1	LRH: Contents of PUFAs in zoobenthos O. N. Makhutova et al.
2	RRH: Volume 35 December 2016
3	
4	Contents of polyunsaturated fatty acids essential for fish nutrition in <mark>zoobenthos</mark> species
5	
6	Olesia N. Makhutova ^{1,6} , Svetlana P. Shulepina ^{2,7} , Tatyana A. Sharapova ^{3,8} , Olga P.
7	Dubovskaya ^{1,2,9} , Nadezhda N. Sushchik ^{1,2,10} , Mariya A. Baturina ^{4,11} , Ekaterina G.
8	Pryanichnikova ^{5,12} , Galina S. Kalachova ^{1,13} , Michail I. Gladyshev ^{1,2,14}
9	
10	¹ Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok,
11	Krasnoyarsk 660036, Russia
12	² Siberian Federal University, Svobodny av. 79, Krasnoyarsk 660041, Russia
13	³ Institute of Problems of Development of the North of Siberian Branch of Russian Academy of
14	Sciences, Malygina Str., Tyumen 625003, Russia
15	⁴ Institute of Biology of Komi Scientific Center of Ural Division of Russian Academy of
16	Sciences, 28 Kommunisticheskaya Str., Syktyvkar 167982, Russia
17	⁵ Institute for Biology of Inland Waters of Russian Academy of Science, Borok 152742, Russia
18	
19	E-mail addresses: ⁶ To whom correspondence should be addressed, makhutova@ibp.krasn.ru;
20	⁷ shulepina@mail.ru; ⁸ tshartum@mail.ru; ⁹ dubovskaya@ibp.krasn.ru; ¹⁰ labehe@ibp.ru;
21	¹¹ baturina@ib.komisc.ru; ¹² pryanik@ibiw.yaroslavl.ru; ¹³ kalach@ibp.ru; ¹⁴ glad@ibp.ru
22	
23	Received 4 September 2015; Accepted 8 June 2016; Published online XX Month 2016.

24	Abstract: Content of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA,
25	22:6n-3) and the n-3/n-6 ratio are important indicators of nutritive value of aquatic invertebrates
26	as food for fish. We studied fatty acid (FA) content and composition of 68 zoobenthic species.
27	Benthic invertebrates differed significantly in their contents of EPA and DHA and n-3/n-6 ratios.
28	The most valuable food for fish were Insecta, especially Ephemeroptera and Trichoptera,
29	Gammaridae, and Turbellaria (Dendrocaelopsis sp.). The invertebrates of low food quality for
30	fish were Hirudinea, Mollusca, Oligochaeta, Bryozoa (Plumatella emarginata), and Coleoptera
31	(Dytiscus lapponicus). Our data suggest that the recent and ongoing global replacement of native
32	species, mainly Insecta, by invaders, mostly represented by Mollusca, Crustacea, Polychaeta,
33	Oligochaeta, Bryozoa, and Hirudinea, probably will reduce the nutritive value of food sources
34	for benthivorous fish. In addition, some of the taxa studied have peculiar FAs, which may be
35	useful as their markers in trophic webs. Thus, 20:1n-13, 20:2n-6, 22:5n-3, and 22:6n-3 are likely
36	to be considered markers of Mollusca, Hirudinea, Turbellaria, and Gammaridae, respectively, for
37	tracing food webs in freshwater ecosystems.
38	Key words: fatty acids, invertebrates, invasion, fish, food quality.

40	Different algal taxa (Bacillariophyta, Chlorophyta, Cryptophyta, etc.) and various groups
41	of bacteria (gram-positive, gram-negative, SO4-reducing etc.) have unique fatty acids (FAs)
42	(Napolitano 1999, Gugger et al. 2002, Dijkman and Kromkamp 2006, Petkov and Garcia 2007,
43	Kelly and Scheibling 2012). These FAs are widely used as biochemical markers of trophic
44	interactions in aquatic ecosystems (Whiles et al. 2010, Kelly and Scheibling 2012, Makhutova et
45	al. 2012, Galloway et al. 2015). In contrast, contents and compositions of polyunsaturated FAs
46	(PUFAs) in animals are mainly considered to reflect PUFA content and composition of their
47	food. Experimental evidence supports the importance of diet in determining PUFA content in
48	consumers (Weers et al. 1997, Brett et al. 2006, Torres-Ruiz et al. 2010). However, genetically
49	predetermined metabolism also appears to play an important role in FA profiles of animals
50	(Kraffe et al. 2008, Lau et al. 2012).
51	Phylogenetic position of the zoobenthic species and their feeding strategy are important
52	determinants of FA profiles of invertebrates (Makhutova et al. 2011). Benthic invertebrates are a
53	major food source for many fish (Zuev et al. 2011, Nunn et al. 2012). Fish need food with a
54	certain FA composition to achieve high rates of growth and reproduction and to optimize
55	immune functioning (Ruyter et al. 2000, Arts and Kohler 2009, Tocher 2010, Jobling 2015). The
56	absolute concentrations and the ratio of n-3/n-6 PUFA are essential for all vertebrates and
57	probably for nearly all invertebrates, but the optimal ratios are not known for most organisms,
58	although they probably are species specific (Ahlgren et al. 2009). The 2 most important PUFAs
59	in vertebrates are eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-
60	3) (Arts and Kohler 2009, Ahlgren et al. 2009, Gladyshev et al. 2013). "The n-3/n-6 ratio is
61	lowest and rather stable within species of herbivorous-omnivorous fish, intermediate in
62	carnivorous-piscivorous fish, and highest and highly variable in carnivorous-benthivorous fish"

63	(Ahlgren et al. 2009, p. 163). Variability up to 128-fold has been reported in EPA and DHA
64	levels across fish species (Gribble et al. 2016).
65	Benthic invertebrates with high EPA and DHA contents and high n-3/n-6 ratios are
66	regarded as food of high nutritional quality for fish (Ahlgren et al. 2009). Phylogeny is thought
67	to be an important determinant of EPA and DHA content and n-3/n-6 ratio in benthic
68	invertebrates (Makhutova et al. 2011). Thus, different taxonomic groups of zoobenthos have
69	different food quality for fish. In many aquatic ecosystems, dominant native species of
70	zoobenthos are being replaced by invaders that often belong to other taxonomic groups (Krisp
71	and Maier 2005, Gumuliauskaitė and Arbačiauskas 2008, Karatayev et al. 2009). Such
72	replacement probably changes the nutritional value of food sources for fish. Knowledge of the
73	content of essential FAs in benthic invertebrates will help to predict changes of food quality for
74	fish of zoobenthic communities under invasions. Thus, the goal of our work was to examine
75	nutritional value in terms of contents of metabolically important FAs, EPA, and DHA and the n-
76	3/n-6 ratio of benthic invertebrates inhabiting different aquatic ecosystems. An additional goal of
77	our study was to find FAs that could be used as biochemical markers of different taxonomic
78	groups of benthic invertebrates for tracing of food webs in aquatic ecosystems.
79	
80	METHODS
81	FA compositions of 68 species of benthic invertebrates were analyzed. Invertebrates were
82	collected in 247 samples (Table S1) from 8 rivers: the Yenisei, Angara, Kacha, Mana, Bugach,

83 Birusa, Nizhnaya Buiba, and Oya Rivers; 12 lakes: Lakes Karovoe, Oyskoe, Svetloe, Tsirkovoe,

84 Bolshoi Kharbei, Zhabronogovoe, Andreevskoe, Anikino, Pleshcheevo, Shira, Shunet, and Belo;

2 reservoirs: the Bugach and Rybinskoe Reservoirs; and 1 reservoir cooler (Table 1).

86	The samples were collected from 2004 to 2014 in different periods of year because of
87	seasonality in occurrence and dominance of the species (Table S1). Each sample consisted of 1-
88	20 individuals of various sizes. Most specimens were adult or larval stages. Animals were
89	sampled from littoral of rivers with a Surber-type kick-bottom sampler or a handle net. Animals
90	were sampled from reservoirs and lakes with a handle blade net (Zinchenko et al. 2014).
91	Immediately after sorting, the live animals were placed in beakers with settled tap water or
92	filtered (pore size = $80 \ \mu m$) ambient water for 24 h to empty their guts. The animals' body
93	surfaces were gently wiped with filter paper, and the animals were weighed and placed in a
94	chloroform:methanol mixture (2:1, volume/volume $[v/v]$) and kept at -20 °C until further
95	analysis.
96	The methods of lipid extraction, transesterification (methylation) of the lipid extracts, and
97	purification of methyl esters were described by Christie (2003). Briefly, lipids from the samples
98	were extracted with chloroform:methanol (2:1, v/v) 3 times simultaneously with mechanical
99	homogenization of the tissues with glass beads. Before extraction, a definite volume of an
100	internal standard solution (a solution of free 19:0 in chloroform, 0.5 mg/mL; Sigma-Aldrich, St
101	Louis, Missouri) was added to the samples. The volume of the internal standard solution added
102	to the samples depended on the lipid content and mass of the samples and corresponded to 1
103	mL/g of wet mass of animal tissue. The combined lipid extracts were filtered, dried by passing
104	through an anhydrous Na_2SO_4 layer, and evaporated at 35°C. FA methyl esters (FAMEs) were
105	prepared in a mixture of methanol:sulfuric acid (20:1, v/v) at 90°C for 2 h as previously
106	described (Makhutova et al. 2012). FAMEs were analyzed on a gas chromatograph equipped
107	with a mass spectrometer detector (model 6890/5975C; Agilent Technologies, Santa Clara,
108	California) and a 30-m-long \times 0.25-mm internal diameter HP-FFAP capillary column (Agilent

109	Technologies, Santa Clara, California). The column temperature program was as follows: from
110	100 to 190°C at 3°C/min, 5 min isothermally, then to 230°C at 10°C/min, and 20 min
111	isothermally. Other instrument conditions were as described elsewhere (Gladyshev et al. 2014).
112	FAME peaks were identified by their mass spectrum compared to those in a database (NIST-
113	2005, Gaithersburg, Maryland) and to those of available authentic standards (Sigma-Aldrich).
114	Positions of double bonds in monoenoic acids were determined by gas chromatography-mass
115	spectrometry (GC-MS) of dimethyl disulfide adducts of FAs (Christie 2003). GC-MS of
116	dimethyloxazoline derivatives of FAs was used to determine the double-bond positions in the
117	polyenoic acids (Carrido and Medina 2002).
118	
119	Statistical analyses
119 120	Statistical analyses Means and standard errors (SEs) and 1-way analysis of variance (ANOVA) with Tukey's
119 120 121	Statistical analyses Means and standard errors (SEs) and 1-way analysis of variance (ANOVA) with Tukey's Honestly Significant Difference (HSD) post hoc tests were calculated conventionally (Campbell
119 120 121 122	Statistical analyses Means and standard errors (SEs) and 1-way analysis of variance (ANOVA) with Tukey's Honestly Significant Difference (HSD) post hoc tests were calculated conventionally (Campbell 1967, Brown 2005). Single-linkage cluster analysis was conducted based on Euclidean distances
119 120 121 122 123	Statistical analyses Means and standard errors (SEs) and 1-way analysis of variance (ANOVA) with Tukey's Honestly Significant Difference (HSD) post hoc tests were calculated conventionally (Campbell 1967, Brown 2005). Single-linkage cluster analysis was conducted based on Euclidean distances (Legendre and Legendre 1998). The data points in the cluster analyses were percentages of FAs
 119 120 121 122 123 124 	Statistical analyses Means and standard errors (SEs) and 1-way analysis of variance (ANOVA) with Tukey's Honestly Significant Difference (HSD) post hoc tests were calculated conventionally (Campbell 1967, Brown 2005). Single-linkage cluster analysis was conducted based on Euclidean distances (Legendre and Legendre 1998). The data points in the cluster analyses were percentages of FAs in each individual of each species (247 samples). FA levels (% total) were used as the axes of
 119 120 121 122 123 124 125 	Statistical analysesMeans and standard errors (SEs) and 1-way analysis of variance (ANOVA) with Tukey'sHonestly Significant Difference (HSD) post hoc tests were calculated conventionally (Campbell1967, Brown 2005). Single-linkage cluster analysis was conducted based on Euclidean distances(Legendre and Legendre 1998). The data points in the cluster analyses were percentages of FAsin each individual of each species (247 samples). FA levels (% total) were used as the axes ofmultidimensional hyperspace. Thereby, 33 quantitatively prominent (>0.1%) FAs were included
 119 120 121 122 123 124 125 126 	Statistical analysesMeans and standard errors (SEs) and 1-way analysis of variance (ANOVA) with Tukey'sHonestly Significant Difference (HSD) post hoc tests were calculated conventionally (Campbell1967, Brown 2005). Single-linkage cluster analysis was conducted based on Euclidean distances(Legendre and Legendre 1998). The data points in the cluster analyses were percentages of FAsin each individual of each species (247 samples). FA levels (% total) were used as the axes ofmultidimensional hyperspace. Thereby, 33 quantitatively prominent (>0.1%) FAs were includedand formed a 33-dimensional hyperspace. All calculations were carried out using STATISTICA
 119 120 121 122 123 124 125 126 127 	Statistical analysesMeans and standard errors (SEs) and 1-way analysis of variance (ANOVA) with Tukey'sHonestly Significant Difference (HSD) post hoc tests were calculated conventionally (Campbell1967, Brown 2005). Single-linkage cluster analysis was conducted based on Euclidean distances(Legendre and Legendre 1998). The data points in the cluster analyses were percentages of FAsin each individual of each species (247 samples). FA levels (% total) were used as the axes ofmultidimensional hyperspace. Thereby, 33 quantitatively prominent (>0.1%) FAs were includedand formed a 33-dimensional hyperspace. All calculations were carried out using STATISTICAsoftware (version 9.0; StatSoft, Tulsa, Oklahoma).

129 **RESULTS**

- 130 Trichoptera had high percentages of markers for green algae (16:3n-3 and 16:4n-3)
- 131 (Table 2). Ephemeroptera and Odonata had high percentages of markers for bacteria, including

7

132	cyanobacteria (18:1n-7) (Table 2). The other bacterial markers (i15:0, ai15:0, 15:0, i17:0, 17:0)	
133	were typical of Oligochaeta (Table 2) and Plumatella emarginata (Bryozoa) (Table 3). Dytiscus	
134	lapponicus (Coleoptera), Gammaridae, and Plecoptera contained high %18:1n-9 (Tables 2, 3).	
135	High levels of oleic acid and especially high levels of the ratio of 2 monoenoic acids, 18:1n-	
136	9/18:1n-7, which are markers of carnivory, were characteristic of <i>D. lapponicus</i> (Table 3),	
137	Gammaridae, and Plecoptera (Table 2). Ratio values were 5.8, 4.5, 4.4, respectively. Plecoptera	
138	and Sialis sordida (Megaloptera) had high %18:3n-3, a marker for green algae and cyanobacteria	
139	(Tables 2, 3). Dytiscus lapponicus and Diptera had high %18:2n-6, also a marker of green algae	
140	and cyanobacteria (Table 2, 3). Hirudinea, Mollusca, and Oligochaeta had high percentages of	
141	isomers of 20:1, but different isomers were predominant in different taxa (Table 2). In Mollusca,	
142	20:1n-11 and 20:1n-13 were predominant, whereas Hirudinea and Oligochaeta had mainly	
143	20:1n-9. Hirudinea contained a significantly high percentage of the long-chain dienoic FA,	
144	20:2n-6 (Table 2), whereas Insecta and Dendrocaelopsis sp. (Turbellaria) had negligible	
145	percentages of this acid (Tables 2, 3). Mollusca, Oligochaeta, and Gammaridae had a	
146	considerable %20:2n-6, but it was 2 to $3 \times$ lower than in Hirudinea (Table 2). The main	
147	characteristic of the members of Insecta studied (Trichoptera, Ephemeroptera, Diptera,	
148	Plecoptera, Odonata, and S. sordida) was the absence or negligible percentage of long-chain	
149	polyunsaturated FAs with 22 C atoms (Tables 2, 3). However, D. lapponicus was an exception	
150	and contained a high %DHA (Table 3). Among animals studied, Gammaridae had the highest	
151	%DHA (Table 2). High %DHA also was present in some species of Mollusca, P. emarginata,	
152	and Dendrocaelopsis sp. (Table 2, 3). Dendrocaelopsis sp. had the highest %22:5n-3, but	
153	Mollusca also had a high percentage of this FA (Tables 2, 3). The %EPA was high in all animals,	
154	especially in Ephemeroptera, Plecoptera, and Gammaridae (Tables 2, 3).	

Добавлено примечание ([PS1]): Is this in Tables 2,3? Oleic acid is 18:1n-9 and it is in Tables 2 and 3.

155	The highest total content of FAs, 68.8 mg/g of wet mass, and content of EPA, 9.6 mg/g
156	wet mass were found in Ceraclea excisa (Trichoptera), and the lowest contents, 1.7 and 0.2 mg/g
157	of wet mass, respectively, were found in <i>P. emarginata</i> (Table S1). A high content of DHA, was
158	found in Gammaridae, bivalve mollusks (Dreissena polymorpha and Dreissena bugensis) and in
159	Dendrocaelopsis sp. (Table S1). In most species studied, the content of n-3 PUFAs was higher
160	than the content of n-6 PUFAs (Table S1). The highest n-3/n-6 ratio was found in <i>Caenis</i> gr.
161	pseudorivulorum (Ephemeroptera) and the lowest in Glossosoma sp. (Trichoptera) (Table S1).
162	On average, high %EPA and %DHA and high n-3/n-6 ratios were present in Ephemeroptera,
163	Trichoptera, Gammaridae, and Dendrocaelopsis sp., whereas low %EPA and %DHA and low
164	ratios were found in P. emarginata, Oligochaeta, Mollusca, Hirudinea, and D. lapponicus (Table
165	S1).
166	FA composition differed significantly among taxa (Fig. 1). FA composition of species of
167	Oligochaeta, Hirudinea, and gastropod mollusks (Anisus acronicus and Lymnaea ovata) differed
168	from that of all other taxa, and this group formed a separate cluster (Fig. 1). Species of
169	Gammaridae formed a distinct cluster, as did most of species of Insecta (Fig. 1). Within the
170	cluster of Insecta, species of Ephemeroptera and Plecoptera tended to form separate clusters (Fig.
171	1). Trichoptera and Diptera were more variable than the other taxa and had scattered positions in
172	the dendrogram (Fig. 1).
173	The maximum %EPA+DHA content of Insecta was higher than that of Gammaridae, but
174	the medians were similar (Fig. 2). Mollusca had the lowest median and maximum %EPA+DHA
175	content (Fig. 2). Percent EPA+DHA of Oligochaeta was close to those of Mollusca, whereas
176	median and maximum %EPA+DHA of miscellaneous taxa was higher than those of Mollusca
177	and Oligochaeta but lower than those of Insecta and Gammaridae (Fig. 2). Nevertheless,

178	minimum values of %EPA+DHA of all taxa overlapped (Fig. 2). Thus, all taxa, including
179	Insecta, have species with comparatively low %EPA+DHA.
180	Insecta had the highest EPA content, and showed higher variability in EPA content than
181	the other taxa (Fig. 3). Gammaridae had the highest DHA content, followed by bivalve mollusks
182	(D. polymorpha and D. bugensis, the 2 upper points in polygon A in Fig. 3) and Dendrocaelopsis
183	sp. (the upper point in polygon C in Fig. 3). In the 2-dimensional space, polygons for
184	Gammaridae and Insecta did not overlap, whereas polygons for Insecta, Oligochaeta, gastropod
185	mollusks, and miscellaneous taxa overlapped nearly completely (Fig. 3).
186	
187	DISCUSSION
188	In general, EPA and DHA contents and n-3/n-6 ratios overlapped among Insecta,
189	Gammaridae, Oligochaeta, Mollusca, Hirudinea, Turbellaria, and Bryozoa. Most taxa had high
190	variability in n-3/n-6 ratios and EPA or DHA contents. However, many species of several taxa
191	(e.g., Insecta, Gammaridae) were rich in EPA or DHA, whereas species in other taxa had
192	relatively low EPA and DHA contents (Fig. 3). These results suggest that the demand for various
193	PUFAs differs among particular taxa. Benthic invertebrates feeding selectively consume food
194	containing FAs that are essential for a certain species to thrive in various environmental
195	conditions. For example, Insecta did not have demand for DHA, whereas Gammaridae required
196	this acid in significant quantities even when both taxa inhabited the same aquatic ecosystem.
197	Thus, a relationship may exist between the n-3/n-6 ratio and EPA and DHA contents and the
198	taxonomic position of benthic invertebrates.
199	EPA and DHA contents and the n-3/n-6 ratio are major parameters of food quality for
200	fish (Arts and Kohler 2009, Ahlgren et al. 2009). Benthivorous fish have higher demand for n-3

201	PUFA content and n-3/n-6 ratio than do herbivorous and piscivorous fish (Ahlgren et al. 2009).
202	On the basis of n-3 PUFA content and the n-3/n-6 ratio, the most valuable foods for fish were
203	Insecta, especially Ephemeroptera and Trichoptera. Species of Gammaridae were also valuable
204	food sources for fish. Gammaridae had high contents of both important PUFAs, EPA and DHA,
205	whereas Insecta had negligible DHA content. Dendrocaelopsis sp. also appeared to be very
206	valuable food for fish. Turbellaria are not usually found in fish gut contents, but they are soft-
207	bodied and may not be distinguishable in gut contents. Some authors have supposed that fish do
208	indeed consume Turbellaria (planarian) in freshwater streams (Dumont et al. 2014, Manenti and
209	Bianchi 2014). The invertebrates of low food quality for fish were Hirudinea, Mollusca,
210	Oligochaeta, P. emarginata, and D. lapponicus.
211	The differences among invertebrate taxa in nutritional value for fish suggest that changes
212	in species composition of the zoobenthic community could result in changes in food quality for
213	benthivorous fish. Such changes might arise from processes, such as climate change,
214	anthropogenic pollution, eutrophication, and invasions. Invasions of new species in aquatic
215	ecosystems, regardless of the ways and reasons for the invasions, have an important effect on
216	community structure and composition (Karataev et al. 2008, 2009). A particularly notable effect
217	on the benthos is restructuring of benthic communities and extinction of native species (Molloy
218	et al. 1997, Burlakova et al. 2000). Karataev et al. (2009, p. 2009) found that "freshwater
219	macroinvertebrate invaders in North America and Europe are not a random selection of species,
220	and are overrepresented by molluscs and crustaceans", followed by Polychaeta, Oligochaeta,
221	Bryozoa, and Hirudinea, "while taxa richness of native communities are dominated by insects".
222	This finding is in good agreement with other studies (e.g., Arbačiauskas et al. 2011).
223	According to our data, replacement of insects by invaders probably will reduce

224	nutritional value of food sources for benthivorous fish. However, among taxa of low nutritive
225	value, some species, e.g., D. bugensis, do have comparatively high EPA or DHA content. In turn,
226	among taxa of high nutritive value, such as Insecta, some species have very low EPA and DHA
227	content, e.g., Orthocladius thienemanni (Diptera:Chironomidae). Therefore, estimation of
228	changes of nutritive value of zoobenthos for fish in a given ecosystem requires data on FA
229	content of invaders vs inhabitants of this ecosystem. For instance, in the Yenisei River, invasive
230	Eulimnogammarus viridis (Gammaridae) is causing extinction of native species of Trichoptera
231	and Diptera (Gladyshev and Moskvicheva 2002). Trichoptera, according to our data, are the most
232	valuable food for benthivorous fish. However, Eulimnogammarus viridis has higher DHA and
233	similar EPA content and n-3/n-6 ratio compared to the native species of Trichoptera
234	(Potamophilax latipennis and Apatania crymophila) and Diptera (Prodiamesa olivacea) from the
235	Yenisei River (Sushchik et al. 2003). Thus, invasion of Eulimnogammarus viridis the Yenisei
236	River did not change significantly or might have improved nutritional value of zoobenthos for
237	fish in terms of essential FAs. However, although essential, PUFAs are not complete indicators
238	of nutritive value. According to another indicator of nutritive value, content of essential amino
239	acids, Eulimnogammarus viridis was significantly poorer food than the dominating species of
240	Insecta from the Yenisei River (Kolmakova et al. 2013), and their invasion probably had
241	negative ecological outcomes (Gladyshev and Moskvicheva 2002). Thus, in terms of average
242	PUFA content, especially EPA and n-3/n-6 ratio of the studied taxa, invasions by Mollusca,
243	Crustacea, Oligochaeta, Bryozoa, and Hirudinea are expected to reduce food quality of
244	zoobenthos for fish compared to that of native Insecta.
245	We studied only species inhabiting water bodies in cold and temperate regions, so our

246 results may not be applicable to other climatic zones. In addition, Cyanophyta, Bacillariophyta,

247	and Chlorophyta dominated phytoplankton and phytobenthos of the aquatic ecosystems studied
248	(Table 1). In aquatic ecosystems where other algae taxa predominate, the same benthic
249	invertebrate taxa probably would have different FA content and composition, including essential
250	EPA and DHA, than reported in our study.
251	Lists of FA markers of different taxonomic groups of plankton and benthic invertebrates
252	have been published (Tolomeev et al. 2010, Makhutova et al. 2013). According to FA markers,
253	Trichoptera and Diptera consumed green algae, diatoms, and cyanobacteria, whereas
254	Ephemeroptera preferred bacteria and diatoms. One of the main food sources of Oligochaeta was
255	detritus enriched with bacteria. Diptera also consumed bacteria. High levels of oleic acid and
256	especially high levels of the 18:1n-9/18:1n-7 ratio are used as markers of carnivory (Cripps and
257	Atkinson 2000, Brett et al. 2009). Gammaridae, Coleoptera, and Plecoptera had high levels of
258	oleic acid and the 18:1n-9/18:1n-7 ratio, so they probably had animals in their diets. Plecoptera,
259	Coleoptera, and Megaloptera consumed green algae and cyanobacteria. Carnivorous Insecta
260	probably obtained markers of green algae and cyanobacteria through trophic chains. Our data are
261	in good agreement with data of other studies (e.g., Sushchik et al. 2003, Füreder et al. 2003,
262	Makhutova et al. 2011, Mirzajani et al. 2011, Inoda 2012).
263	Some taxa had peculiar FAs that are thought to be useful as markers in trophic webs.
264	Mollusca had high %20:1n-13 and 20:1n-11, whereas the other animals did not contain 20:1n-13.
265	High levels of 20:1n-13 in mollusks have been reported by other authors (e.g., Kawashima and
266	Ohnishi 2004, Zhukova 2007, Saito and Hashimoto 2010, Kharlamenko et al. 2011), but its role
267	in metabolism is not clear. Mollusks are thought to biosynthesize 20:1n-13 from 18:1n-13 by
268	elongation, whereas 18:1n-13 is derived from 18:0 by the $\Delta 5$ desaturase, which is common in
269	bivalves (Zhukova 1991, Saito and Osako 2007). The main characteristic of Hirudinea in our

13

270	study was a high percentage of long-chain dienoic FA 20:2n-6, but other information on FA
271	content of free-living Hirudinea is not available in the literature. Dendrocaelopsis sp. had very
272	high 22:5n-3 content. Makhutova et al. (2009) also reported high 22:5n-3 content and extremely
273	high 22:5n-3/22:6n-3 ratios (2–10), which is unusual for most aquatic animals, in Turbellaria.
274	Gammaridae had the highest %22:6n-3. High percentages of this FA have reported for other
275	species of amphipods than those in our study (Kolanowski et al. 2007, Lahdes et al. 2010). High
276	% DHA was found in Gammaridae and Mollusca. Among Mollusca, only dreissenids
277	accumulated DHA and many other long-chain PUFAs. The sum of %22:4n-6, 22:5n-6, and
278	22:5n-3 in Mollusca was $2 \times$ higher than %DHA, whereas Gammaridae mostly accumulated
279	DHA. Dytiscus lapponicus also had comparatively high %DHA. This carnivorous insect was
280	sampled only in one ecosystem. According to our observations, D. lapponicus consumed
281	gammarids and obtained DHA from the prey. Thus, in some cases DHA could be considered as
282	the marker of Gammaridae. We also think that 20:1n-13, 20:2n-6, 22:5n-3 can be used as
283	markers of Mollusca, Hirudinea, and Turbellaria, respectively, for tracing of food webs in

284 freshwater ecosystems.

14

285 ACKNOWLEDGEMENTS

286	Author contributions: ONM and MIG conceived and designed the study. ONM, NNS,
287	SPS, TAS, OPD, MAB and EGP participated in the field trips for sampling and carried out
288	hydrobiological analyses. SPS, TAS, MAB and EGP carried out species identification of benthic
289	invertebrates. ONM, NNS, and GSK carried out biochemical analyses. MIG carried out
290	statistical analyses and made the figures. ONM wrote the manuscript. MIG and NNS made
291	intellectual contributions and reviewed the manuscript.
292	The work was supported by a grant from the Russian Foundation for Basic Research
293	(RFBR) No.14-05-00286, the project No. 6.1089.214/K of Siberian Federal University, carried
294	out according to Federal Tasks of Ministry of Education and Science of Russian Federation and
295	by Russian Federal Tasks of Fundamental Research (project No. 51.1.1), and the Council on
296	grants from the President of the Russian Federation for support of leading scientific schools
297	(grant NSh-9249.2016.5)

298

15

300 LITERATURE CITED

302

301	Ahlgren, G., T. Vrede, and W. Goedkoop. 2009. Fatty acid ratios in freshwater fish, zooplankton

303 M.J. Kainz (editors). Lipids in aquatic ecosystems. Springer, Dordrecht, The Netherlands.

and zoobenthos-are there specific optima? Pages 147-178 in M.T. Arts, M.T. Brett, and

304 Anishchenko, O. V., L. A. Glushchenko, O. P. Dubovskaya, I. V. Zuev, A. V. Ageev, and E. A.

305 Ivanova. 2015. Morphometry and metal concentrations in water and bottom sediments of

- 306 mountain lakes in Ergaki Natural Park, Western Sayan Mountains. Water Resources
- 307 42:670–682.
- 308 Arbačiauskas, K., G. Višinskienė, S. Smilgevičienė, and V. Rakauskas. 2011. Non-indigenous
- macroinvertebrate species in Lithuanian fresh waters, Part 1: Distributions, dispersal and
 future. Knowledge and Management of Aquatic Ecosystems 402(12):1–18.
- 311 Arts, M. T., and C. C. Kohler. 2009. Health and condition in fish: the influence of lipids on
- 312 membrane competency and immune response. Pages 237–255 in M. T. Arts, M. T. Brett,
- 313 and M. J. Kainz (editors). Lipids in aquatic ecosystems. Springer, Dordrecht, The
- 314 Netherlands.
- Brown, A. M. 2005. A new software for carrying out one-way ANOVA post hoc tests. Computer
 Methods and Programs in Biomedicine 79:89–95.
- 317 Brett, M. T., D. C. Muller-Navarra, A. P. Ballantyne, J. L. Ravet, and C. R. Goldman. 2006.
- 318 *Daphnia* fatty acid composition reflects that of their diet. Limnology and Oceanography
 319 51:2428–2437.
- 320 Brett, M. T., D. C. Muller-Navarra, and J. Persson 2009. Crustacean zooplankton fatty acid
- composition. Pages 115–146 *in* M. T. Arts, M. T. Brett, and M. J. Kainz (editors). Lipids
 in aquatic ecosystems. Springer, Dordrecht, The Netherlands.

323	Burlakova, L., A. Karatayev, and D. K. Padilla. 2000. The impact of Dreissena polymorpha				
324	(Pallas) invasion on unionid bivalves. International Review of Hydrobiology 85:529-541.				
325	Butorin, N. V., and V. L. Skljarenko. 1989. Ecosystem of Lake Pleshcheevo. Nauka, Leningrad,				
326	Russia (in Russian).				
327	Bylinkina, A. A. 2001. Hydrochemical characteristic: hydrological and hydrochemical regime of				
328	reservoirs of the Upper Volga. Pages 26-36 in A. I. Kopylov (editor). Ecological				
329	problems of the Upper Volga. Yaroslavl State Technical University, Yaroslavl, Russia (in				
330	Russian).				
331	Campbell, R. C. 1967. Statistics for biologists. University Press, Cambridge, UK.				
332	Carrido, J. L., and I. Medina. 2002. Identification of minor fatty acids in mussels (Mytilus				
333	galloprovincialis) by GC-MS of their 2-alkenyl-4,4-dimethyloxazoline derivatives.				
334	Analytica Chimica Acta 465:409–416.				
335	Cripps, G. C., and A. Atkinson. 2000. Fatty acid composition as an indicator of carnivory in				
336	Antarctic krill, Euphausia superba. Canadian Journal of Fisheries and Aquatic Sciences				
337	57:31–37.				
338	Christie, W. W. 2003. Lipid analysis – isolation, separation, identification and structural analysis				
339	of lipids. Oily Press, Bridgwater, UK.				
340	Dijkman, N. A., and J. C. Kromkamp. 2006. Phospholipid-derived fatty acids as				
341	chemotaxonomic markers for phytoplankton: application for inferring phytoplankton				
342	composition. Marine Ecology Progress Series 324:113-125.				
343	Dumont, H. J., A. C. Rietzle, and BP. Han. 2014. A review of typhloplanid flatworm ecology,				
344	with emphasis on pelagic species. Inland Waters 4:257–270.				
345	Fefilova, E., O. Dubovskaya, O. Kononova, and L. Khokhlova. 2013. A comparative survey of				

346	the freshwater copepods of two different regions of the Central Palaearctic: European and				
347	Siberian. Journal of Natural History 47(5–12):805–819.				
348	Fefilova, E. B., O. N. Kononova, O. P. Dubovskaya, and L. G. Khokhlova. 2012. The current				
349	state of zooplankton in the lake system of Bol'shezemel'skaya Tundra. Inland Water				
350	Biology 5:333–341.				
351	Füreder, L., C. Welter, and J. K. Jackson. 2003. Dietary and stable isotope (δ 13C, δ 15N)				
352	analyses in alpine stream insects. International Review of Hydrobiology 88 (3/4):314-				
353	331.				
354	Galloway, A. W. E., M. T. Brett, G. W. Holtgrieve, E. J. Ward, A. P. Ballantyne, C. W. Burns,				
355	M. J. Kainz, D. C. Müller-Navarra, J. Persson, J. L. Ravet, U. Strandberg, S. J. Taipale,				
356	and G. Alhgren. 2015. A fatty acid based Bayesian approach for inferring diet in aquatic				
357	consumers. PLoS ONE 10(6):e0129723.				
358	Gladyshev, M. I., and A. V. Moskvicheva. 2002. Baikal invaders have become dominant in the				
359	upper Yenisei benthofauna. Doklady Biological Sciences 383:138–140.				
360	Gladyshev, M. I., V. P. Semenchenko, O. P. Dubovskaya, E. B. Fefilova, O. N. Makhutova, Z. F.				
361	Buseva, N. N. Sushchik, V. I. Razlutskij, E. V. Lepskaya, M. A. Baturina, G. S.				
362	Kalachova, and O. N. Kononova. 2011. Effect of temperature on contents of essential				
363	highly unsaturated fatty acids in freshwater zooplankton. Limnologica 41:339-347.				
364	Gladyshev, M. I., N. N. Sushchik, O. P. Dubovskaya, Z. F. Buseva, O. N. Makhutova, E. B.				
365	Fefilova, I. Y. Feniova, V. P. Semenchenko, A. A. Kolmakova, and G. S. Kalachova.				
366	2015a. Fatty acid composition of Cladocera and Copepoda from lakes of contrasting				
367	temperature. Freshwater Biology 60:373–386.				
368	Gladyshev, M. I., N. N. Sushchik, G. A. Gubanenko, O. N. Makhutova, G. S. Kalachova, and E.				
	17				

369	A. Rechkina. 2014. Effect of way of cooking on contents of essential polyunsaturated			
370	fatty acids in filets of zander. Czech Journal of Food Sciences 32:226-231.			
371	Gladyshev, M. I., N. N. Sushchik, and O. N. Makhutova. 2013. Production of EPA and DHA in			
372	aquatic ecosystems and their transfer to the land. Prostaglandins and Other Lipid			
373	Mediators 107:117–126.			
374	Gladyshev, M. I., N. N. Sushchik, S. P. Shulepina, A. V. Ageev, O. P. Dubovskaya, A. A.			
375	Kolmakova, and G. S. Kalachova. 2015b. Secondary production of highly unsaturated			
376	fatty acids by zoobenthos across rivers contrasting in temperature. River Research and			
377	Applications. doi:10.1002/rra.2945			
378	Glushchenko, L. A., O. P. Dubovskaya, E. A. Ivanova, S. P. Shulepina, I. V. Zuev, and A. V.			
379	Ageev. 2009. Hydrobiologic survey of some lakes of mountain range Ergaki (West			
380	Sayan). Journal of Siberian Federal University: Biology 3:355–378 (in Russian).			
381	Gorbaneva, T. B., N. A. Gaevsky, T. N. Anufrieva, and L. T. Chakimjanova. 2006.			
382	Determination of primary production of Lake Shira (Khakasia) Phytoperiphiton by			
383	fluorescent method. Herald of Krasnoyarsk State University 5:48-51 (in Russian).			
384	Gribble, M. O., R. Karimi, B. J. Feingold, J. F. Nyland, T. M. O'hara, M. I. Gladyshev, and C.			
385	Y. Chen. 2016. Mercury, selenium and fish oils in marine food webs and implications for			
386	human health. Journal of the Marine Biological Association of the United Kingdom			
387	96:43–59.			
388	Gugger, M., C. Lyra, I. Suominen, I. Tsitko, JF. Humbert, M. S. Salkinoja-Salonen, K.			
389	Sivonen. 2002. Cellular fatty acids as chemotaxonomic markers of the genera Anabaena,			
390	Aphanizomenon, Microcystis, Nostoc and Planktothrix (cyanobacteria). International			
391	Journal of Systematic and Evolutionary Microbiology 52:1007–1015.			

392	Gumuliauskaite, S., and K. Arbaciauskas. 2008. The impact of the invasive Ponto-Caspian			
393	amphipod Pontogammarus robustoides on littoral communities in Lithuanian lakes.			
394	Hydrobiologia 599:127–134.			
395	Guseva, N. V., Y. G. Kopylova, A. A. Khvashchevskaya, and I. V. Smetanina. 2012. The			
396	chemical composition of salt lakes of the North-Minusinsk depression, Khakasia. Bulletin			
397	of the Tomsk Polytechnic University 321(1):163–168 (in Russian).			
398	Inoda, T. 2012. Predaceous diving beetle, Dytiscus sharpi sharpi (Coleoptera: Dytiscidae) larvae			
399	avoid cannibalism by recognizing prey. Zoological Science 29 (9):547-552.			
400	Jobling, M. 2015. Fish nutrition research: past, present and future. Aquaculture International.			
401	doi: 10.1007/s10499-014-9875-2			
402	Karatayev, A. Y., L. E. Burlakova, D. K. Padilla, S. E. Mastitsky, and S. Olenin. 2009. Invaders			
403	are not a random selection of species. Biological Invasions 11:2009–2019.			
404	Karatayev, A. Y., S. E. Mastitsky, L. E. Burlakova, S. Olenin. 2008. Past, current, and future of			
405	the central European corridor for aquatic invasions in Belarus. Biological Invasions			
406	10:215–232.			
407	Kawashima, H., and M. Ohnishi. 2004. Lipids identification of minor fatty acids and various			
408	nonmethylene-interrupted diene isomers in mantle, muscle, and viscera of the marine			
409	bivalve Megangulus zyonoensis. Lipids 39:265–271.			
410	Kelly, J. R., and R. E. Scheibling. 2012. Fatty acids as dietary tracers in benthic food webs.			
411	Marine Ecology Progress Series 446:1–22.			
412	Kharlamenko, V. I., S. I. Kiyashko, S. A. Rodkina, and V. I. Svetashev. 2011. The composition			
413	of fatty acids and stable isotopes in the detritophage Acila insignis (Gould, 1861)			
414	(Bivalvia: Nuculidae): searching for markers of a microbial food web. Russian Journal of			

20

- 415 Marine Biology 37:201–208.
- 416 Kolanowski, W., A. Stolyhwo, and M. Grabowski. 2007. Fatty acid composition of selected
- 417 fresh water Gammarids (Amphipoda, Crustacea): a potentially innovative source of
- 418 omega-3 LC PUFA. Journal of the American Oil Chemists' Society 84:827–833.
- 419 Kolmakova, A. A., M. I. Gladyshev, G. S. Kalachova, E. S. Kravchuk, E. A. Ivanova, and N. N.
- 420 Sushchik. 2013. Amino acid composition of epilithic biofilm and benthic animals in a
- 421 large Siberian river. Freshwater Biology 58:2180–2195.
- 422 Korneva, L. G. 2015. Phytoplankton of Volga River basin reservoirs. Kostroma Publishing
- 423 House, Kostroma (in Russian).
- 424 Kraffe, E., J. Grall, M. Le Duff, P. Soudant, and Y. Marty. 2008. A striking parallel between
- 425 cardiolipin fatty acid composition and phylogenetic belonging in marine bivalves: a
 426 possible adaptative evolution? Lipids 43:961–970.
- 427 Krisp, H., and G. Maier. 2005. Consumption of macroinvertebrates by invasive and native
- 428 gammarids: a comparison. Journal of Limnology 64:55–59.
- 429 Kuzmin, M. I., E. N. Tarasova, E. A. Mamontova, A. A. Mamontov, and E. V. Kerber. 2014.
- 430 Seasonal and interannual variations of water chemistry in the headwater streams of the
- 431 Angara River (Baikal) from 1950 to 2010. Geochemistry International 52:523–532.
- 432 Lahdes, E. O., T. Farkas, and K. K. Lehtonen. 2010. Phospholipid characteristics and neutral
- 433 lipid fatty acid composition related to temperature and nutritional conditions in
- 434 ecologically important amphipod species from the northern Baltic Sea. Journal of
- 435 Experimental Marine Biology and Ecology 390:125–133.
- 436 Lau, D. C. P., T. Vrede, J. Pickova, and W. Goedkoop. 2012. Fatty acid composition of
- 437 consumers in boreal lakes variation across species, space and time. Freshwater Biology

Добавлено примечание ([PS2]): Is this a journal or a publisher. Please complete the reference. Kostroma is the city. I added the publisher.

- 438 57:24–38.
- Legendre, P., and L. Legendre. 1998. Numerical ecology. Elsevier Science, Amsterdam, The
 Netherlands.
- Litvinov, A. S., A. V. Zakonnova, and V. F. Roshchupko. 2001. General information on the
 reservoirs: Hydrological and hydrochemical regime of reservoirs of the Upper Volga.
- Pages 5–7 *in* A. I. Kopylov (editor). Ecological problems of the Upper Volga. Yaroslavl
 State Technical University, Yaroslavl, Russia (in Russian).
- Makeeva, E. G., and Y. V. Naumenko. 2015. Taxonomy structure and ecology-geographical
 characteristic algal flora Bele Lake. The flora of Asian Russia 2(18):8–19 (in Russian).
- 447 Makhutova, O. N., G. S. Kalachova, and M. I. Gladyshev. 2003. A comparison of the fatty acid
- composition of *Gammarus lacustris* and its food sources from a freshwater reservoir,
 Bugach, and the saline Lake Shira in Siberia, Russia. Aquatic Ecology 37:159–167.

450 Makhutova, O. N., A. A. Protasov, M. I. Gladyshev, A. A. Sylaieva, N. N. Sushchik, I. A.

451 Morozovskaya, and G. S. Kalacheva. 2013. Feeding spectra of bivalve mollusks Unio

- 452 and *Dreissena* from Kanevskoe Reservoir, Ukraine: are they food competitors or not?
 453 Zoological Studies 52:56.
- 454 Makhutova, O. N., E. G. Pryanichnikova, I. M. Lebedeva. 2012. Comparison of nutrition range
- in *Dreissena polymorpha* and *Dreissena bugensis* mussels by biochemical markers.
 Contemporary Problems of Ecology 5:459–469.
- 457 Makhutova, O. N., N. N. Sushchik, M. I. Gladyshev, A. V. Ageev, E. G. Pryanichnikova, and G.
- 458 S. Kalachova. 2011. Is the fatty acid composition of freshwater zoobenthic invertebrates
 459 controlled by phylogenetic or trophic factors? Lipids 46:709–721.
- 460 Makhutova, O. N., N. N. Sushchik, G. S. Kalachova, and A. V. Ageev. 2009. Fatty acid content

461	and composition of freshwater planaria Dendrocoelopsis sp. (Planariidae, Turbellaria,			
462	Platyhelminthes) from the Yenisei River. Journal of Siberian Federal University			
463	(Biology) 2:135–144.			
464	Manenti, R., and B. Bianchi. 2014. Distribution of the triclad Polycelis feline (Planariidae) in			
465	Aezkoa mountains: effect of stream biotic features. Acta Zoologica Bulgarica 66:271-			
466	275.			
467	Meteleva, N. J., and V. G. Devyatkin. 2005. Formation and productivity of periphyton in the			
468	Rybinsk reservoir: composition and abundance. Inland Water Biology 2:56-60 (in			
469	Russian).			
470	Mirzajani, A. R., O. Heidari, and S. H. Khodaparast. 2011. Some biological aspects of			
471	Gammarus lacustris Sars, 1863 in Neur Lake Ardabeel province, Iran. Iranian Journal of			
472	Fisheries Sciences 10:242–253.			
473	Molloy, D. P., A. Y. Karatayev, L. E. Burlakova, D. P. Kurandina, F. Laruelle. 1997. Natural			
474	enemies of zebra mussels: predators, parasites and ecological competitors. Reviews in			
475	Fisheries Science 5:27–97.			
476	Napolitano, G. E. 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems.			
477	Pages 21-44 in M. T. Arts and B. C. Wainman (editors). Lipids in freshwater ecosystems,			
478	Springer-Verlag, New York.			
479	Nunn, A. D., L. H. Tewson, and I. G. Cowx. 2012. The foraging ecology of larval and juvenile			
480	fishes. Reviews in Fish Biology and Fisheries 22:377–408.			
481	Petkov, G., and G. Garcia. 2007. Which are fatty acids of the green alga Chlorella? Biochemical			
482	Systematics and Ecology 35:281–285.			
483	Ruyter, B., C. Rosjo, O. Einen, and M. S. Thomassen. 2000. Essential fatty acids in Atlantic			

484	Salmon: effects of increasing dietary doses of n-3 and n-6 fatty acids on growth, survival
485	and fatty acid composition of liver, blood and carcass. Aquaculture Nutrition 6:119–127.
486	Saito, H., and J. Hashimoto. 2010. Characteristics of the fatty acid composition of a deep-sea
487	vent gastropod, Ifremeria nautilei. Lipids 45:537-548.
488	Saito, H., and K. Osako. 2007. Confirmation of a new food chain utilizing geothermal energy:
489	unusual fatty acids of a deep-sea bivalve, Calyptogena phaseoliformis. Limnology and
490	Oceanography 52:1910–1918.
491	Sushchik, N. N., M. I. Gladyshev, A. V. Moskvicheva, O. N. Makhutova, and G. S. Kalachova.
492	2003. Comparison of fatty acid composition in major lipid classes of the dominant
493	benthic invertebrates of the Yenisei River. Comparative Biochemistry and Physiology
494	Part B 134:111–122.
495	Tocher, D. R. 2010. Fatty acid requirements in ontogeny of marine and freshwater fish.
496	Aquaculture Research 41:717–732.
497	Tolomeev, A. P., N. N. Sushchik, R. D. Gulati, O. N. Makhutova, G. S. Kalacheva, and T. A.
498	Zotina. 2010. Feeding spectra of Arctodiaptomus salinus (Calanoida, Copepoda) using
499	fatty acid trophic markers in seston food in two salt lakes in South Siberia (Khakasia,
500	Russia). Aquatic Ecology 44:513–530.
501	Torres-Ruiz, M., J. D. Wehr, and A. A. Perrone. 2010. Are net-spinning caddisflies what they
502	eat? An investigation using controlled diets and fatty acids. Journal of the North
503	American Benthological Society 29:803–813.
504	Valeeva, E. I., and O. F. Sannikova. 1994. Algae of Andreevskoe Lake. Pages 84–92 in I. S.
505	Mukhachev, N. Y. Popov, A. G. Selyukov and V. A. Lezin (editors). Environmental
506	issues of rehabilitation of oxygen-depleted lakes. University of Tyumen, Tyumen, Russia

507	(in Russian).			
508	Weers, P. M. M., K. Siewertsen, an	nd R. D. Gulati. 19	997. Is the fatty acid c	omposition of

- Daphnia galeata determined by the fatty acid composition of the ingested diet? 509 Freshwater Biology 48:731-738. 510
- Whiles, M. R., M. I. Gladyshev, N. N. Sushchik, O. N. Makhutova, G. S. Kalachova, S. D. 511
- Peterson, and K. J. Regester. 2010. Fatty acid analyses reveal high degrees of omnivory 512
- and dietary plasticity in pond-dwelling tadpoles. Freshwater Biology 55:1533-1547. 513
- Zhukova, N. V. 1991. The pathway of the biosynthesis of non-methylene interrupted dienoic 514

515 fatty acids in molluscs. Comparative Biochemistry and Physiology Part B 100:801-804.

- Zhukova, N. 2007. Lipid classes and fatty acid composition of the tropical nudibranch mollusks 516 Chromodoris sp. and Phyllidia coelestis. Lipids 42:1169–1175. 517
- 518 Zinchenko, T. D., M. I. Gladyshev, O. N. Makhutova, N. N. Sushchik, G. S. Kalachova, and L.

V. Golovatyuk. 2014. Saline rivers provide arid landscapes with a considerable amount 519

- 520 of biochemically valuable production of chironomid (Diptera) larvae. Hydrobiologia 521 722:115-128.
- Zuev, I. V., E. M. Semenova, S. P. Shulepina, K. A. Reznik, E. A. Trofimova, E. N. Shadrin, 522
- 523 and T. A. Zotina. 2011. Feeding composition of Grayling Thymallus sp. in the Middle
- Reach of the Yenisei River. Journal of Siberian Federal University. Biology 4(3):281-524
- 525 292 (in Russian).

526 FIGURE CAPTIONS

527	Fig. 1. Dendrogram of single linkage cluster analysis of fatty acid (FA) composition (% of total
528	FA) for the zoobenthic species. Trichoptera: $tcn = Ceratopsyche nevae$, $trs = Rhyacophila$
529	sibirica, tgs = Goera sajanensis, tle = Leptoceridae, tce = Ceraclea excisa, tac =
530	Apatania crymophila, tsp = Sericostoma personatum, top = Oligoplectrodes potanini, tao
531	= Agrypnia obsoleta, tp = Pseudostenophylax sp., tl = Limnephilidae, tpp = Psychomyia
532	<i>pusilla</i> , tpl = <i>Potamophylax latipennis</i> , tg = <i>Glossosoma</i> sp.; Ephemeroptera: epl =
533	Potamanthus luteus, eej = Ecdyonurus (A.) joernensis, eeo = Ephemera orientalis, erl =
534	Rhithrogena gr. lepnevae, eep = Epeorus pellucidus, eh = Heptageniidae, eei =
535	Ephemerella (T.) $ignita$, $ee = Ecdyonurus$ sp., $een = Ephoron$ nigridorsum, $ecp = Caenis$
536	gr. $pseudorivulorum$, esa = Ephemera sachalinensis, ees = Ephemerella (T.) setigera, erg
537	= Rhithrogena (C.) grandifolia; Diptera: dhf = Hexatoma (H.) fuscipennis, dmp =
538	Microtendipes pedellus, dsc = Stictochironomus crassiforceps, dot = Orthocladius
539	thienemanni, dc = Chironomus plumosus, ddn = Dicrotendipes nervosus, dpo =
540	Prodiamesa olivacea, dcp = Chironomus piger, dt = Tipulidae; Plecoptera: pa = Agnetina
541	sp., pio = Isoperla obscura, paa = Arcynopteryx sp., psp = Skwala pusilla, pbd = Diura
542	bicaudata, ppf = $Paragnetina flavotincta$, pnc = $Nemoura cinerea$, pin = $Isogenus$
543	nubecula; Odonata: oo = Ophiogomphus sp., oa = Anizoptera; Megaloptera: mss = Sialis
544	sordida; Coleoptera: cdl = Dytiscus lapponicus; Gammaridae: ggl = Gammarus lacustris,
545	ggf = Gmelinoides fasciatus, gev = Eulimnogammarus viridis, gls = Gammarus lacustris
546	saltwater, gpq = Pallasea quadrispinosa, gg = Gammarus sp., gpv = Pallasea viridis, ggp
547	= Gammarus pulex; Mollusca: mdp = Dreissena polymorpha, mdb = Dreissena bugensis,
548	mlo = Lymnaea ovata, maa = Anisus acronicus, mpa = Pisidium amnicum; Hirudinea: ho

Добавлено примечание ([PS3]): Comments on fig Is there a scale showing similarity associated with the cluster analysis

549	= Herpobdella octoculata, hs = Helobdella stagnalis; Oligochaeta: ott = Tubifex tubifex,	
550	oim = Isochaetides michaelseni, $osf = Spirosperma ferox$, $osh = Stylodrilus herringianus$;	
551	Turbellaria: tud = Dendrocaelopsis sp.; Bryozoa: bpe = Plumatella emarginata.	
552	Linkage axis: arbitrary Units	
553	Fig. 2. Box and whisker plot showing contents of eicosapentaenoic acid (EPA) +	Добавлено примечание ([PS4]): Comments on fig
554	docosahexaenoic acid (DHA) in zoobenthos. Squares in boxes show medians, box ends	 y-axis title and units needed please remove the upper and right borders from around panel
555	are quartiles, and whiskers show minima and maxima. Number of species (n) : Insecta, n	key to symbols not needed p[lease remove dotted horizontal lines
556	= 48; Gammaridae, $n = 8$; Oligochaeta, $n = 4$; Mollusca, $n = 5$; miscellaneous (Hirudinea,	
557	Turbellaria, and Bryozoa), $n = 4$.	
558	Fig. 3. Two-dimensional plot of eicosapentaenoic acid (EPA) vs docosahexaenoic acid (DHA)	Добавлено примечание ([PS5]): comments on fig
559	content of zoobenthos species. Polygons enclose all points representing species within	, y-axis and x-axis units should be formatted (mg/g wivi)
560	groups: A = Mollusca ($n = 5$), B = Gammaridae ($n = 8$), C = miscellaneous species ($n = 1$	
561	4), D = Insecta ($n = 48$), and E = Oligochaeta ($n = 4$). WM = wet mass.	
562		

- Table 1. Physical, chemical, and biological characteristics of water bodies studied. A = surface area, $z_{av} =$ mean depth, $z_{max} =$
- 564 maximum depth, S = Secchi depth, M = mineralization, L = length, Q = mean discharge, v = mean current velocity, Cya =
- 565 Cyanobacteria, Chl = Chlorophyta, Bac = Bacillariophyta, Eug = Euglenophyta, Chry = Chrysophyta, Cry = Cryptophyta, Din =
- 566 Dinophyta, Desm = Desmidiales, Xan = Xanthophyta, n.d. = no data.

		Α	Z_{av}	Z_{max}				L	Q	v		
Region, water body	Location	(km ²)	(m)	(m)	S (m)	pН	M (mg/L)	(km)	(m ³ /s)	(m/s)	Phytoplankton	Phytobenthos
Krasnoyarsk territory												
Bugach Reservoir ^{a-c}	56°03' N 92°43' E	0.32	2	7	1	9.0	325				Cya Bac Chl Eug	Cya Chl Bac
Ergaki Mountains												
Lake Karovoe ^{d,e}	52°49′ N 93°21′ E	0.09	n.d.	7	7	7.9	~10				Chry	Cya Bac
Lake Oyskoe ^{d,e}	52°50'N 93°14' E	0.52	8.3	21	3–5	7.7	17				Bac Desm	Chl Desm
Lake Svetloe ^d	52°48′ N 93°25′ E	0.48	n.d.	24	6–12	7.6	14				Din Chry Bac	Cya Bac Eug Chl
Lake Tsirkovoe ^{f,g}	52°52′N 93°14′ E	0.02	n.d.	15	n.d.	8.5	8				Chry Xan Cya	n.d.
Bolshezemelskaya tundra												
Lake Bolshoi Kharbei ^{h-j}	67°35′N 62°53′E	21.3	4.6	18.5	2.7	6.4	~20				Bac Cya	n.d.
Lake Zhabronogovoe ^{f,i}	67°36′N 62°54′E	0.04	n.d.	n.d.	n.d.	7.6	~20				n.d.	n.d.
Tyumen area												
Lake Andreevskoe ^{k,1}	57°03′N 65°45′E	16.2	1.5	2.4	0.4–1	7.0	~100–200				Cya Chl Bac	n.d.

Lake Anikino ¹	56°06'N 69°25'E	0.33	1.5	2	0.5–0.8	7.6	~900–1100				Cya Chl Bac	n.d.
Reservoir-cooler ¹	57°09'N 65°38 'E	0.13	n.d.	n.d.	0.4–0.6	6.8	~200–400				Cya Chl Bac	n.d.
Yaroslavl area												
Lake Pleshcheevo ^{m,n}	56°44′N 38°48′E	51.5	11.2	24.3	1.1–4.3	n.d.	~300				Cya Din Bac	Bac Cya
Rybinskoe Reservoir ^{o-s}	58°03'N 38°17'E	4550	5.6	30.4	0.9–1.5	7.8	~200				Cya Bac	Chl Bac
Khakasia												
Lake Shira ^{b,t,u}	54°30'N 90°14'E	34.5	11.2	23.3	3.5	8.5	~16000				Суа	Bac Chl Cya
Lake Shunet ^{b,t}	54°36'N 90°20'E	0.47	n.d.	6.2	2	8.3	~18000				Cya Bac	n.d.
Lake Belo ^{v,w}	54°40'N 90°05'E	75	n.d.	48	n.d.	9.6	~12000				Bac Cya Chl	Cya Chl
Krasnoyarsk territory												
Yenisei River ^x	55°58'N 92°44'E							4803	20164	1–2		Bac Chl
	55°57′N 92°35′E											
	56°23'N 93°36'E											
Angara River ^{y,z}	58°23'N 97°26'E							1779	1902	2–3		Bac Chl Cry
Kacha River ^x	56°04′N 92°49′E							103	4.3	1–2		Bac Chl
Mana River ^x	55°55′N 92°27′E							533	93	1–2		Bac Chl
Bugach River ^{aa}	56°03′N 92°43′E							24	n.d.	n.d.		n.d.
Birusa River ^{aa}	55°55′N 91°58′E							58	4.6	n.d.		n.d.

Ergaki Mountains

29

Oya River ^{aa}	52°50′N 93°14′E	254	37.5	n.d.	n.d.
Nizhnaya Buiba River	52°48′N 93°17′E	n.d.	n.d.	n.d.	n.d.

^aMakhutova et al. 2003; ^bGladyshev et al. 2015a; ^cE. S. Kravchuk, personal communication; ^dAnishchenko et al. 2015; ^eGlushchenko et al. 2009; ^fONM, unpublished data; ^gE. A. Ivanova, personal communication; ^hGladyshev et al. 2011; ⁱFefilova et al. 2013; ^jFefilova et al. 2012; ^kValeeva and Sannikova 1994; ⁱTAS, personal communication; ^mButorin and Skljarenko 1989; ⁿZubishina, unpublished data; ^oMakhutova et al. 2012; ^pMeteleva and Devyatkin 2005; ^qLitvinov et al. 2001; ^rBylinkina 2001; ^sKorneva 2015; ^rTolomeev et al. 2010; ^uGorbaneva et al. 2006; ^vGuseva et al. 2012; ^wMakeeva and Naumenko 2015; ^xGladyshev et al. 2015b; ^yKuzmin et al. 2014; ^zL.

572 A. Glushchenko, personal communication; ^{aa}SPS, personal communication

Table 2. Mean (\pm SE) % of the total levels of prominent fatty acids (FAs) of taxa with several species sampled (Table S1). * = sum of

574 16:1n-7 and 16:1n-9, Σ = sum of isomers. Tukey's Honestly Significant Difference (HSD) post hoc tests were calculated for FAs

575 marked by letters. Values in rows labeled with the same letter are not significantly different (p < 0.05).

FA	Trichoptera	Ephemeroptera	Diptera	Plecoptera	Odonata	Gammaridae	Mollusca	Hirudinea	Oligochaeta
12:0	1.9 ± 0.74	0.7 ± 0.16	1.2 ± 0.35	1.2 ± 0.23	0.5 ± 0.07	0.5 ± 0.19	1.2 ± 0.74	0.8 ± 0.08	2.4 ± 0.46
14:0	2.5 ± 0.30^{ab}	2.5 ± 0.38^{ab}	$4.0\pm0.63^{\text{b}}$	$1.0\pm0.16^{\rm a}$	1.1 ± 0.53^{ab}	$1.7\pm0.31^{\rm ac}$	2.1 ± 0.34^{ab}	1.4 ± 0.53^{ab}	3.6 ± 0.58^{ab}
Σ14:1	1.7 ± 0.41^{a}	$0.2\pm0.03^{\text{b}}$	$0.5\pm0.21^{\text{b}}$	$0.3\pm0.11^{\rm b}$	0.3 ± 0.25^{ab}	$0.1\pm0.02^{\rm b}$	$0.1\pm0.12^{\text{b}}$	0.4 ± 0.22^{ab}	1.6 ± 0.34^{ab}
i15:0	$0.3\pm0.06^{\rm a}$	$0.5\pm0.09^{\rm a}$	$1.1\pm0.26^{\rm a}$	$0.2\pm0.04^{\text{a}}$	0.3 ± 0.06^{a}	0.3 ± 0.04^{a}	$0.4\pm0.16^{\rm a}$	$0.4\pm0.03^{\rm a}$	$4.0\pm1.17^{\text{b}}$
ai15:0	$0.1\pm0.02^{\rm a}$	$0.5\pm0.09^{\rm a}$	0.6 ± 0.18^{a}	$0.0\pm0.01^{\text{a}}$	$0.1\pm0.01^{\rm a}$	0.1 ± 0.03^{a}	0.2 ± 0.11^{a}	0.1 ± 0.01^{a}	$2.1\pm0.88^{\text{b}}$
15:0	0.4 ± 0.08^{ab}	0.5 ± 0.07^{ab}	$0.8\pm0.20^{\rm b}$	$0.2\pm0.03^{\text{a}}$	0.3 ± 0.12^{ab}	0.3 ± 0.05^{ab}	$0.8\pm0.35^{\text{b}}$	0.4 ± 0.08^{ab}	0.8 ± 0.07^{ab}
16:0	16.6 ± 0.66^{ab}	19.2 ± 0.87^{a}	18.2 ± 0.99^{ab}	12.6 ± 0.53^{cd}	$15.7\pm0.33^{\rm ac}$	14.7 ± 0.80^{bc}	17.3 ± 1.25^{ab}	8.6 ± 1.23^{cd}	8.3 ± 0.42^{d}
16:1*	10.7 ± 1.25^{ab}	12.8 ± 0.70^{a}	$12.7\pm1.63^{\text{a}}$	$6.1\pm1.13^{\rm b}$	5.8 ± 1.96^{ab}	$6.7\pm0.90^{\text{b}}$	7.6 ± 1.46^{ab}	7.8 ± 1.70^{ab}	6.3 ± 0.93^{ab}
i17:0	$0.2\pm0.03^{\text{a}}$	0.3 ± 0.03^{ab}	0.3 ± 0.04^{ab}	0.3 ± 0.04^{ab}	0.6 ± 0.13^{abd}	0.4 ± 0.04^{ab}	$1.0\pm0.34^{\text{d}}$	0.8 ± 0.19^{bd}	$1.8\pm0.10^{\rm c}$
16:2n-4	$1.5\pm0.26^{\rm a}$	$1.4\pm0.20^{\rm a}$	$1.3\pm0.35^{\rm a}$	$0.7\pm0.16^{\rm a}$	$0.5\pm0.36^{\rm a}$	$0.5\pm0.16^{\rm a}$	$0.4\pm0.19^{\rm a}$	$0.3\pm0.14^{\rm a}$	$0.5\pm0.17^{\rm a}$
17:0	$0.6\pm0.08^{\rm a}$	$0.8\pm0.10^{\rm a}$	1.0 ± 0.15^{ab}	0.9 ± 0.11^{ab}	1.6 ± 0.60^{ab}	0.6 ± 0.09^{a}	1.1 ± 0.35^{ab}	0.9 ± 0.17^{ab}	$1.7\pm0.14^{\text{b}}$
16:3n-4	0.9 ± 0.32	0.6 ± 0.10	0.5 ± 0.21	0.3 ± 0.09	0.2 ± 0.19	0.3 ± 0.13	0.4 ± 0.24	0.1 ± 0.05	0.3 ± 0.18
16:3n-3	$1.3\pm0.26^{\rm a}$	$0.2\pm0.07^{\text{b}}$	0.4 ± 0.25^{b}	$0.2\pm0.03^{\text{b}}$	0.4 ± 0.35^{ab}	$0.1\pm0.05^{\text{b}}$	$0.2\pm0.10^{\text{b}}$	0.4 ± 0.00^{ab}	$0.1\pm0.08^{\text{b}}$
16:4n-3	$2.6\pm0.73^{\rm a}$	$0.2\pm0.06^{\text{b}}$	$0.3\pm0.17^{\rm b}$	$0.2\pm0.09^{\rm b}$	0.4 ± 0.36^{ab}	$0.1\pm0.06^{\rm b}$	$0.2\pm0.11^{\text{b}}$	0.1 ± 0.11^{ab}	0.2 ± 0.09^{ab}

16:4n-1	0.8 ± 0.24	0.3 ± 0.08	0.3 ± 0.13	0.5 ± 0.21	0.2 ± 0.22	0.3 ± 0.14	0.2 ± 0.11	0.0 ± 0.05	0.4 ± 0.22
18:0	5.4 ± 0.52^{ac}	$5.7\pm0.35^{\rm ac}$	6.2 ± 0.67^{ac}	$7.6\pm0.91^{\rm a}$	$13.9\pm7.49^{\text{b}}$	$3.2\pm0.43^{\rm c}$	$6.5\pm1.29^{\rm ac}$	6.6 ± 1.11^{abc}	7.2 ± 0.97^{abc}
18:1n-9	14.7 ± 1.39^{ae}	9.0 ± 0.74^{bcd}	9.2 ± 0.56^{bcd}	$18.8 \pm 1.32^{\text{ae}}$	14.4 ± 1.27^{abce}	$19.6\pm1.62^{\rm e}$	$4.8\pm0.64^{\text{cd}}$	9.7 ± 1.81^{abcd}	$2.8\pm0.32^{\rm d}$
18:1n-7	$2.7\pm0.35^{\text{a}}$	$9.1\pm0.64^{\rm c}$	4.5 ± 0.54^{ad}	$4.3\pm0.50^{\text{ad}}$	$10.5\pm1.47^{\rm c}$	$4.4\pm0.28^{\rm ad}$	$5.6 \pm 1.28^{\rm d}$	7.6 ± 0.61^{cd}	$7.4\pm0.39^{\text{cd}}$
18:2n-6	6.1 ± 1.26^{abc}	$3.6\pm0.48^{\rm ac}$	$9.0\pm1.21^{\text{b}}$	6.6 ± 1.14^{abc}	5.3 ± 0.79^{abc}	5.1 ± 0.79^{abc}	$3.1\pm0.55^{\rm c}$	3.6 ± 0.11^{abc}	$2.6\pm1.23^{\rm c}$
18:3n-3	8.7 ± 1.24^{ab}	$5.2\pm0.63^{\rm ac}$	$3.8\pm0.67^{\rm c}$	10.3 ± 1.10^{b}	4.6 ± 2.59^{abc}	$3.0\pm0.43^{\rm c}$	$3.7 \pm 0.31^{\circ}$	3.7 ± 0.12^{abc}	$1.2\pm0.38^{\rm c}$
18:4n-3	2.1 ± 0.28	2.7 ± 0.90	1.5 ± 0.37	2.1 ± 0.43	0.8 ± 0.76	1.2 ± 0.22	1.4 ± 0.63	0.8 ± 0.14	0.3 ± 0.12
20:0	0.7 ± 0.11^{ab}	$0.5\pm0.04^{\rm ac}$	$1.1\pm0.32^{\rm c}$	$1.4\pm0.21^{\text{b}}$	2.4 ± 1.58^{abc}	0.3 ± 0.06^{a}	$0.2\pm0.10^{\rm ac}$	0.4 ± 0.16^{acd}	0.4 ± 0.06^{acd}
Σ20:1	$0.3\pm0.06^{\rm a}$	$0.1\pm0.02^{\rm a}$	$0.2\pm0.10^{\mathrm{a}}$	0.3 ± 0.02^{a}	0.3 ± 0.35^{ab}	$1.2\pm0.16^{\text{b}}$	$6.6\pm0.69^{\rm c}$	$6.9\pm0.09^{\rm c}$	$6.0\pm0.25^{\rm c}$
20:2n-6	0.1 ± 0.02^{a}	$0.1\pm0.02^{\rm a}$	$0.0\pm0.01^{\rm a}$	0.1 ± 0.02^{a}	0.3 ± 0.28^{ab}	$1.2\pm0.14^{\text{bd}}$	1.6 ± 0.54^{d}	$4.6\pm0.01^{\circ}$	$1.8\pm0.21^{\rm d}$
20:4n-6	$1.2\pm0.23^{\text{a}}$	$1.8\pm0.37^{\rm a}$	$2.0\pm0.37^{\rm a}$	$1.8\pm0.31^{\rm a}$	2.7 ± 0.05^{ab}	4.5 ± 0.76^{b}	$5.2\pm1.15^{\rm b}$	$7.3\pm2.43^{\text{b}}$	$5.5\pm1.42^{\text{b}}$
20:4n-3	$0.2\pm0.03^{\rm a}$	0.2 ± 0.02^{ab}	0.3 ± 0.04^{ab}	0.2 ± 0.04^{ab}	0.1 ± 0.13^{ab}	0.3 ± 0.04^{ab}	$0.4\pm0.09^{\rm b}$	0.3 ± 0.08^{ab}	0.3 ± 0.04^{ab}
20:5n-3	$10.5\pm1.10^{\rm a}$	$16.4\pm1.07^{\rm b}$	11.8 ± 1.80^{ab}	16.6 ± 1.98^{ab}	10.9 ± 2.97^{ab}	16.2 ± 1.13^{ab}	9.9 ± 1.07^{ab}	15.1 ± 2.38^{ab}	11.2 ± 2.45^{ab}
22:0	$0.5\pm0.11^{\rm a}$	0.8 ± 0.08^{ab}	$0.6\pm0.22^{\rm a}$	0.9 ± 0.19^{ab}	$2.0\pm1.44^{\text{b}}$	$0.3\pm0.06^{\rm a}$	0.4 ± 0.29^{a}	0.8 ± 0.07^{ab}	0.9 ± 0.21^{ab}
22:2n-6	$0.0\pm0.00^{\rm a}$	$0.0\pm0.00^{\mathrm{a}}$	$0.0\pm0.00^{\rm a}$	$0.0\pm0.00^{\rm a}$	$0.0\pm0.00^{\rm a}$	$0.0\pm0.00^{\mathrm{a}}$	$1.6\pm0.71^{\rm b}$	$0.3\pm0.15^{\rm a}$	$0.0\pm0.05^{\rm a}$
22:4n-6	$0.0\pm0.00^{\rm a}$	$0.0\pm0.00^{\rm a}$	$0.0\pm0.01^{\rm a}$	0.0 ± 0.01^{a}	0.0 ± 0.00^{ac}	$0.1\pm0.02^{\rm ac}$	$1.8\pm0.76^{\rm b}$	0.6 ± 0.35^{ac}	$1.0\pm0.10^{\rm bc}$
22:5n-6	$0.1\pm0.05^{\rm a}$	$0.0\pm0.00^{\mathrm{a}}$	0.0 ± 0.02^{a}	$0.1\pm0.07^{\rm a}$	0.0 ± 0.04^{ab}	0.6 ± 0.11^{ab}	$1.3\pm0.75^{\text{b}}$	0.1 ± 0.03^{ab}	0.5 ± 0.39^{ab}
22:5n-3	$0.1\pm0.02^{\rm a}$	$0.0\pm0.00^{\mathrm{a}}$	$0.1\pm0.05^{\rm a}$	0.1 ± 0.06^{a}	$0.2\pm0.17^{\rm ac}$	$1.4\pm0.14^{\rm d}$	$3.6\pm0.62^{\text{b}}$	0.7 ± 0.37^{acd}	1.3 ± 0.24^{cd}
22:6n-3	0.3 ± 0.08^{a}	0.1 ± 0.02^{a}	0.2 ± 0.09^{a}	$0.2\pm0.06^{\rm a}$	0.4 ± 0.38^{ab}	$6.5 \pm 1.08^{\circ}$	$3.2\pm1.28^{\text{b}}$	0.5 ± 0.36^{ab}	0.6 ± 0.17^{ab}

577 Table 3. Mean (±SE) % of total prominent fatty acids (FAs) of taxa with single species sampled.

578 * = sum of 16:1n-7 and 16:1n-9, Σ = sum of isomers. tr. = trace, n.d. = not detected.

	Turbellaria	Bryozoa	Megaloptera	Coleoptera
FA	Dendrocaelopsis sp.	Plumatella emarginata	Sialis sordida	Dytiscus lapponicus
12:0	0.3 ± 0.15	1.6 ± 0.09	0.9 ± 0.70	0.2 ± 0.05
14:0	2.3 ± 0.31	2.7 ± 0.15	1.5 ± 0.05	1.7 ± 0.31
Σ14:1	0.3 ± 0.09	0.5 ± 0.16	0.1 ± 0.08	tr.
i15:0	0.4 ± 0.04	1.8 ± 0.04	0.5 ± 0.03	0.2 ± 0.03
ai15:0	0.2 ± 0.04	0.3 ± 0.03	0.1 ± 0.03	0.1 ± 0.01
15:0	0.4 ± 0.10	1.7 ± 0.09	0.3 ± 0.01	0.3 ± 0.04
16:0	16.1 ± 1.05	21.1 ± 1.22	18.8 ± 2.95	13.3 ± 1.03
16:1*	8.3 ± 0.77	10.0 ± 0.26	15.3 ± 7.46	5.2 ± 0.51
i17:0	0.2 ± 0.03	1.1 ± 0.07	0.1 ± 0.03	0.3 ± 0.02
16:2n-4	1.1 ± 0.16	0.4 ± 0.03	0.9 ± 0.55	0.3 ± 0.05
17:0	0.6 ± 0.09	2.2 ± 0.20	0.4 ± 0.19	0.7 ± 0.04
16:3n-4	0.8 ± 0.11	0.2 ± 0.03	0.1 ± 0.03	0.2 ± 0.03
16:3n-3	1.1 ± 0.39	n.d.	n.d.	tr.
16:4n-3	0.6 ± 0.24	0.1 ± 0.05	n.d.	n.d.
16:4n-1	0.7 ± 0.19	tr.	n.d.	n.d.
18:0	4.6 ± 0.44	5.1 ± 0.42	4.6 ± 2.36	6.0 ± 0.15
18:1n-9	16.1 ± 1.49	7.3 ± 0.72	13.4 ± 0.90	23.1 ± 0.38
18:1n-7	7.6 ± 0.68	4.4 ± 0.23	7.1 ± 0.55	4.0 ± 0.27
18:2n-6	2.7 ± 0.31	2.3 ± 0.15	5.2 ± 0.54	13.5 ± 0.46
18:3n-3	5.5 ± 1.19	2.8 ± 0.15	9.9 ± 1.21	3.5 ± 0.13
18:4n-3	1.4 ± 0.13	0.9 ± 0.05	1.5 ± 0.39	1.8 ± 0.23
20:0	0.4 ± 0.04	0.3 ± 0.06	0.9 ± 0.62	0.9 ± 0.02

Σ20:1	0.6 ± 0.13	2.1 ± 0.12	0.1 ± 0.08	0.7 ± 0.05
20:2n-6	0.4 ± 0.05	2.2 ± 0.21	0.1 ± 0.00	0.7 ± 0.05
20:4n-6	0.6 ± 0.09	2.7 ± 0.13	2.4 ± 0.83	4.8 ± 0.20
20:4n-3	0.3 ± 0.02	0.8 ± 0.08	0.2 ± 0.08	0.8 ± 0.15
20:5n-3	10.0 ± 1.02	9.6 ± 0.74	10.6 ± 2.96	10.6 ± 0.73
22:0	0.5 ± 0.07	0.6 ± 0.07	0.9 ± 0.64	0.3 ± 0.02
22:2n-6	n.d.	n.d.	n.d.	n.d.
22:4n-6	0.9 ± 0.14	0.4 ± 0.13	n.d.	tr.
22:5n-6	0.1 ± 0.02	1.0 ± 0.11	n.d.	0.5 ± 0.10
22:5n-3	8.8 ± 1.17	1.1 ± 0.13	n.d.	0.3 ± 0.06
22:6n-3	1.9 ± 0.40	3.5 ± 0.48	0.1 ± 0.12	2.8 ± 0.43