 100; tests:  = 27; 37), the neural network training takes instantaneously. In 

the training pattern, consisting of just five examples with the minimum number of neurons, equal to 2, 

and unit spectral density, training error is 1.4%. If  extends beyond training pattern interval, for 

example to decrease the bandwidth load (extrapolation problem – training pattern: moments for  = 

33.33; 37; 50; 66.67; 100, tests:  = 16.67; 27), to achieve a similar accuracy of the solution the 

number of neutrons should be increased to 9 (with unchanged other network parameters). Adding just 

one neuron reduces training error to 0.5%. The process of training a neural network in the case of 

interpolation and in the case of extrapolation takes seconds. 
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This problem is neural forecasting problem of design type. With the help of the graph of 

dependence of the moment MX of the load bandwidth , it is possible to determine the maximum 

possible bending moment with the minimum allowable load bandwidth (Figure 2). 

 

Figure 2. Changing the maximum bending moment in the shell depending on the width of the band-

pass load 

 

Inverse problem: to find  (width of band-pass load), corresponding to the desired moment (MX) in 

the center of the local area. 

This problem can be formulated differently: “what should the bandwidth of the current distributed 

load be to produce a bending moment that does not exceed a predetermined value?” In this case, we 

are dealing with the search for optimal solutions. 

The input parameters of the network – values of the moment MX. 

The output network parameters – the bandwidth of load λ. 

Similarly to the direct problem, we solved the problem of interpolation and extrapolation type. 

Interpolation problem was converted to determining load bandwidth  for a given value of the bending 

moment MX within the training pattern interval (training pattern  MX = 4.2; 6.2; 8; 10; 11.5;  tests  MX = 

9.4; 10.4). The training pattern consisted of 5 problems. Compared with the direct problem the neural 

network training process for the inverse problem (due to the complexity of the reversal function) is 

more time-consuming and complicated.  

Features of the neural network solving the problem. The best results that have been achieved are 

within 4% error   and obtained by means of a neural network with 15 neurons and spectral density 

equal to 2.6. The process of network training, the selection of its architecture has a singularity. In the 

process of training the spectral density should be increased gradually, starting with 1.0 in increments 

of 0.1. Otherwise, training error increases greatly to 15% or higher. Changing the size of the network 

(number of neurons) and spectrum as downwards and upwards does not give positive results (Fig. 3). 

If given moment MX, for which you want to determine the appropriate load bandwidth , is outside 

the training pattern interval (extrapolation problem – training pattern: MX = 4.2; 6.2; 8; 9.4; 10; tests: 

MX = 10.3; 11.5), the network training is very long and painstaking. It requires the use of step method 

neural network forecasting [3, 5]. At each step of training the magnitude of the spectral density must 

be increased from 1, not more than 0.01 to 1.3. In this case, two-neuron network allows to achieve 

error on the test cases within 6%. 
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Figure 3. Dependence of  on MX for determining the lowest possible band width of the load at which 

the bending moment does not exceed a predetermined value 

3.  The thin shallow spherical shell on a square plan, backed by edges on a contour  

In this example, the load is distributed evenly over the entire surface of the shell. 

Material for training the neural network: values of deflections w/q and bending moments MX/q  

in grid nodes on the coordinate axes for some pliability parameter values of contour arches   (Figures 

4, 5). 

Direct problem: to determine the impact of pliability parameter =h/t of contour arch (h – section 

height of contour arch, t – shells thickness) on the deflections and bending moments. 

The input parameters of the network – the value of pliability parameter .  

The output network parameters – values of deflections w/q and values of moments MX/q  in shell 

grid nodes. 

If deflections and moments are determined for pliability parameter , without departing from the 

training pattern interval (interpolation problem), learning is fast, does not cause difficulties. 

Features of the neural network solving the problem. In determining the deflections (training 

pattern: data for  = 2, 3, 4, 6, 8; test:  = 5) he best result of training have been achieved for 6- neuron 

network with the spectral density 1.2. Errors of deflections calculating  are in the interval 0.05 %   

 5.72 %. The maximum error is noted in the contour arch. In determining the moments (training 

pattern: data for  = 2, 3, 4, 6, 9, test:  =5) the most effective is an 8-neuron network with the spectral 

density 0.8. Here network training error does not exceed 2%. The maximum errors are in the area of  

moments values close to zero. 

When deflections and moments are determined for pliability parameter extending beyond the 

training pattern interval (extrapolation problem – training pattern: data for  =2, 3, 4, 5, 6, test:  =8) 

the problem is complicated. The number of examples in the training pattern has a significant impact on 

the results of the network functioning. 

For instance, for the training pattern of five examples (4- neuron network with the spectral density 

2.5) the maximum error in the tests for deflections is 5.5 %. Reducing the pattern by a single example 

leads to an increase in errors to 8%.  

The accuracy of neural network solutions can be significantly improved if instead of one-step 

(traditional) neural network extrapolation the step method of neural network forecasting is used [3, 5]. 
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Figure 4. Epures of deflections and bending moments in the cross section y=0 (=h/t, where h – 

section height of contour arch, t – shells thickness) 

 

Figures 4 and 5 show that with increasing pliability, quality change (even in sign) of moments 

epures near the contour and significant growth of deflections throughout the area occurs. The value  

= 5 can be taken as conventional limit, below which a reinforcement shell contour can be called a very 

pliable. It may be recommended for design purposes to take    5. 

Inverse problem: what should be the parameter  (pliability of contour rib), to the deflections w/q  
and moments MX/q  do not exceed the specified values 

The input parameters of the network – values of deflections w/q and the values of the bending 

moments MX/q  at the nodes of the shell mesh. 

The output network parameters – pliability ribs parameter . 

 

 

Figure 5. Dependence of deflections functions and moments on pliability of contour ribs =h/t for the 

various points of the shell region 

 

Feature of the neural network solving the problem is the fact, that the inverse problem is solved 

much more accurate than direct both for the interpolation problem when the network functioning is 

carried out within the training pattern interval, and for extrapolation problem, when network 

functioning is carried out outside the training pattern interval. 
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For example, in the problem of extrapolation (training pattern: five variants of deflection for  = 2, 

3, 4, 5, 6, test: deflection for  = 8) with the network of the two neurons with spectral density 0.8 

deflection values are determined with an error not exceeding 1.7%. 

To determine the moments (training pattern: five variants of moments for  = 2, 3, 4, 5, 6, test: 

moments for  =9) the most effective is the network of three neurons with spectral density 0.8. 

Maximum network training error on the test examples is 1.95%. 

In both cases, the training pattern consists of only 5 examples. But even with such a small number 

of training examples the neural network gives a fairly accurate results. The error of the neural network 

solution does not exceed 2%. However, reducing the pattern by even one example in the problem of 

deflections forecast causes a significant increase in error.  

It confirms the need for reasonably select training examples, their number, as well as network 

architecture and its characteristics for each specific problem in view of its features. 

In this problem, there is no need to use step method of neural forecasting as "traditional" (one-step) 

neural forecasting provides acceptable accuracy of the solution. However, the use of this method could 

significantly improve the results 

This problem can be considered as an optimization problem. Plotting of dependence of pliability 

parameter  on the value of the deflections and moments and their analysis can help in the selection of 

such pliability parameter of contour ribs, which would provide the desired (required) shell behavior, 

its stress-strain state (SSS). 

4.  Conclusion 

Thus, the results of solving the problems under consideration show, that the use of neural network 

models allows to solve with sufficient accuracy (within 5% error) as a direct problem of calculating 

shells (to receive SSS parameters according to known geometric characteristics of shell and its load) 

and inverse problems (to select the design dimensions according to known moments and deflections). 

This opens up opportunities for the design of shell structures and their optimization. Note that the 

neural network solution of the inverse problem will be simplified, if we can build such neural network 

model, by which it would be possible to get a set of ambiguous solutions. 

The examples discussed herein are illustrative a greater extent for the traditional method of using 

neural network technology (interpolation, extrapolation). It should be noted that the development and 

application of stepwise technology to these problems, set out in [3, 5], using the completion of the 

training pattern by interpolation, additional training the neural network model and the step process, 

can significantly improve the results. 

Neural network technologies have much more applications, and can include not only the static 

problem, but also the dynamics, to take into account the experimental data in order to bring the 

calculated results to the actual design. 
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