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Abstract. We consider relations between a semifield projective

plane and its coordinatizing semifield using the linear space and a spread

set. We state the geometrical sense of an involutory automorphism for

a finite semifield and study some of its properties.

1. Introduction

The coordinatization of points and lines in a finite projective plane

allows to study its geometrical properties through the investigation of

algebraic properties of the coordinatizing set. So, a desarguesian (classic)

finite projective plane is coordinatized by the field, and the weakening

of axioms of commutativity and associativity leads to translation planes

that are coordinatized by quasifields. If the dual to a translation plane

is also translation, then such the plane is coordinatized by a semifield

and is called a semifield plane. The most complete review on semifields,

quasifields and correspondent projective planes is presented in [1].

The construction of a finite semifield plane (as a translation plane)

usually uses a linear space over finite field and a certain set of linear

maps, a so-called spread set. This method is considerably related with

computer calculations, and so, it is necessary to represent the elements in

a convenient form. This paper uses the matrix representation of a spread

set over a field of prime order and it allows to simplify the considerations

and calculations.
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automorphism, Baer involution..
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We state the results describing the relationship between autotopisms

and automorphisms of finite semifield and collineations of the correspond-

ing semifield plane. For instance, we determine the geometrical sense of

an involution automorphism and its stabilizer. These results are illus-

trated by the examples of semifields of orders 64 and 81.

2. Semifield and spread set

A semifield, according to [2], is a set S with two binary algebraic

operations + and ∗ such that:

1) 〈S,+〉 is an abelian group with neutral element 0;

2) 〈S∗, ∗〉 is a loop (S∗ = S \ {0});
3) both distributivity laws hold, a ∗ (b+ c) = a ∗ b+ a ∗ c, (b+ c) ∗ a =

b ∗ a+ c ∗ a for all a, b, c ∈ S.

The weakening of two-sided distributivity to one-sided leads to the

notion of quasifield, right or left. Further we shall say ”quasifield” instead

of ”right quasifield” , i.e. a structure with the rule a∗(b+c) = a∗b+a∗c.
The semifield S contains the subsets Nr, Nm, Nl which are called right,

middle and left nuclei respectively:

Nr = {n ∈ S | (a ∗ b) ∗ n = a ∗ (b ∗ n) ∀a, b ∈ S},
Nm = {n ∈ S | (a ∗ n) ∗ b = a ∗ (n ∗ b) ∀a, b ∈ S},
Nl = {n ∈ S |n ∗ (a ∗ b) = n ∗ (a ∗ b) ∀a, b ∈ S}.

The intersection N = Nl ∩ Nm ∩ Nr is called the nucleus of semifield

and its subset

Z = {z ∈ N | z ∗ a = a ∗ z ∀a ∈ S}

is the center of semifield. The center and all nuclei of a finite semifield

are subfields, and the semifield is a linear space over any of them. So,

the order of finite semifield equals to pn where p is a prime number.

Let W be a d-dimensional linear space over the field GF (pk), and let

R be a set of linear maps, R ⊂ GLd(p
k) ∪ {0}, such that:

1) R has exactly pdk square (d× d)-matrices over GF (pk);

2) R contains the zero and the identity matrices (0 and E);

3) for any two different matrices A,B ∈ R, A 6= B the difference A−B
is a non-singular matrix.

Such a set R is said to be a spread set (see [2]).

The enumerated conditions imply that a matrix of a given spread set

is uniquely determined by the choice of any of its rows or columns. In

particular, we can consider the elements of the matrix as the functions
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of the first row, and so, we define the bijective map θ from W onto R

such that

R = {θ(y) | y ∈ W},
where y is the first row of θ(y). So, from the definition, we have

θ(0, 0, . . . 0) = 0, θ(1, 0, . . . , 0) = E.

If we define the multiplication on W by the rule

x ∗ y = x · θ(y) (x, y ∈ W )

then 〈W,+, ∗〉 is a (right) quasifield ([3], [4]). Moreover, if R is closed

under addition then W is a semifield.

Note that the center Z of a semifield is usually used as a basic field

GF (pk) to construct a semifield. Nevertheless, it is more convenient to

consider a linear space W and the spread set R over the prime subfield

Zp. Then the map θ can be written only by linear functions, which

considerably simplifies the considerations and calculations. It is true,

more general, also for a quasifield.

Lemma 1. Let 〈Q,+, ·〉 be a quasifield of order pn, and let W be an

n-dimensional linear space over Zp. Then there exists a spread set

R = {θ(w) | w ∈ W} ⊂ GLn(p) ∪ {0}

such that 〈Q,+, ·〉 is isomorphic to 〈W,+, ∗〉, where

x ∗ y = xθ(y), x, y ∈ W.

Proof. The quasifield Q is an n-dimensional linear space over the field

Zp; let e1, . . . , en be its base. Let’s consider any base ε1, . . . , εn of the

space W and state the correspondence

ϕ : ei → εi, i = 1, 2, . . . , n,

which is continued to a isomorphism of linear spaces Q and W .

For any fixed element q ∈ Q, the right multiplication

βq : x→ x · q, x ∈ Q,

is a linear map of the space Q over Zp, because of the right distributivity.

Let

βq : ϕ(x)→ ϕ(βq(x))

be the correspondent linear map of the space W and θ(ϕ(q)) be its matrix

in the base ε1, . . . , εn. Evidently, R = {θ(y) | y ∈ W} is a subset in

GLn(p) ∪ {0}, θ(0) = 0 is the zero matrix, θ(ϕ(1)) = E is the identity
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matrix (where 1 is the identity of the quasifield Q). If we define the

multiplication ∗ on W by the rule

x ∗ y = xθ(y), x, y ∈ W,

then 〈Q,+, ·〉 is isomorphic to 〈W,+, ∗〉. Further we prove the condition

θ(x)− θ(y) ∈ GLn(p) for x 6= y. Indeed, if det(θ(x)− θ(y)) = 0 then for

some element z ∈ W \ {0}

z(θ(x)− θ(y)) = 0⇒ zθ(x) = zθ(y)⇒ z ∗ x = z ∗ y

and for the pre-images z0, x0, y0 ∈ Q we have z0 · x0 = z0 · y0, which

contradicts the definition of quasifield. �

In the case of a semifield it is sufficient to define the multiplication only

for basic elements because of the two-sided distributivity. Let e1, . . . , en
be the base of a semifield W as of an n-dimensional linear space over Zp
and

ei ∗ ej = aij1e1 + aij2e2 + · · ·+ aijnen, i, j = 1, 2, . . . , n.

All coefficients aijk (i, j, k = 1, . . . , n) form so-called cubic array, or hy-

percube, which is used for semifield classification (see also [5]).

Let’s illustrate this method by construction of Dickson’s commutative

semifield of order 81 and the spread set in GL4(3) ∪ {0}.
Let F = GF (p2), let σ be an automorphism of the field F , and let a

be a non-square element of F . Then the set S = {x + λy | x, y ∈ F}
with the addition

(x+ λy) + (z + λt) = (x+ z) + λ(y + t)

and the multiplication

(x+ λy)(z + λt) = (xz + ayσtσ) + λ(yz + xt)

is a commutative semifield (Theorem 9.12, [2]).

If we assume F ' Z3[x]/(x2 − x− 1),

F = {0, 1,−1, α, α + 1, α− 1,−α,−α + 1,−α− 1}, α2 = α + 1,

and choose a = α, xσ = x3, then the multiplication law is defined as

(x+ λy)(z + λt) = (xz + αy3t3) + λ(yz + xt).
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Further, we choose the base 1, α, λ, λα of S and calculate all products of

the basic elements:

1 · 1 = 1 1 · α = α 1 · λ = λ 1 · λα = λα

α · 1 = α α · α = α + 1 α · λ = λα α · λα = λα + λ

λ · 1 = λ λ · α = λα λ · λ = α λ · λα = −1

λα · 1 = λα λα · α = λα + λ λα · λ = −1 λα · λα = α− 1

Let W be a 4-dimensional linear space over Z3, and let

f1 = (1, 0, 0, 0), f2 = (0, 1, 0, 0), f3 = (0, 0, 1, 0), f4 = (0, 0, 0, 1)

be the canonical base. Using the correspondence

1→ f1, α→ f2, λ→ f3, λα→ f4,

we calculate the matrices θ(f2), θ(f3), θ(f4) (θ(f1) = E):

f1 ◦ f2 = f1θ(f2) = f2,

f2 ◦ f2 = f2θ(f2) = f2 + f1,

f3 ◦ f2 = f3θ(f2) = f4,

f4 ◦ f2 = f4θ(f2) = f3 + f4,

θ(f2) =


0 1 0 0

1 1 0 0

0 0 0 1

0 0 1 1

 ;

f1 ◦ f3 = f1θ(f3) = f3,

f2 ◦ f3 = f2θ(f3) = f4,

f3 ◦ f3 = f3θ(f3) = f2,

f4 ◦ f3 = f4θ(f3) = −f1,

θ(f3) =


0 0 1 0

0 0 0 1

0 1 0 0

−1 0 0 0

 ;

f1 ◦ f4 = f1θ(f4) = f4,

f2 ◦ f4 = f2θ(f4) = f3 + f4,

f3 ◦ f4 = f3θ(f4) = −f1,
f4 ◦ f4 = f4θ(f4) = −f1 + f2,

θ(f4) =


0 0 0 1

0 0 1 1

−1 0 0 0

−1 1 0 0

 .

So, the spread set R ⊂ GL4(3) ∪ {0} consists of all matrices

θ(y1, y2, y3, y4) = y1


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+ y2


0 1 0 0

1 1 0 0

0 0 0 1

0 0 1 1

+

+y3


0 0 1 0

0 0 0 1

0 1 0 0

−1 0 0 0

+ y4


0 0 0 1

0 0 1 1

−1 0 0 0

−1 1 0 0

 .
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It can be immediately proved that for any non-zero vector y = (y1, y2, y3, y4),

yi ∈ Z3, the matrix θ(y) is non-singular. Thus we constructed a repre-

sentation of Dickson’s commutative semifield of order 81 over Z3.

In previous reasoning we used the first row to determine the matrix

from the spread set. Evidently, another row of column will imply to

another multiplication law and another semifield which is not necessarily

isomorphic to the first semifield.

For instance, let’s consider the first of 12 spread sets from the paper

[6]. U. Dempwolff enumerated the basic elements of a spread set R as of

a 4-dimensional linear space over Z3:

E, B =


0 1 0 0

1 1 0 0

2 0 0 2

2 2 2 2

 , C =


0 0 1 0

0 0 0 1

0 1 2 2

1 1 2 2

 , D =


0 0 0 1

0 0 2 0

2 2 2 1

0 1 1 2

 .

We define the map θ by the rule

θ(y1, y2, y3, y4) = y1E + y2B + y3C + y4D,

i.e., we determine the matrix through its first row. So, we obtain the

semifield 〈W,+, ∗〉 which contains the subfield {(y1, y2, 0, 0) | y1, y2 ∈ Z3}
of order 9.

Further we consider another base of the same spread set R:

B′ =


1 2 0 2

2 0 1 0

2 1 2 0

1 0 0 0

 , C ′ =


2 2 2 1

2 1 2 2

0 1 2 0

0 1 0 0

 , D′ =


2 1 1 0

1 0 0 1

2 1 1 1

0 0 1 0

 , E;

here, evidently, B′ = 1 ·E+2 ·B+0 ·C+2 ·D etc. Hence we corresponde

a matrix from the spread set to its fourth row and obtain another map

σ : W → R,

σ(y1, y2, y3, y4) = y1B
′ + y2C

′ + y3D
′ + y4E,

and another operation:

x ◦ y = x · σ(y), ∀x, y ∈ W.

Then the semifield 〈W,+, ◦〉 does not contain any proper subfield except

the prime subfield Z3; it can be calculated directly.

The semifields determined by different bases of the same spread set R

are isotopic, as was proved in [5]. Remind that two semifields 〈S,+, ∗〉
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and 〈W,+, ◦〉 are called isotopic if there exists a triple (ϕ, ψ, ξ) of non-

singular additive maps from S to W such that

ϕ(x) ◦ ψ(y) = ξ(x ∗ y) ∀x, y ∈ S.

This triple (ϕ, ψ, ξ) is called an isotopism from S to W . For completeness

of a consideration, we will prove the result from [5] using our notation.

Lemma 2. Let W be an n-dimensional linear space over Zp; let R ⊂
GLn(p) ∪ {0} be the spread set closed under addition, let

R = {θ(x) | x ∈ W} = {σ(x) | x ∈ W},

where θ and σ are two additive bijections from W to R, and let

x ∗ y = xθ(y), x ◦ y = xσ(y), x, y ∈ W.

Then the semifield 〈W,+, ∗〉 is isotopic to the semifield 〈W,+, ◦〉.

Proof. For every y ∈ W , the matrix θ(y) ∈ R is equal to a certain matrix

σ(y′), y′ ∈ W , then

x ∗ y = xθ(y) = xσ(y′) = x ◦ y′ = x ◦ σ−1(θ(y)), x, y ∈ W.

The bijective map y → σ−1(θ(y)) is, evidently, additive and satisfies the

definition. �

Paying attention to the example above, we will specify that an iso-

topism does not preserve, in general, the subfields orders. But the cor-

responding nuclei Nl, Nm, Nr of isotopic semifields are isomorphic.

3. Semifield and semifield plane

In this section, we consider the projective planes which are coordina-

tized by semifields (semifield planes) and specify the relationship between

the plane automorphisms and semifield automorphisms and autotopisms.

We use definitions and main results from [2, 5] (and change the notation,

if it is necessary).

A projective plane π is the set of points and lines with the incidence

relation between the points and lines such that:

1) any two distinct points are incident with a unique line;

2) any two distinct lines are incident with a unique point;

3) there exists a non-degenerated quadrangle, i.e. four points such that

no three of them are incident with a common line.

The order of a projective plane is the number N such that at least one

line (equivalently, any line) is incident to exactly N + 1 points. In this

case the plane has exactly N2 + N + 1 points and the same number of



10 KRAVTSOVA O.V.

lines. It is possible to coordinatize the points and the lines of a projective

plane of order N using the set with N elements [2]. Then the algebraic

properties of the coordinatizing set determine the geometric properties

of the projective plane.

Recall that an isomorphism of a projective plane π onto a projective

plane π′ is a bijective map from the points of π to the points of π′ and from

the lines of π to the lines of π′ which preserves the incidence relation. An

isomorphism of a projective plane onto itself is called an automorphism,

or a collineation. All collineation of a projective plane π form the full

collineation group Aut π.

Let W be an n-dimensional linear space over Zp,let

R = {θ(y) | y ∈ W} ⊂ GLn(p) ∪ {0}

be a spread set closed under addition, and let 〈W,+, ∗〉 be the semifield

with multiplication x ∗ y = xθ(y). Let’s consider the outer direct sum

V = W ⊕W and define the projective plane π:

1) the elements (x, y), x, y ∈ W , from the space V are the affine points;

2) the cosets to subgroups

V (m) = {(x, xθ(m)) | x ∈ W}, m ∈ W,
V (∞) = {(0, y) | y ∈ W}

are the affine lines;

3) the set of all cosets to the same subgroup V (m) or V (∞) is the

singular point (m) or (∞) respectively;

4) the set of all singular points is the singular line [∞];

5) the incidence is set-theoretical.

This projective plane is a semifield plane and its full collineation group

is Aut π = TλG, where T = {τa,b | a, b ∈ W} is the translation group,

τa,b : (x, y)→ (x+ a, y + b), x, y ∈ W,

G is the translation complement, the stabilizer of the point (0, 0). The

automorphisms from G are determined by the linear maps of the space

V :

α : (x, y)→ (x, y)

(
A B

C D

)
.

Here A,B,C,D are (n×n)-matrices over Zp (it is possible to prove that

C = 0 for any semifield plane). Note that a representation of collineations

from G only by linear maps is possible because we use a prime order field

as the basic field. In the general case, these collineations are represented

by semi-linear maps, which complicates the reasoning.
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The subgroup Λ < G of all collineations fixing the triangle with the

vertices (0, 0), (0), (∞) and the sides [0, 0], [0], [∞] (see [2]), is called the

autotopism group. The corresponding matrices are block-diagonal,

(1) (x, y)λ = (x, y)

(
A 0

0 D

)
,

λ ∈ Λ. Because λ is an automorphism, then the block-matrices A and D

must satisfy the certain condition.

As any collineation, λ preserves the incidence relation. Hence, for any

vector x ∈ W and any matrix from spread set θ(y) ∈ R the image of

a point (x, xθ(y)) is incident to the line through (0, 0). So, there exists

z ∈ W and θ(t) ∈ R such that

(x, xθ(y))λ = (x, xθ(y))

(
A 0

0 D

)
= (xA, xθ(y)D) = (z, zθ(t)).

Thus, z = xA, zθ(t) = xAθ(t) = xθ(y)D for any x ∈ W . And finally we

obtain (see also [5]):

Lemma 3. The map (1) defines an autotopism of a semifield plane π

with the spread set R iff A−1θ(y)D ∈ R for any matrix θ(y) ∈ R.

Further, we consider an autotopism of a semifield 〈W,+, ∗〉 (as an

isotopism from W to W ):

ϕ(x) ∗ ψ(y) = ξ(x ∗ y), x, y ∈ W.

As the maps ϕ, ψ, ξ are additive then they are linear maps of the space

W , so

(2) ϕ(x) = xA, ψ(x) = xB, ξ(x) = xD, x ∈ W,

A,B,D ∈ GLn(p).

Lemma 4. If a triple of matrices (A,B,D) from GLn(p) defines an

autotopism (2) of the semifield W , then the matrix

(3)

(
A 0

0 D

)
defines an autotopism of the semifield plane π coordinatized by W . And

inversely, if the matrix (3) is an autotopism of the plane π, then there

exists a matrix B ∈ GLn(p) such that (A,B,D) is an autotopism of the

semifield W .

Proof. According to the definition of autotopism,

xA ∗ yB = (x ∗ y)D, xAθ(yB) = xθ(y)D ∀x, y ∈ W.
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Then, θ(yB) = A−1θ(y)D and the matrix (3) defines an autotopism of a

plane. Inversely, the map

y → A−1θ(y)D

fromW toGLn(p) is linear; so, Lemma 3 implies the conditionA−1θ(y)D =

θ(yB) for certain matrix B. �

Let ϕ be an automorphism of a semifield W ; then

ϕ(x) ∗ ϕ(y) = ϕ(x ∗ y), x, y ∈ W.

Analogous reasoning with replacing ϕ(x) = xA leads to the following

result.

Lemma 5. If the matrix A ∈ GLn(p) defines an automorphism of a

semifield W , then the matrix

(4)

(
A 0

0 A

)
defines an autotopism of the semifield plane π coordinatized by W (such

an autotopism fixes the line y = x, not necessarily pointwise). Inversely,

if the matrix (4) defines an autotopism of the plane π and satisfies the

condition

(5) A−1θ(y)A = θ(yA) ∀y ∈ W,

then the matrix A defines an automorphism of the semifield W .

Note also the important result on semifields and semifield planes:

Theorem 1 ([2], Theorem 8.11). Two semifields coordinatize the iso-

morphic semifield planes iff they are isotopic.

4. An involution automorphism of finite semifield

In this section, we consider the automorphism of order 2 of a finite

semifield W and some special collineations of a semifield plane π, which

is coordinatized by W .

A collineation of a projective plane π is called central, if it fixes some

line l pointwise (the axis) and some point A linewise (the center). If

the center is incident to the axis, then the collineation is said to be an

elation, else a homology.
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For any semifield plane all elations with the axis [0] and the center (∞)

form an elementary abelian subgroup in the translation complement G:{(
E θ(m)

0 E

) ∣∣∣∣ m ∈ W} .
All homologies in the autotopism group Λ form the cyclic subgroups{(

E 0

0 θ(m)

) ∣∣∣∣ m ∈ N∗r} , {(
θ(m) 0

0 E

) ∣∣∣∣ m ∈ N∗m} ,
{(

M 0

0 M

) ∣∣∣∣ M ∈ CGLn(p)(R)

}
.

Here Nr and Nm are right and middle nuclei of the semifield W , the

centralizer of a spread set R in GLn(p), together with 0, forms a subfield

isomorphic to the left nucleus Nl of W [3].

A collineation of a projective plane π of order N is called a Baer

collineation, if it fixes pointwise a subplane of maximal order
√
N (Baer

subplane). According to [2, Theorem 4.3], a collineation of order 2 is

either central or a Baer collineation.

Let π be a semifield plane of square order p2n that admits a Baer invo-

lution τ in the translation complement. The author in [7], [8] represents

the coordinatizing semifield W as a 2n-dimensional linear space over the

field Zp and constructs the unified form for the matrices of the spread

set and for a Baer involution τ . We will denote for convenience W the

n-dimensional space over Zp; then

W = {(x1, x2) | x1, x2 ∈ W}.

The spread set R ⊂ GL2n(p) ∪ {0} of a semifield plane π consists of

matrices

(6)

θ(x1, x2) =

(
u(x2) + v(x1) +m(x1) + w(x1) f(x1) +m(x2)

v(x1) u(x2) + w(x1)

)
, p = 2,

(7) θ(x1, x2) =

(
m(x2) f(x1)

v(x1) u(x2)

)
, p > 2.

Here x1, x2 ∈ W , u, v, w, m, f are linear maps from W to the ring of

(n× n)-matrices over Zp, such that (x1, x2) is a lower row of the matrix

θ(x1, x2). We denote e = (0, . . . , 0, 1) ∈ W and notice that the row-vector

(0, e) is a neutral element under multiplication in the semifield W . The
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Baer involution τ is determined by the matrix

(8) τ =


E E 0 0

0 E 0 0

0 0 E E

0 0 0 E

 for p = 2,

(9) τ =


−E 0 0 0

0 E 0 0

0 0 −E 0

0 0 0 E

 for p > 2.

The set of all matrices {u(x2) | x2 ∈ W} is a spread set of a Baer

subplane π0, which is fixed by the involution τ .

Further, we prove some results on the involution automorphisms of a

semifield W and the corresponding semifield plane π.

Lemma 6. Let ϕ be an automorphism of order 2 of a semifield W ,

ϕ(x) = xA, A ∈ GLn(p).

Then ϕ =

(
A 0

0 A

)
is a Baer involution of a semifield plane π, which is

coordinatized by W .

Proof. According to Lemma 5, ϕ is an autotopism of the plane π. As

|ϕ| = 2, then |ϕ| = 2 and ϕ is either central or a Baer involution.

If p = 2, then the central collineation of order 2 is necessarily the

elation [2], (
E θ(y)

0 E

)
;

it is not an autotopism.

If p > 2 is an odd prime number, then the central collineation ϕ of

order 2 is the homology with the axis [∞] and the center (0, 0). All such

the homologies form a cyclic group of even order pk − 1, where pk is the

order of the left nucleus. The unique element of order 2 in this subgroup

is determined by the matrix (
−E 0

0 −E

)
,

but the condition (5) does not hold:

(−E)−1θ(y)(−E) = θ(y) 6= θ(y(−E)).
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Hence, we conclude that ϕ is a Baer involution of the plane π. �

Inversely, let τ be a Baer involution (8) or (9) for p = 2 and p > 2,

respectively. We consider the matrix

A =

(
E E

0 E

)
, p = 2; or A =

(
−E 0

0 E

)
, p > 2,

and prove the condition (5). Indeed, let

(v, u) = (v1, . . . , vn, u1, . . . , un)

be a lower row of the matrix θ(v, u) (6), (7). We calculate now the

product A−1θ(v, u)A in a case of even or odd p.

If p = 2 then (v, u)A = (v, v + u),

A−1θ(v, u)A =

(
E E

0 E

)
θ(v, u)

(
E E

0 E

)
= θ(v, v + u) = θ((v, u)A),

the condition (5) holds.

If p > 2 then (v, u)A = (−v, u),

A−1θ(v, u)A =

(
−E 0

0 E

)
θ(v, u)

(
−E 0

0 E

)
= θ(−v, u) = θ((v, u)A),

the condition (5) holds too. These considerations lead to the following

result.

Lemma 7. Let π be a semifield plane of order p2n that admits a Baer

involution in the translation complement. Then at least one of its coor-

dinatizing semifields admits an automorphism of order 2.

This lemma states the existance of an involution automorphism only

up to isotopism of semifields, because in general the Baer involution,

possibly, does not fix the line y = x. The necessary base replacement

in this case leads to another, isotopic semifield. Also we formulate an

evident corollary.

Corollary 1. If a finite semifield W admits an involution automorphism

then the semifield order is a square, |W | = p2n.

Note also that an involution automorphism of a semifield is not nec-

essarily unique. In Section 5, we will consider the semifield with three

involution automorphisms.

Using the obtained relationship between an automorphism of semifield

and a Baer involution of the semifield plane, we will prove the results on

some subsets of a semifield.
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Theorem 2. If 〈W,+, ∗〉 is a semifield of order p2n (p be prime) that

admits an automorphism ϕ of order 2, then the stabilizer of ϕ

(10) U = {x ∈ S | ϕ(x) = x}

is a sub-semifield of order pn.

Proof. Evidently, U contains both neutral elements of W and it is closed

under addition and multiplication. Thus, U is a sub-semifield of W . To

calculate its order we consider the set of points

{(x, y) | x, y ∈ W}

of a semifield plane π coordinatized by W . Then

{(x, y) | x, y ∈ U}

is a set of the Baer subplane π0, which is fixed by the Baer involution

ϕ : (x, y)→ (ϕ(x), ϕ(y)), (x, y) ∈ W.

So |π| = |W | = p2n, |U | = |π0| =
√
|π|, |U | = pn. �

Note that any semifield of order p2 is a field (see [5]), which implies

the following.

Lemma 8. If 〈W,+, ∗〉 is a semifield of order p4 that admits an auto-

morphism ϕ of order 2, then the stabilizer U (10) is a subfield of order

p2. Any maximal subfield of W has the order p2.

Proof. According to the previous theorem, U is a sub-semifield of order

p2; so, it is a subfield. Let’s assume that H is a subfield of order p3 in

W .

1. If ϕ(H) = H, then ϕ is an involution automorphism on H. It is

impossible, |Aut H| = 3.

2. If ϕ(H) 6= H, then ϕ(H) is another subfield of order p3. We con-

sider subfields H and ϕ(H) as linear subspaces and use the Grassman’s

identity:

dimH + dimϕ(H) = dim(H ∩ ϕ(H)) + dim(H + ϕ(H)),

3 + 3 = dim(H ∩ϕ(H)) + 4 and dim(H ∩ϕ(H)) = 2, i.e. the intersection

H ∩ ϕ(H) is a subfield of order p2 in a field of order p3, which is impos-

sible. Thus, any maximal subfield in W is of order p2. �
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Lemma 9. If a semifield of odd order p2n (p > 2 is prime) admits an

automorphism of order 2, then its multiplication loop contains a subloop

of order 2(pn − 1).

Proof. Let 〈W,+, ∗〉 be a semifield of order p2n, let ϕ be an involution

automorphism, let U (10) be the stabilizer of ϕ (it is the sub-semifield of

order pn). We consider the subspace

(11) U ′ = {x ∈ S | ϕ(x) = −x}

and the Jordan’s normal form (9) of the matrix ϕ. Thus we conclude

that |U ′| = pn. The union U ∪ U ′ is closed under the multiplication.

Indeed, if x, y ∈ U ′ then

ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) = (−x) ∗ (−y) = x ∗ y, x ∗ y ∈ U ;

if x ∈ U , y ∈ U ′ (or inverse) then

ϕ(x ∗ y) = ϕ(x) ∗ ϕ(y) = x ∗ (−y) = −(x ∗ y), x ∗ y ∈ U ′.

Moreover, the sub-semifield U contains the identity e of the semifield W .

So, the union (U \{0})∪ (U ′ \{0}) is a subloop of W ∗ of order 2(pn−1).

Note that this set is not closed under the addition. �

5. Involution automorphisms of some semifield of orders 81

and 64

Let W be the semifield of order 81, which is represented as a 4-

dimensional linear space over Z3 with the spread set (7), where x1 =

(t1, t2), x2 = (t3, t4), ti ∈ Z3. We define the linear functions m, f , v, u as

m(t3, t4) = t3M + t4E, f(t1, t2) = t1F1 + t2F2,

v(t1, t2) = t1D + t2E, u(t3, t4) = t3D + t4E,

for the appropriate matrices M,F1, F2, D ∈ GL2(3). Here we can suppose

that D =

(
1 1

1 0

)
(see [8]). There exists eight pairwise non-isotopic

semifields of order 81 with the spread set of this form. For instance, if

we choose the matrices

M =

(
0 1

1 1

)
, F1 =

(
0 −1

−1 1

)
, F2 =

(
−1 −1

0 −1

)
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then we obtain a semifield with the unique non-trivial automorphism

τ =


−1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1

 ,

which is an involution. Its stabilizer is a subfield of order 9 {(0, 0, t3, t4) | t3, t4 ∈
Z3}, which coincides with the middle nucleus Nm of W . The right and

left nuclei are other subfields of order 9 and τ is an automorphism on

each of this subfields,

N∗r = 〈(1, 0, 0, 0)〉, N∗l = 〈(0, 1, 0, 0)〉.

The set

{(t1, t2, 0, 0) | t1, t2 ∈ Z3} ∪ {(0, 0, t3, t4) | t3, t4 ∈ Z3} \ {(0, 0, 0, 0)}

is a subloop of order 16 in W ∗.

As another example, we consider the exceptional Hentzel–Rúa semi-

field of order 64, which was constructed in [9]. Its spread set consists of

all linear combinations

θ(x1, . . . , x6) = x1A1 + · · ·+ x6A6, x1, . . . , x6 ∈ Z2

of matrices A1, . . . , A6 ∈ GL6(2):

A1 = E, A2 =



0 1 0 0 0 0

0 0 1 0 0 0

1 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 1 1 0


, A3 =



0 0 1 0 0 0

1 1 0 0 0 0

0 1 1 0 0 0

1 1 0 0 0 1

0 0 0 1 1 0

1 1 1 0 1 1


,

A4 =



0 0 0 1 0 0

0 1 0 0 1 0

0 1 1 0 0 1

0 1 1 0 1 1

1 1 0 0 0 0

1 0 0 0 0 1


, A5 =



0 0 0 0 1 0

1 0 0 0 0 1

1 0 0 1 1 0

1 1 0 0 1 0

0 0 1 1 0 1

1 1 0 1 1 0


,

A6 =



0 0 0 0 0 1

0 1 0 1 1 0

0 1 0 0 1 1

1 0 0 1 0 0

0 1 0 1 0 0

0 0 1 0 0 1


.
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The automorphism group of Hentzel–Rúa semifield is isomorphic to

the symmetric group S3 and so contains three involutions:

T1 =



1 0 0 0 0 0

0 0 0 1 1 1

1 1 1 0 1 0

1 1 0 0 1 1

0 1 0 1 0 1

1 1 0 1 1 0


, T2 =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 1 1 1 0 0

1 0 1 0 1 0

1 0 0 0 0 1


,

T3 =



1 0 0 0 0 0

1 1 0 1 1 1

0 1 0 0 1 0

1 1 1 1 1 0

1 1 1 1 1 1

0 0 0 1 1 0


.

Next we consider the stabilizers of Tj:

Hj = {x ∈ W | xTj = x}, j = 1, 2, 3.

The set H1 contains 8 elements; among them are h1 = (0, 0, 0, 1, 0, 1),

h31 = e + h21, so H1 ' GF (8) (here e = (1, 0, 0, 0, 0, 0) is the identity of

semifield). Analogously,

|H2| = 8, h2 = (0, 0, 1, 0, 0, 0) ∈ H2, h32 = e+ h2;

|H3| = 8, h3 = (0, 0, 0, 1, 1, 1) ∈ H3, h33 = e+ h3.

So, H1, H2, H3 are different subfields of order 8 of semifield W . Note

that there exist also two subfields Hb, Hc, |Hb| = |Hc| = 8,

H∗b = 〈b = (0, 0, 0, 0, 1, 0)〉, b3 = e+ b;

H∗c = 〈c = (0, 0, 1, 0, 1, 0)〉, c3 = e+ c2.

Each of the automorphisms Tj stabilizes the corresponding subfield Hj

and interchanges the other two subfields. Moreover, each Tj interchanges

Hb with Hc.

These results were announced at the International conferences G2A2

(“Groups and Graphs, Algorithms and Automata”, Yekaterinburg, 2015)

and G2S2 (“Graphs and Groups, Spectra and Symmetries”, Novosibirsk,

2016).
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